
Automated quantum error mitigation based on
probabilistic error reduction

Benjamin McDonough
Department of Physics and Astronomy

Yale University
New Haven, Connecticut 06511, USA

ben.mcdonough@yale.edu

Andrea Mari
Unitary Fund

San Francisco, California 94104, USA
andrea@unitary.fund

Nathan Shammah
Unitary Fund

San Francisco, California 94104, USA
nathan@unitary.fund

Nathaniel T. Stemen
Unitary Fund

San Francisco, California 94104, USA
nate@unitary.fund

Misty Wahl
Unitary Fund

San Francisco, California 94104, USA
misty@unitary.fund

William J. Zeng
Unitary Fund

San Francisco, California 94104, USA
Goldman & Sachs

New York, NY, USA
will@unitary.fund

Peter P. Orth
Ames National Laboratory
Ames, Iowa 50011, USA

Department of Physics and Astronomy
Iowa State University

Ames, Iowa 50011, USA
porth@iastate.edu

Abstract—Current quantum computers suffer from a level of
noise that prohibits extracting useful results directly from longer
computations. The figure of merit in many near-term quantum
algorithms is an expectation value measured at the end of the
computation, which experiences a bias in the presence of hard-
ware noise. A systematic way to remove such bias is probabilistic
error cancellation (PEC). PEC requires a full characterization
of the noise and introduces a sampling overhead that increases
exponentially with circuit depth, prohibiting high-depth circuits
at realistic noise levels. Probabilistic error reduction (PER) is
a related quantum error mitigation method that systematically
reduces the sampling overhead at the cost of reintroducing
bias. In combination with zero-noise extrapolation, PER can
yield expectation values with an accuracy comparable to PEC.
Noise reduction through PER is broadly applicable to near-
term algorithms, and the automated implementation of PER is
thus desirable for facilitating its widespread use. To this end,
we present an automated quantum error mitigation software
framework that includes noise tomography and application of
PER to user-specified circuits. We provide a multi-platform
Python package that implements a recently developed Pauli noise
tomography (PNT) technique for learning a sparse Pauli noise
model and exploits a Pauli noise scaling method to carry out
PER. We also provide software tools that leverage a previously

This work was primarily supported by the U.S. Department of Energy,
Office of Science, National Quantum Information Science Research Centers,
Superconducting Quantum Materials and Systems Center (SQMS) under the
contract No. DE-AC02-07CH11359 (B.M., P.P.O.). A.M., N.S., N.T.S., M.W.,
W.J.Z. were supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Accelerated Research in
Quantum Computing under Award Number de-sc0020266 and by IBM under
Sponsored Research Agreement No. W1975810.

developed toolchain, employing PyGSTi for gate set tomography
and providing a functionality to use the software Mitiq for
PER and zero-noise extrapolation to obtain error-mitigated
expectation values on a user-defined circuit.

Index Terms—quantum noise tomography, quantum error
mitigation, noisy intermediate-scale quantum computing, proba-
bilistic error reduction, zero noise extrapolation

I. INTRODUCTION AND OVERVIEW

Hardware noise introduces unwanted bias into an expecta-
tion value measured on a quantum computer, restricting the
applicability of many quantum algorithms on current quantum
devices. Combating this problem has led to the development
of probabilistic error cancellation (PEC) [1]–[3], a systematic
method to remove the noise-induced bias. PEC requires a
representation of the desired unitary channel as a linear
combination of noisy channels that can be implemented on
the hardware, which demands a precise characterization of
the noise. Using the linearity of the expectation value, one
can then express any ideal value without bias in terms of
values obtained from instances of circuits with noisy gates.
However, the number of noisy circuits required to represent
an ideal circuit increases exponentially with the circuit depth,
which would result in an exponentially large number of
expectation values being measured. To overcome this issue, the
linear combination can be converted into a quasi-probability
distribution (QPD), from which sampling circuits yields an
unbiased estimator of the value [1]–[3]. Due to the presence of

ar
X

iv
:2

21
0.

08
61

1v
1

 [
qu

an
t-

ph
]

 1
6

O
ct

 2
02

2
FERMILAB-PUB-22-862-SQMS-V

Fig. 1: Illustration of automated error mitigation protocol start-
ing from user defined circuits and returning noise-mitigated
expectation values. It includes a noise tomography step in-
volving PNT or GST, whose results are used to generate
sampled PER circuits via canonical or Pauli noise scaling.
The circuits are executed with a user-specified interface to
a quantum backend, and the resulting expectation values are
adjusted according to the sampling overhead and the PER
quasiprobability coefficient of the sampled term. Virtual ZNE
is applied to approximate error-mitigated expectation values
corresponding to noiseless input circuits.

negative coefficients in the expansion, the method experiences
a sign problem, and requires an exponential sampling overhead
to reduce the variance below a desired threshold. At current
hardware noise levels, the sampling overhead limits PEC to
circuits of modest depth [4]. To overcome this restriction,
Mari et al. developed probabilistic error reduction (PER) [5],
wherein the noise is only partially mitigated rather than
fully canceled. By combining partial noise mitigation with
virtual zero-noise extrapolation (vZNE), it was suggested that
noiseless observables can be approximated at an accuracy
similar to that of PEC, but with significantly reduced sampling
costs (a related technique was also proposed in Ref. [6]).

Here, we describe and implement a framework for executing
automated quantum error mitigation based on PER. We inter-
connect hardware noise characterization with the generation,
sampling and analysis of PER mitigation circuits to produce
expectation values with reduced bias, as illustrated in Fig. 1.
We employ two separate methods of noise characterization:
gate set tomography (GST) [7], [8] and a recently proposed
cycle benchmarking technique for extracting a sparse Pauli
noise model [9], [10], which we refer to as Pauli noise
tomography (PNT). GST is implemented using the software
package PyGSTi [11], which returns a set of noisy Pauli
transfer matrices describing the set of implementable gates
{Oα}. We convert these to superoperators and pass them
into the open-source software package Mitiq [12], a software
package containing a collection of quantum error mitigation
techniques, to determine the decomposition of a set of desired
noiseless unitary superoperators Gi as

Gi =
∑
α

ηα,iOα . (1)

Using the previously developed technique of canonical noise
scaling [5], this decomposition is then used to create noise-

scaled representations of the channel, G(ξ)i , that depend on a
tunable noise level parameter ξ. Circuits are sampled from
these representations to obtain several noise-mitigated ex-
pectation values that are evaluated at different values of ξ.
From these results we extrapolate the noiseless (ξ → 0)
expectation value using vZNE. Our contribution to this method
is to develop software routines to facilitate this workflow
of applying PER and vZNE using GST as implemented in
PyGSTi for noise tomography to a user-specified circuit. We
demonstrate this technique in an executable Python notebook,
using Mitiq to produce a QPD representation with the noisy
operators obtained from GST [13].

