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Optomechanical systems have been exploited in ultrasensitive measurements of force, acceleration, and mag-
netic fields. The fundamental limits for optomechanical sensing have been extensively studied and now well
understood—the intrinsic uncertainties of the bosonic optical and mechanical modes, together with the backac-
tion noise arising from the interactions between the two, dictate the Standard Quantum Limit (SQL). Advanced
techniques based on nonclassical probes, in-situ pondermotive squeezed light, and backaction-evading mea-
surements have been developed to overcome the SQL for individual optomechanical sensors. An alternative,
conceptually simpler approach to enhance optomechanical sensing rests upon joint measurements taken by mul-
tiple sensors. In this configuration, a pathway toward overcoming the fundamental limits in joint measurements
has not been explored. Here, we demonstrate that joint force measurements taken with entangled probes on mul-
tiple optomechanical sensors can improve the bandwidth in the thermal-noise-dominant regime or the sensitivity
in shot-noise-dominant regime. Moreover, we quantify the overall performance of entangled probes with the
sensitivity-bandwidth product and observe a 25% increase compared to that of the classical probes. The demon-
strated entanglement-enhanced optomechanical sensing could enable new capabilities for inertial navigation,
acoustic imaging, and searches for new physics.

PACS numbers: 03.67.Hk, 03.67.Dd, 42.50.Lc

INTRODUCTION

Optomechanical sensors [1, 2] have garnered signif-
icant interest owing to their high sensitivity in mea-
surements of force [3], acceleration [4], and magnetic
fields [5], immunity to electromagnetic interference, and
small footprint [3, 4]. As extensively studied in the
field of cavity optomechanics [6], the superior perfor-
mance of optomechanical sensors stems from their low-
noise readout mechanism based on parametric coupling
of an optical field and a mechanical oscillator, in con-
trast to micro-electro-mechanical systems which are of-
ten plagued by technical noise. In cavity optomechani-
cal sensors, a probe field is coupled into an optical cav-
ity where a mechanical oscillator resides. Physical dis-
placement of the mechanical oscillator shifts the cavity
resonant frequency, which in turn shifts the phase of the
field leaving the cavity. The sensitivity of the displace-
ment measurement is typically bound by the Standard
Quantum Limit (SQL) dictated by several fundamental
noise sources including imprecision noise, also known

as the shot noise owing to the photon-number fluctu-
ations in the probe, and backaction noise arising from
the interaction between the radiation-pressure shot noise
and the mechanical oscillator [7–9]. Several techniques
have been developed in recent years to improve sensi-
tivity for individual optomechanical sensors. To com-
bat imprecision noise, probes carrying squeezed light
have been employed in Advanced LIGO to enable a 3-
dB sensitivity improvement in the ongoing observation
run [10]; and in optomechanical magnetometry, to en-
hanced the sensitivity and bandwidth in detecting mag-
netic fields [11]. On the other hand, backaction-evading
measurements, quantum non-demolition measurements,
and imprecision-backaction correlations provide a route
to beating the SQL. These approaches have been im-
plemented in cavity optomechanics using two-tone driv-
ing [12, 13], negative mass oscillators [14–16], and the
intrinsic optomechanical Kerr non-linearity [17–20].

Apart from these intriguing advances in optomechan-
ical measurement techniques with a single sensor, a
parallel route to enhance optomechanical measurements
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Figure 1. (a)Experiment setup. BS: beam splitter. PBS: polarizing beam splitter. QWP: quarter wave plate. (b) Normalized
power spectral densities (PSDs) of individual homodyne measurement for the displacement of each membrane using entangled
probes. Individual shot noise PSD (gray line) is normalized to unity. (c) Normalized PSD of joint homodyne measurement for the
displacements of both membranes. Joint shot noise PSD (gray line) is normalized to 3 dB. Circles mark the delta peaks.

builds on increasing the number of sensors. Per the cen-
tral limit theorem, averaging the measurement outcomes
of M identical and independent sensors reduces the sta-
tistical uncertainty by a factor of 1/

√
M. As such, a large

number of sensors can boost the measurement sensitiv-
ity in detecting a common signal, a scenario pertinent to
a wide range of sensing tasks from earthquake warning
systems [21] to dark matter searches [22–26].

Quantum metrology harnesses nonclassical resources
to outperform the 1/

√
M factor of joint measurements,

also known as the SQL scaling [27]. Distributed quan-
tum sensing is a quantum-metrology paradigm that lever-
ages entanglement shared by multiple sensors to achieve,
in an ideal situation, a more favorable Heisenberg scaling
of 1/M for the joint-measurement sensitivity [28–31].
Recent distributed quantum sensing experiments have
demonstrated that entangled sensors outperform separa-
ble sensors in estimating global parameters such as the
average optical phase shifts [32–34] and RF phase gra-
dients [35]. To date, entanglement-enhanced optome-
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chanical sensing has not been explored. In this work,
we make a critical step toward surpassing the SQL scal-
ing for arrayed optomechanical sensors, by verifying that
entangled probes improve joint force measurements with
two mechanical membranes. We observe that entangled
probes reduce the joint noise floor by 2 dB, leading to
a 40% improvement in the force sensitivity in the shot-
noise-dominant regime. In addition, entangled probes
also extend the frequency range over which thermal noise
is dominant, thus enhancing the sensor bandwidth by
20%. We further quantify the joint sensitivity and band-
width with respect to resonant frequency difference. We
assess the overall performance of joint force detection
using the sensitivity-bandwidth product as a figure of
merit. Finally, we investigate joint force sensing of two
incoherent forces, demonstrating that entangled probes
can shorten the integration time by 60% (limited by the 2
dB squeezing in the imprecision noise limit) and improve
sensing bandwidth by 20% in the thermal noise limit, ac-
celerating spectral scanning rate in search of unknown
signals.