The second method we implement is a recently proposed
scheme for efficient benchmarking of a Pauli-twirled noise
channel and a technique for sampling from the noise inverse,
which we extend to PER. [9], [10]. This method allows for
robust characterization of hardware noise in large devices by
keeping the number of measurements constant in the number
of qubits. This is possible by placing weak assumptions on
the level of correlation in the noise. This method compares
favorably with full gate set tomography, which scales ex-
ponentially in the number of qubits. The PNT method has
been used previously to perform PEC on IBM hardware [10].
Our key contributions are the following: 1) We combine the
advantages of PNT with the sampling overhead reduction of
PER and vZNE by extending this method to noise scaling, and
2) We provide a Python package implementing the combined
PNT and Pauli noise scaling method as part of the general
automated PER framework. The software automates all steps
in the framework: Parsing an arbitrary circuit, generating
tomography circuits, collecting and analyzing tomography
data to obtain a noise model, generating noise-scaled circuit
representations for PER, and running extrapolation to obtain
noise-mitigated expectation values. The code is available in
the accompanying repository [13].

In the remainder of the article, we first describe how to
combine GST with canonical noise scaling and vZNE and
show that this can reduce the sampling overhead compared to
PEC. Then, we describe PNT, together with a demonstration of
its usage in combination with PER and vZNE. We discuss in
detail the developed software package for automated quantum
error mitigation based on PNT and Pauli noise scaling to apply
PER combined with vZNE for mitigation. Finally, we apply
it to mitigate noise in a Trotter dynamics simulation of the
transverse field Ising model.

Acronym Meaning

PEC Probabilistic error cancellation
PER Probabilistic error reduction
GST Gate set tomography
PNT Pauli noise tomography

vZNE virtual Zero-Noise Extrapolation
QPD Quasi-probability distribution

TABLE I: List of acronyms used in the text.

II. GATE SET TOMOGRAPHY AND AND PROBABILISTIC
ERROR REDUCTION

A. Gate set tomography

Gate set tomography (GST) [7], [8] is a method for charac-
terizing noise associated with a set of gate operations capable
of preparing a complete set of density matrices. The details
of the long-sequence GST used here, including the choice of
gate strings that maximally amplify the errors and a choice
of suitable SPAM gates, are implemented by the software
package PyGSTi [11]. PyGSTi provides model packs with
pre-computed gate strings and SPAM gates. Here, we use
the sm1Q-XZ model pack to reconstruct the single qubit
gate set G = {RX(π2), RZ(π2)} on Rigetti Aspen-11, a
cloud-accessible superconducting-circuit quantum processing
unit (QPU). The maximum depths for the long sequence
gate strings were chosen to be {2, 4, 8, 16, 32}, and the GST
experiment include a total number of 550 circuits, each of
which was run at 1000 shots.

The output of PyGSTi is the set of operators represented
as Pauli-transfer matrices (PTMs), which can be further pro-
cessed as part of an error mitigation workflow using Mitiq.
GST results exhibit a gauge degree of freedom related to
the uncertainty in both state-preparation and measurement
processes, which results in a set of PTMs which are similar
to the ideal operations up to conjugation by an invertible
matrix. The gauge freedom is by definition not detected in
the measurement of expectation values, but it does affect the
decomposition of ideal gates in terms of noisy ones in Eq. (1)
and thus the sampling overhead of PEC and PER. Here, we
use the knowledge that the RZ gate is virtualized on many
platforms, including the Rigetti hardware, and use PyGSTi’s
inbuilt gauge optimization methods to choose a gauge such
that the RZ PTM is noiseless. Full gate set tomography scales
exponentially in complexity with the number of qubits, which
in practice restricts the number of qubits operated on by a
gate set to below three. An avenue for future work is to
explore variants of GST protocols capable of characterizing
noise in larger devices [8], [14]. This is typically made possible
by placing stronger assumptions on the locality of the noise,
which may limit the effectiveness of these protocols for PEC
due to the untracked level of crosstalk in the device [15], [16].

B. Canonical noise scaling and vZNE

Noise characterization is only the first step for noise-
sensitive quantum error mitigation. To proceed, we first con-
vert the PTMs of the noisy gate operations obtained from
GST into a superoperator representation. We then feed these
into Mitiq to obtain a quasi-probability representation of ideal
noiseless gates, as shown in Eq. (1). Applying canonical noise
scaling [5] to this representation, it is then straightforward to
derive a decomposition of noise-reduced gates G(ξ)i with noise
strength ξ ∈ [0, γi+1

γi−1]:

G(ξ) = (γ+ − ξγ−)Φ+ − (1− ξ)γ−Φ− . (2)

Here we have dropped the subscript i and separated the
positive and negative coefficients ηα in Eq. (1) into γ+ =∑
ηα>0 |ηα| > 0 and γ− =

∑
ηα<0 |ηα|, corresponding to

the positive and negative volumes of the QPD. We defined
γ = γ+ + γ− = 1 + 2γ−, which is the sampling overhead
at ξ = 0, corresponding to PEC. The overhead is determined
by γ−, which is referred to as the negativity of the QPD. We
also introduced the completely-positive and trace preserving
(CPTP) maps Φ± =

∑
ηα≷0

|ηα|
γ± Oα. The sampling overhead

for ξ ∈ [0, 1] is given by

γ(ξ) = γ − ξ(γ − 1) . (3)

This shows that PER provides a way to systematically reduce
this overhead by removing the noise only partially. This
reduction in overhead is shown explicitly in Fig. 2(a) for a
noise-scaled reconstruction of an RX(π2) gate with a noisy
single-qubit gate set obtained using GST on Rigetti’s Aspen-
11, which yields γ = 1.73. The sampling overhead for a circuit
of modest depth of l = 8 gates, (γ(ξ))l, is reduced from
over 80 for PEC (ξ = 0) to about 5 for ξ = 0.8. We note
that enforcing a noiseless RZ gate increases the overhead to
γ = 2.67, leading to an even more steeply increasing sampling
cost.

As shown in Fig. 2(b), although the price of reducing the
overhead is additional bias, we can improve the estimate of
the desired noiseless expectation values by leveraging the fact
that expectation values converge to their ideal values at ξ = 0.
Several values obtained through PER at different noise levels
ξ can thus be used to extrapolate to the zero-noise limit. This
vZNE procedure [5] can yield a zero noise estimator close to
PEC at much lower sampling costs.

Finally, we note that Eq. (2) can also be used to scale up
the noise when choosing ξ ∈ [1, γi+1

γi−1], which does not incur
any additional sampling overhead. Within ZNE one can thus
combine estimator values at both reduced and increased noise
levels, which can further improve the ZNE fit at low additional
sampling costs (see Fig. 2).

III. PAULI NOISE TOMOGRAPHY AND PROBABILISTIC
ERROR REDUCTION

We provide software that implements a recent noise char-
acterization protocol based on cycle benchmarking [9], [10],
which we refer to as Pauli noise tomography (PNT). This
technique involves applying a Pauli twirl surrounding the
Clifford entangling gates contained in layers of the circuit.
This has been shown to convert an arbitrary noise channel
into a Pauli channel [9], [10], [17]. The resulting Pauli
fidelities characterize the twirled noise. PNT is able to achieve
a constant scaling in the number of qubits, which makes
this benchmarking method practically applicable to larger
systems. This is achieved in part by modeling the twirled noise
channel with a Lindbladian whose quantum jump operators
are proportional to Pauli terms with support on qubits that are
physically connected to each other in the quantum processing
unit (QPU). This physically motivated assumption greatly
reduces the complexity of the algorithm. After extracting

Fig. 2: (a) Sampling overhead γ
(ξ)
tot = (γ(ξ))l versus circuit

depth l for different noise strengths ξ using a canonical noise
scaled representation derived from GST. Here, γ0 = 1.73 as
obtained from GST on Rigetti Aspen-11 and γ(ξ) is defined
in Eq. (3). The figure demonstrates that a realistic sampling
overhead γ of PEC on current hardware can be prohibitive
for circuits of even modest depth ltot, which validates the
need for methods to reduce the overhead of noise-sensitive
error mitigation such as PER and vZNE. (b) PER results for
〈Z〉 after application of a noisy X gate to |0〉. This was
simulated for a random Pauli noise model chosen to have
an overhead matching that obtained from GST on the Rigetti
QPU. The decomposition of the noise reduced operator G(ξ)
in Eq. (2) can be obtained from GST using Mitiq’s optimal
representation algorithm and applying canonical noise scaling
or from partially inverting the Pauli noise model Λ obtained
from PNT (discussed in detail in Sec. III-A).

a sparse Pauli noise model, PEC circuits can be generated
using an efficient procedure to sample from the inverse of
the noise channel [10]. We here extend this approach to PER
by constructing a partially inverted noise channel, enabling
the level of noise to be controlled by a parameter ξ. We
demonstrate the efficacy of this method in an accompanying
tutorial notebook, where it is applied to a Trotter dynamics
simulation of four qubits on a noisy backend emulator [13].

A. Pauli noise tomography

The advantage of PNT is its ability to capture correlated
noise with low algorithmic complexity. The method works
by decomposing circuits into “dressed” layers, which consist
of a sequence of layers of single-qubit gates that can be
compiled together, followed by a layer of self-adjoint Clifford
gates with disjoint support. On platforms that support single-
qubit rotations and the CNOT or CZ gate, any circuit can be
decomposed into this form.

This reduction in complexity is achieved by first Pauli-
twirling the noise channel Λl associated with a layer l. The
twirl is implemented by sampling random Pauli operators
around the noisy layer such that they have no logical effect on
the circuit. This has the effect of diagonalizing Λ (dropping
the subscript l) in the Pauli basis. This can be expressed
symbolically as

Ei[PiΛ(PiρPi)Pi] =
∑
k

ckPkρPk ≡ ΛPn(ρ) . (4)

Once the channel is diagonalized, it can be characterized by
the fidelities fa, which are the diagonal elements of the Pauli
transfer matrix:

fa =
1

d
Tr
(
PaΛPn(Pa)

)
. (5)

For a Pauli channel, these fidelities can be easily measured. If
|+〉a is a +1 eigenstate of Pa, then we observe

1

d
Tr
(
PaΛPn(Pa)

)
= Tr

(
PaΛPn(|+〉〈+|a)

)
. (6)

Since the Pauli matrices Pa are eigenvectors of the twirled
noise channel (dropping the Pn superscript from here on), the
fidelities can be determined through exponential fits. However,
since the noise is attached to a self-adjoint layer of Clifford
gates C, applying an even number of these layers results in
the measurement of fidelity pairs:

1

d
Tr
(
Pa(Λ ◦ C)2n(ρ)

)
= (faf

′
a)n . (7)

where f ′a is the fidelity of PCa = C(Pa) = CPaC
†. In

the most general case, there are still exponentially many
fidelities fa requiring measurement. Under the assumption
that noise correlations are strongest when there exist physical
connections between qubits, the twirled noise is modeled
using a master equation where the quantum jump operators√
λkPk are chosen to be only those Paulis which have support

on neighboring qubits [10]. It can be shown that the noise
channel, written as a superoperator, assumes the following
form:

Λ =
∏
k

(wkI + (1− wk)Pk) , (8)

where wk = 1
2 (1 + e−2λk), I is the identity, and Pkρ =

PkρP
†
k . Given this form of the noise, the fidelitites fa can be

related to the coefficients λk by the equation

fa =
∏

{Pa,Pk}=0

(1− 2wk) = exp

−2
∑

{Pa,Pk}=0

λk

 . (9)

Only the fidelities fa corresponding to the terms in the sparse
model require measurement to reconstruct the model. Many
QPU architectures exhibit a local qubit connectivity, often
restricted to nearest-neighbor pairs for which the number of
terms in the model scales linearly in the number of qubits. The
ability to simultaneously measure commuting terms results in
the additional improvement to constant scaling. Since PNT
characterizes the noise that is associated with a layer of
Clifford gates, methods such as Trotter time evolution or
variational quantum circuits that involve repetition of identical
circuit layers also exhibit a constant scaling in the depth of
the circuit.

In Fig. 3 we show PNT results for a randomly generated
Pauli noise model. Since Pauli twirling is shown to convert
arbitrary noise into Pauli noise, this efficacy extends to more
realistic noise models as well. We observe excellent agreement
between the simulated fidelities and the fidelities obtained
via PNT for a layer consisting of a CNOT gate. Once the
fidelities fa are obtained, a matrix M can be constructed via
[M]ab = 〈Pa, Pb〉sp, where 〈·, ·〉sp refers to the symplectic
inner product, which is zero if [Pa, Pb] = 0 and one otherwise.
The vector of fidelities f is then related to the vector of noise
model parameters λ via

2Mλ+ ln(f) = 0 . (10)

The λk can be approximated from the measurements of fa
using a non-negative least squares algorithm, yielding a sparse
Pauli noise model parametrized by λk (or equivalently wk).

B. Partial Pauli noise inversion

We incorporate PNT into the PER error mitigation frame-
work by generalizing the noise inversion through sampling
from a QPD representation as discussed in [10] to performing
a partial inverse. A partial inverse of the noise channel can be
constructed with the form

Λ(ξ) = γ(ξ)
∏
k

(
w

(ξ)
k I + sgn(ξ − 1)(1− w(ξ)

k)Pk
)
. (11)

Here, w(ξ) ≡ 1
2 (1 + e−2|1−ξ|λk) and the sampling overhead

γ(ξ) =

{
exp[2(1− ξ)

∑
k λk] ξ < 1

1 ξ ≥ 1
(12)

quantifies the variance in the estimator. This channel Λ(ξ)

exhibits similar useful properties as we observed within canon-
ical noise scaling in Sec. II-B. For example, upscaling the
noise does not incur any sampling overhead yet can still
provide useful information for vZNE. For intermediate values
of the noise 0 < ξ < 1, the overhead interpolates exponentially
between unity and the PEC value, which enables a substantial
reduction in the number of circuits that need to be executed.
When ξ → 0, we have Λ(ξ) → Λ−1, corresponding to PEC.
On the other hand, when ξ → ∞, Λ(ξ) approaches maximal
depolarizing noise, which maps every density matrix to the
identity. Lastly, the product form of this partial inverse ensures
that this method retains the efficient sampling from the inverse

Fig. 3: PNT results for a layer consisting of a CNOT gate
under a randomly generated Pauli noise model composed with
an amplitude damping noise channel with p = 0.01. We use
32 samples for the Pauli twirl and run different circuits depths
for 250 shots each. Panel (a) shows that the fidelity pairs faf ′a
of all Pauli operators on two qubits decay exponentially with
circuit depth. The amplitude damping noise was included to
show that the twirling properly diagonalizes the channel as
evidenced by the exponential decays observed in the figure.
Panel (b) compares the measured fidelity pairs to the products
of diagonal elements of the twirled channel transfer matrix.
The agreement between the measured and ideal values shows
the efficacy of PNT.

discussed in [10]. The sampling procedure is described in
Algorithm 1.

The total overhead is a product of the overhead of the
individual layers l, γ(ξ)tot =

∏
l γ

(ξ)
l , and so it still scales

exponentially in the number of layers. However, by making
this exponential scaling weaker, one can extend the practical
application of error mitigation to larger circuits. Implementa-
tion details are discussed in the following section.

IV. SOFTWARE FOR AUTOMATED ERROR MITIGATION

To make the techniques described above practical for the
end user, we here present a software package to automate the
implementation of PER, from tomography to extrapolation.
Our first attempt at such an automated framework is an
object-oriented interface written in Python automating the
PNT and Pauli noise scaling process. The chief goal of this

Fig. 4: UML diagram describing software tools for automated error mitigation. The solid lines with arrowheads represent
association, the dotted lines with solid arrowheads represent dependency, the solid lines with triangular heads represent
implementation, the lines with closed diamond heads represent composition, and the open diamond heads represent aggregation.
Objects involved in tomography are shown in blue, objects in orange are involved in PER, and gray objects are used by both.
The green objects are wrappers for external implementations (such as Qiskit) and require implementations with external
dependencies.

Algorithm 1 Description of PER routine
Input: Circuit with layers l ∈ {1, .., ltot}, each with noise
model parameters {w(ξ)

l1 , ..., w
(ξ)
ln }

Output: A sample of the PER expectation value (before
readout error mitigation)

1: Let α ≡ 1
2: for l ∈ {1, . . . , ltot} do
3: Compose layer l into circuit
4: for k ∈ {1, . . . , n} do
5: Sample I with probability w(ξ)

lk and Pk otherwise
6: Multiply α by γ(ξ)l

7: if Pk was sampled then
8: Multiply α by −1
9: end if

10: Compose sampled operator into circuit
11: end for
12: end for
13: Run the circuit and get the expectation value
14: if ξ < 1 then
15: Scale result by α
16: end if

implementation is to allow the user to apply this technique in
its entirety without being burdened by the details. This section
describes the functionality of this package to automate the
process of performing tomography and using it to carry out
PER, ultimately obtaining an error-mitigated set of desired
expectation values.

At the top level, the software is divided into two parts:

(i) tomography and (ii) PER. The program is intended to
be easily extended to different platforms such as PyQuil
or Circ, interacting with the native implementation through
the abstract classes Circuit, Processor, Pauli, and
Instruction. A Unified Modeling Language (UML) di-
agram highlights these objects (green) in Fig. 4. These classes
are wrappers for objects and behaviors common to many quan-
tum development toolkits, and can be overridden to provide
support for another API’s. This allows circuits to be run in
their native representation without any conversion. Currently
only the Qiskit interface has been implemented.

A. Pauli Noise Tomography software tools

The method used for PNT is described in Ref. [10]. To begin
the process, the SparsePauliTomographyExperiment
class is initialized with a list of circuits, a mapping of algo-
rithm qubits to physical qubits, and a quantum backend. The
experiment class initializes an instance of ProcessorSpec,
which uses the coupling map from the backend to generate
a list of the Pauli terms with support on neighboring qubits.
Using the sweeping algorithm described in Ref. [10], this ob-
ject chooses the nine optimal measurement bases from which
simultaneous measurements can be used to obtain fidelities of
all Pauli terms in the sparse model. Then, the PERCircuit
class separates each circuit into layers that have the form of
any number of single-qubit gates followed by a layer of self-
adjoint Clifford gates with disjoint supports. The noise of one
of these layers is assumed to be determined just by the Clifford
gates in the layer. The self-adjoint Clifford layers, from here

Fig. 5: Illustration of the two forms of benchmark circuits. The
Ba gates change from the computational basis into the Pauli
basis Pa being benchmarked. The Pauli twirl operator P is
sampled at random from the Pauli group. C is the Clifford
layer, and the superscript (·)C represents conjugation by the
Clifford layer. The R gate is readout twirling, sampled at
random from {I,X}⊗n [18], [19]. Adjacent single-qubit gates
are compiled together in a way that preserves the structure of
the dressed layers. Panel (a) shows single-depth measurements
that lift the degeneracy in the model. Panel (b) shows a
noisy layer repeated an even number of times, resulting in
benchmarking fidelity pairs.

on just “Clifford layers,” are therefore hashed into a set to be
benchmarked individually.

Next, the user can call the generate method on
the experiment class. The generation procedure creates a
LayerLearning object for each distinct Clifford layer,
which are responsible for generating the benchmark circuits
for tomography. Each learning procedure consists of two types
of circuits. The first represents the measurement of fidelity
pairs. These are the measurements that can be made at multiple
depths and fit to exponential decays. When the fidelities of two
model terms appear in a pair, a degeneracy is created in the
model. This degeneracy is lifted by the second type of circuit,
which consists of a single repetition of the noisy layer. The use
of a single repetition causes the preparation and measurement
bases to differ, which makes this type of measurement less
resistant to state preparation errors. In addition to the nine
Pauli bases chosen for the pair measurements, there are at
most six bases that are needed to make the degeneracy-
lifting measurements, independent of the number of qubits.
The initialized LayerLearning objects choose these basis
in relation to the corresponding Clifford layer.

Each LayerLearning generates a list of
BenchmarkInstance objects representing the desired
measurements, and each BenchmarkInstance generates
the circuit corresponding to this instance. This includes
readout twirling, following the method described in [19],
where gates are randomly sampled from the set {I,X}
before measurement on each of the qubits, and then the twirl
is inverted in software. This has the effect of diagonalizing
the readout error in the computational basis. The basis
preparation, measurement, and readout twirling gates are
stored as metadata. The next step for the user is to call the
run method on the experiment. This method accepts as input

a user-defined “executor” function, which executes a list of
circuits on the QPU and returns the results as a dictionary.

To complete the tomography procedure, the analyze
method can be called. This initializes the Analysis class,
which is constructed with the LayerLearning classes
from the experiment containing the experiment parameters
and the benchmark data. The Analysis class creates a
dictionary of LayerNoiseData objects for processing the
data associated with each distinct Clifford layer. Each of
these has a list of TermData objects, which will store
the expected data for each term in the sparse model. The
get_expectation(pauli) method is called on each
BenchmarkInstance and used to update the estimator in
the PauliTerm objects for each of the measurements that can
be made simultaneously. The get_expectation(pauli)
method is responsible for untwirling the result of the readout
using the stored metadata and returning the overlap with the
desired Pauli term in the computational basis. Finally, the
resulting values are sorted in each TermData object into the
type and depth of the measurement, where “type” indicates
whether the measurement is a fidelity pair or a single-depth
measurement.

Once the TermData objects for each LayerNoiseData
have been populated, the results can be used to fit the
fidelities. The pair fidelities are determined first through fits
to ae−b, where a quantifies the combined SPAM errors and
e−b =

√
faf ′a is the square root of the fidelity pair. The

pair measurements are used to determine SPAM coefficients
for each measurement basis in order to mitigate SPAM er-
rors in the single-depth measurements. The degeneracy-lifting
fidelities are determined directly from the estimators of the
expectation values, and the SPAM coefficients from the fits
are used to reduce SPAM errors. Since the pair measurements
are assumed to be more accurate, the value of a single-depth
measurement fa is limited by the pair fidelity f ′a via the
constraint faf ′a ≤ 1 and an exception is logged if fa violates
this bound.

After this set of single and pair fidelities have been de-
termined, each layer can be fit to the sparse noise model to
determine the layer coefficients. This is done as described in
[10]: one forms a vector b from the fit results, and forms lists
F1 and F2 containing Pauli operators. The entries of b are
either single fidelities ba = fa or fidelity pairs ba =

√
faf ′a.

If ba is a pair, then Pa is added to F1 and P ′a is added to F2.
If ba is not a pair, then Pa is added to both F1 and F2. From
here, one constructs matrices M1 and M2 using the definitions
[M1]ab = 〈F1a, F1b〉sp and [M2]ab = 〈F2a, F1b〉sp.

The Pauli noise model coefficients λ are obtained from a
numerical solution of [cf. Eq. (10)]

(M1 +M2)f + ln(λ) = 0 , (13)

where the logarithm is taken elementwise. The result of the
fit is a NoiseModel object, and all of these are composed
in a NoiseDataFrame object, which stores them as a
dictionary with Clifford layers as keys. In addition, the SPAM
coefficients for each single-weight Pauli measurement are

averaged together and stored to model the readout error for use
in mitigation. This NoiseDataFrame object forms the link
between the tomography and PER portions of the protocol.

The software package also provides several visualization
tools to plot results of different steps of the process. Within
the tomography procedure, there are three different plots
implemented. The first is the plot of the exponential decays of
the Pauli fidelity pairs with increasing circuit depth. This can
be used to see if enough samples were taking from the twirl to
properly diagonalize the channel. Next, the infidelities of Pauli
operators can be plotted by specifying a list of qubits as single-
element tuples or qubit pairs as tuples. Lastly, the coefficients
λk appearing in the generator can be plotted against each
other. This can be especially helpful to compare the errors
experienced by different qubits and identify the dominant
sources of error.

B. Probabilistic error reduction software tools

The NoiseDataFrame object resulting from the tomogra-
phy contains all the data needed to carry out PER. Calling the
create_per_experiment(circuits) method on the
experiment class passes this object to a new PER experiment
with a set of desired circuits to mitigate. Upon initializa-
tion, the PERExperiment class passes each circuit to the
PERCircuit class, which breaks each circuit into dressed
layers of the form described in Sec. III-A.

The generation of the PER circuits is initiated by calling
generate on the PERExperiment instance. The argu-
ments of this method are the desired expectation values, the
number of samples to take from the combined distribution
of the partial noise inverse, the Pauli twirl, and the readout
twirl, and finally, the different noise strengths at which to
run the circuits. Then, the minimal set of measurements
that can simultaneously reconstruct the desired expectation
values is determined. A new PERRun class is instantiated
for each of the circuits on which to run PER. Each PERRun
object is responsible for creating the desired PERInstances
representing the collection of a simultaneous subset of the
desired expectation values at a particular noise strength. The
sampling procedure is described in Sec. III-B.

Once the circuits have been generated, they can be executed
using the same executor method used in the tomography
section. The result of running each circuit is paired with
the PERInstance that produced it for later analysis. Once
the run is complete, the analyze method can be invoked
on the PER experiment to process the data. This calls the
analyze method on each of the PERRuns in the experiment,
which in turn assigns the populated PERInstance objects
to a PERData object for each expectation value that can be
simultaneously determined from the instance.

Object PERData calls get_adjusted_expectation
on each of the PERInstance objects. This method is re-
sponsible for converting the resulting expectation value into a
PER estimator by rescaling the raw expectation value of the
circuit with the sign recording the parity of the number of
nonidentity operators sampled in Eq. (11) and the overhead

Fig. 6: Illustration of PER circuits. The user-specified circuit
is parsed to obtain the single-qubit gates Gi and the Clifford
layer Ci for each layer i in the circuit. Each layer is assigned
a noise model produced by the tomography. Ba represents
the gates used to change from the computational basis to the
eigenbasis of Pa. The inverse is sampled at the desired noise
strength along with the Pauli and readout twirling. The symbol
PC = CPC† denotes the conjugation of P by the Clifford
layer C.

γ
(ξ)
l corresponding to the circuit layer to which it belongs. At

this point, the SPAM coefficients obtained from tomography
are used to perform readout error mitigation on the expectation
value. Readout error mitigation is currently implemented under
the assumption of uncorrelated readout noise to cut down on
the number of circuits that need to be run, but as work such
as [19] suggest, this assumption may be too strong, and this
functionality should be improved in the future.

Finally, each PerData object performs vZNE on the
expectation values taken at different noise strengths to yield
a final PER estimate of the desired expectation values on the
list of input circuits. The ansatz function used for the fit is
ae−b, where a is the ideal expectation value. There is reason
to believe that this ansatz is at least approximately accurate
for any circuit, but this merits future exploration.

The principal plotting tool in the PER module is the ability
to show the convergence of the expectation value for different
strengths of noise against the exponential fit. The analyze
method returns the PERRun objects corresponding to different
circuits, and the get_result(pauli) method can be used
to obtain the PERData for a specific expectation value on the
desired circuit. This object contains the data and plotting tools
for this run.

V. APPLICATION TUTORIAL

We choose as our practical application a Trotter simulation
of the postquench dynamics in the one-dimensional transverse-
field Ising model (TFIM) with Hamiltonian

H = −J
∑
j

ZjZj+1 − h
∑
j

Xj . (14)

This example is used for comparison to Ref. [10]. A single
Trotter step can be constructed as a QuantumCircuit ob-
ject in the form of Fig. 7. To simulate the evolution at different
points in time, a method can be created to repeat this Trotter
step n times by defining a function trotterCircuit(n).
A list of circuits corresponding to increasing Trotter steps can
be generated:

Rx

Rx Rz

Rx Rz

Rx Rz

Fig. 7: The realization of a single Trotter step as a quantum
circuit. Here we have defined Rx ≡ RX(−2hδt) and Rz ≡
RZ(2Jδt)

circuits = [
trotterCircuit(n) for n in range(0, d)

]

Next, a backend should be initialized and used to transpile the
circuits. In the tutorial notebook, we use FakeVigoV2. PNT
is initialized via
from tomography.experiment \
import SparsePauliTomographyExperiment \
as pnt
experiment = pnt(

circuits=circuits,
inst_map=[0,1,2,3],
backend=backend,

)

The transpiled circuits are passed to the experiment, along with
the backend and a map from the virtual qubits in the circuit
to the physical qubits on the backend. Next, the circuits for
tomography can be generated with
experiment.generate(

samples=32,
single_samples=200,
depths=[2,4,8,16],

)

These are the default options for the parameters. Increasing
the samples will increase the goodness of the fit (for details
see Sec. IV). The execution of circuits is exposed to the
user by the use of a method which takes a list of quantum
circuits and returns the result of executing these circuits on a
quantum computer as a counts dictionary. An example of such
an executor is
def executor(circuits):

job = backend.run(circuits)
return job.result().get_counts()

This executor can be used to call the run method of the exper-
iment: experiment.run(executor) Once the execution
is finished, the data can be analyzed by calling
experiment.analyze()

The experiment is now populated with all of the noise data
needed to carry out PER. With this, the PER experiment can
be set up for the desired circuits by calling
perexp = \
experiment.create_per_experiment(circuits)

The value we want to mitigate is the z-component of the
magnetization, Mz = 1

N

∑N−1
i=0 〈Zi〉. We can collect these

expectation values by passing them to the generate method:
expectations = ["ZIII", "IZII",

"IIZI","IIIZ"]
perexp.generate(

expectations,
samples=1000,
noise_strengths=[0.5, 1, 2],

)

The bases to make as many of these measurements simul-
taneously as possible are chosen. For this example, this is
simply the computational basis. Currently, for d = 10 Trotter
steps at 1000 samples for three different noise depths, the
generation of these circuits takes around an hour on a regular
laptop computer. The time taken to generate these circuits is
currently the biggest bottleneck to the execution time of the
protocol. One potential solution would be to take advantage
of the consistent form of the PER circuits by using parametric
compilation to implement the twirl and partial noise inverse.
This will be explored in future versions.

After generating the circuits, they can be run with
perexp.run(executor)

Finally, the results can be obtained by calling
circuit_results = perexp.analyze()

Each element in circuit_results now stores the results
of PER containing each expectation value at each noise
strength corresponding to the original circuits array that
was passed in. Lastly, the magnetization can be computed for
the ith Trotter step by adding up the vZNE result of each
expectation value:
res = circuit_results[i]
M_z[i] = sum([

res.get_result(op).expectation
for op in expectations

]) / N

The resulting array Mz is plotted versus time in Fig. 8(a),
along with the noiseless value for comparison. Fig. 8(b,c) com-
pares the distribution of PEC and PER estimators, highlighting
the increase of the negativity of the QPD for smaller ξ and
the resulting larger variance and sampling cost. This is further
illustrated in Fig. 9, which shows vZNE for the individual 〈Zi〉
at the final Trotter step of the simulation. At this depth n = 15,
the number of PEC samples required to achieve a precision
equal to δ is γ(0)2

δ2 ≈ 53
δ2 . In contrast, PER with the same

precision at noise strengths ξ ∈ [0.5, 1, 2] requires in total only
γ(0.5)2

δ2 + 2
δ2 ≈

9
δ2 samples. While there may be some extra bias

error introduced through vZNE, our results demonstrate that
PER combined with vZNE can offer a significant advantage
when the overhead is large.

VI. CONCLUSION AND OUTLOOK

Mitigating errors that occur in a noisy quantum computation
is a key challenge that must be addressed in order to achieve

Fig. 8: PER results of total magnetization 〈Mz(t)〉 of the
TFIM, prepared in the |0〉 initial state and evolved with
under Hamiltonian with parameters J = 0.15, h = 1. The
Trotter dynamics are simulated on the IBM noisy simulator
FakeVigoV2 using a Trotter stepsize ∆t = 0.2. We simulate
1000 PER circuits, each is evaluated with 1024 shots. Panel
(a) shows that vZNE with the noise levels ξ ∈ [0.5, 1, 2]
yields excellent agreement with the noiseless Trotter result.
Readout error mitigation is used at all noise levels. Panel (b)
shows the individual estimators (blue) and their average with
standard deviation (red crosses) at ξ = 0 (upper plot) and
ξ = 0.5 (lower plot). The variance increases as the noise
strength approaches zero, and the estimator values approach
the noiseless value. The overhead at ξ = 0 after 15 Trotter
steps is γ(0) = 7.25, while it is only γ(0.5) = 2.69 at ξ = 0.5.

quantum advantage when full quantum error correction is not
available. The use of quantum error mitigation is also expected
to extend into the era of fault-tolerant quantum computing with
logical qubits as it can lower the overhead for quantum error
correction [20]–[22]. While hardware improvements that re-
duce gate error rates are crucial, the development of controlled
and automated error mitigation software provides progress to-
wards performing more complex quantum calculations. Since
the controlled mitigation of quantum errors necessarily in-
cludes noise characterization as the first step, we advocate
for the development of error mitigation software tools that
combine noise characterization with mitigation capabilities.

Fig. 9: Pauli Z expectation values of individual qubits at
n = 15 Trotter steps as a function of noise strength ξ. We use
1000 PER circuits, each evaluated with 1024 shots. Variance
increases and bias decreases for smaller ξ. vZNE with expo-
nential fit using ξ ∈ {0.5, 1, 2} yields an expectation value of
similar accuracy as PEC. The star denotes the noiseless result.

We here provide a Python notebook with a practical example
of how to efficiently connect GST with PER using canonical
noise scaling and vZNE by connecting two existing software
toolkits, PyGSTi and Mitiq. We also develop a software
framework that combines PNT with PER using partial noise
inversion and vZNE for a user-defined circuit. Since the com-
plexity of this method is constant with respect to the number
of qubits and the circuit depth for circuits with many repeated
layers, this approach can be applied for larger systems. We
provide a tutorial notebook showcasing the use of this method
in a Trotter simulation of four qubits over 15 Trotter steps.
Our results demonstrate that PER combined with vZNE can
yield results of the same accuracy as PEC, but at much
smaller sampling costs. Finally, as increasingly complex error
mitigation schemes are developed, multi-platform software
tools provide key advantages for software users engaging on
multiple quantum computing platforms. We hope that our
work lays a foundation for integrating the proposed workflow
of GST and canonical noise scaling into Mitiq, and for the
development of other software suites connecting noise char-
acterization and error reduction to automate the application
of noise-sensitive error mitigation to near-term algorithms on
noisy intermediate-scale quantum (NISQ) devices.

VII. REPRODUCIBILITY

We have made our raw data, source code, and tutorial note-
books available via an online appendix [13] for the research
community to reproduce or use.

REFERENCES

[1] K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for short-
depth quantum circuits,” Phys. Rev. Lett., vol. 119, no. 18, p. 180509,
Nov 2017.

[2] S. Endo, S. C. Benjamin, and Y. Li, “Practical quantum error mitigation
for near-future applications,” Phys. Rev. X, vol. 8, p. 031027, Jul
2018. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.8.
031027

[3] Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y. Li, J. R.
McClean, and T. E. O’Brien, “Quantum Error Mitigation,” Oct. 2022.

[4] S. Zhang, Y. Lu, K. Zhang, W. Chen, Y. Li, J.-N. Zhang, and
K. Kim, “Error-mitigated quantum gates exceeding physical fidelities in
a trapped-ion system,” Nature Communications, vol. 11, no. 1, p. 587,
2020. [Online]. Available: https://doi.org/10.1038/s41467-020-14376-z

[5] A. Mari, N. Shammah, and W. J. Zeng, “Extending quantum
probabilistic error cancellation by noise scaling,” Phys. Rev. A, vol.
104, p. 052607, Nov 2021. [Online]. Available: https://link.aps.org/doi/
10.1103/PhysRevA.104.052607

[6] S. Ferracin, A. Hashim, J.-L. Ville, R. Naik, A. Carignan-Dugas,
H. Qassim, A. Morvan, D. I. Santiago, I. Siddiqi, and J. J. Wallman,
“Efficiently improving the performance of noisy quantum computers,”
Jul. 2022.

[7] D. Greenbaum, “Introduction to quantum gate set tomography,” arXiv
preprint arXiv:1509.02921, 2015.

[8] E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten, K. Young, and
R. Blume-Kohout, “Gate Set Tomography,” Quantum, vol. 5, p. 557, Oct.
2021. [Online]. Available: https://doi.org/10.22331/q-2021-10-05-557

[9] S. T. Flammia and J. J. Wallman, “Efficient estimation of Pauli chan-
nels,” ACM Transactions on Quantum Computing, vol. 1, no. 1, pp.
1–32, 2020.

[10] E. van den Berg, Z. K. Minev, A. Kandala, and K. Temme, “Probabilistic
error cancellation with sparse pauli-lindblad models on noisy quantum
processors,” 2022. [Online]. Available: https://arxiv.org/abs/2201.09866

[11] E. Nielsen, K. Rudinger, T. Proctor, A. Russo, K. Young, and R. Blume-
Kohout, “Probing quantum processor performance with pygsti,” Quan-
tum science and Technology, vol. 5, no. 4, p. 044002, 2020.

[12] R. LaRose, A. Mari, S. Kaiser, P. J. Karalekas, A. A. Alves, P. Czarnik,
M. El Mandouh, M. H. Gordon, Y. Hindy, A. Robertson, P. Thakre,
M. Wahl, D. Samuel, R. Mistri, M. Tremblay, N. Gardner, N. T. Stemen,
N. Shammah, and W. J. Zeng, “Mitiq: A software package for error
mitigation on noisy quantum computers,” Quantum, vol. 6, p. 774, Aug.
2022. [Online]. Available: https://doi.org/10.22331/q-2022-08-11-774

[13] B. McDonough, “benmcdonough20/autonomouspertools: v0.2.0-alpha,”
Oct. 2022. [Online]. Available: https://doi.org/10.5281/zenodo.7197234

[14] C. Song, J. Cui, H. Wang, J. Hao, H. Feng, and Y. Li, “Quantum com-
putation with universal error mitigation on a superconducting quantum
processor,” Science Adv., vol. 5, no. 9, 2019.

[15] R. Harper, S. T. Flammia, and J. J. Wallman, “Efficient learning of
quantum noise,” Nat. Phys., vol. 16, no. 12, pp. 1184–1188, Dec. 2020.

[16] D. C. McKay, A. W. Cross, C. J. Wood, and J. M. Gambetta, “Correlated
Randomized Benchmarking,” Mar. 2020.

[17] J. J. Wallman and J. Emerson, “Noise tailoring for scalable
quantum computation via randomized compiling,” Phys. Rev. A,
vol. 94, no. 5, p. 052325, 2016. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevA.94.052325

[18] P. J. Karalekas, N. A. Tezak, E. C. Peterson, C. A. Ryan,
M. P. da Silva, and R. S. Smith, “A quantum-classical cloud
platform optimized for variational hybrid algorithms,” Quantum Sci.
Tech., vol. 5, no. 2, p. 024003, apr 2020. [Online]. Available:
https://doi.org/10.1088%2F2058-9565%2Fab7559

[19] E. van den Berg, Z. K. Minev, and K. Temme, “Model-free
readout-error mitigation for quantum expectation values,” Phys.
Rev. A, vol. 105, p. 032620, Mar 2022. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.105.032620

[20] M. Lostaglio and A. Ciani, “Error mitigation and quantum-
assisted simulation in the error corrected regime,” Phys. Rev.
Lett., vol. 127, p. 200506, Nov 2021. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevLett.127.200506

[21] C. Piveteau, D. Sutter, S. Bravyi, J. M. Gambetta, and K. Temme,
“Error mitigation for universal gates on encoded qubits,” Phys.
Rev. Lett., vol. 127, p. 200505, Nov 2021. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.127.200505

[22] Y. Suzuki, S. Endo, K. Fujii, and Y. Tokunaga, “Quantum error
mitigation as a universal error reduction technique: Applications
from the nisq to the fault-tolerant quantum computing eras,”
PRX Quantum, vol. 3, p. 010345, Mar 2022. [Online]. Available:
https://link.aps.org/doi/10.1103/PRXQuantum.3.010345

https://link.aps.org/doi/10.1103/PhysRevX.8.031027
https://link.aps.org/doi/10.1103/PhysRevX.8.031027
https://doi.org/10.1038/s41467-020-14376-z
https://link.aps.org/doi/10.1103/PhysRevA.104.052607
https://link.aps.org/doi/10.1103/PhysRevA.104.052607
http://arxiv.org/abs/1509.02921
https://doi.org/10.22331/q-2021-10-05-557
https://arxiv.org/abs/2201.09866
https://doi.org/10.22331/q-2022-08-11-774
https://doi.org/10.5281/zenodo.7197234
https://link.aps.org/doi/10.1103/PhysRevA.94.052325
https://link.aps.org/doi/10.1103/PhysRevA.94.052325
https://doi.org/10.1088%2F2058-9565%2Fab7559
https://link.aps.org/doi/10.1103/PhysRevA.105.032620
https://link.aps.org/doi/10.1103/PhysRevLett.127.200506
https://link.aps.org/doi/10.1103/PhysRevLett.127.200506
https://link.aps.org/doi/10.1103/PhysRevLett.127.200505
https://link.aps.org/doi/10.1103/PRXQuantum.3.010345