EXPERIMENT

The workhorse for entanglement-enhanced optome-
chanical sensing is the squeezed light that is split into
multiple arms to create entangled probes. The quan-
tum advantage of this approach over separable classi-
cal probes stems from the correlated shot noise across
the entangled probes, in the same vein as recent entan-
gled sensor network experiments [32, 35]. Figure 1 (a)
sketches the experimental setup. The probes couple to
two separate optomechanical sensors each comprising
a 100 × 100 µm2 Si3N4 membrane with a reflectively
R ≈ 11.5% atop a high reflectively (R > 99.9%) mirror,
forming an optical cavity with a finesse ∼ 3. Each mem-
brane supports a set of high-Q drum modes with an ef-
fective mass of 6.75×10−13 kg at resonant frequencies of
a few megahertz. We study sensing with the first higher-
order mode of the two membranes at Ω1/2π ∼ 5.953
MHz and Ω2/2π ∼ 5.955 MHz, with damping rates of
Γ1/2π ∼ 200 Hz and Γ2/2π ∼ 260 Hz. Homodyne mea-
surements of the phase quadratures of the output probes
from each cavity yield spectral amplitudes (SA) of

Ŷ (i)
out(ω) = Ŷ (i)

in (ω) + αiβiχi(ω)
[
F̂(i)

th (ω) + F̂(i)
sig(ω)

]
, (1)

where i ∈ {1, 2} is the sensor index, Ŷ (i)
in (ω) is the phase

quadrature of the input probe, α2
i is the mean photon

number of each input probe and we assume αi to be

real for simplicity, βi = 4
√

2Gi/κi is the optomechani-
cal transduction efficiency. Gi is the parametrical cou-
pling between the cavity resonance frequency and me-
chanical oscillator position. κi is the cavity decay rate.
χi(ω) =

1/meff

Ω2
i −ω2+iωΓi

is the mechanical susceptibility. meff

is the effective mass. F̂(i)
th (ω) is the SA of the thermal

force, and F̂(i)
sig(ω) is the SA of the force signal. The esti-

mation of the average force at two sensors of nearly equal
optomechanical transduction efficiencies (β1 ≈ β2 = β)
is carried out using near-optimal entangled probes gen-
erated by evenly splitting the squeezed light into two
arms [32, 35] (α1 = α2 = αc/

√
2) where α2

c is the mean
photon number at carrier wavelength of squeezed light.
To achieve optimal performance, a frequency-dependent
entangled light needs to be engineered according to the
force transduction efficiencies at each sensor over the en-
tire sensing bandwidth (see Supplemental Material).

RESULTS

To capture the physics behind entanglement-enhanced
optomechanical sensing, we plot the normalized
power spectral densities (PSDs), S Y (1)

outY
(1)
out

(ω) (blue) and
S Y (2)

outY
(2)
out

(ω) (red), of the homodyne measurements for
membrane displacements in Fig. 1 (b), in which the shot-
noise level (SNL) is normalized to unity represented by
the gray line. The overall detection efficiency at each
sensor is 74% (see Supplementary Information), leading
to an imprecision noise floor ∼ 1 dB below the SNL,
whereas the measured squeezing level from the source
is ∼ 4 dB below the SNL [35]. The spectra also show a
thermal-noise-dominant band in the vicinity of the me-
chanical resonant frequencies, manifested as two broad
peaks. Radiation pressure test forces on the membranes
are created by an auxiliary amplitude-modulated 775-nm
laser, yielding two delta peaks that are 2.8 dB and 8.36
dB above the SNL, highlighted by circles in Fig. 1(b).
The signal-to-noise ratio (SNR) at each sensor is slightly
improved due to the residue single-mode squeezing in
each probe. Figure 1 (c) draws the joint homodyne PSD
S Y (joint)

out Y (joint)
out

obtained by adding the homodyne measure-
ment records from both sensors, showing a more sub-
stantial SNR advantage for entangled probes. The sig-
nals coherently add to 11.5 dB, while the joint impreci-
sion noise floor increases to 1 dB for entangled probes,
as compared to the anticipated 3 dB for classical probes.
Notably, this 2 dB noise reduction implies a joint sen-
sitivity improvement beyond the 1/

√
M SQL scaling—

of benefit for broadband, shot-noise-limited distributed
force sensing applications, such as accelerometer arrays.
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Figure 2. Entanglement-enhanced versus classical optomechanical sensing. (a, d) Normalized joint PSDs of homodyne measure-
ments for displacements. Joint shot noise is normalized to unity. (b, e) Joint force noise at 50 µW probe power. (c, f) Joint
minimum force noise (solid lines) and bandwidth (dashed lines) at different probe power. Filled dots: minimum force noise; open
dots: bandwidth; stars: fitted from force noise in (b, e). Resonant frequency difference: 1422 Hz in (a-c) and 262 Hz in (d-f). In all
figures, entangled probes: red; classical probes: black; dots: experimental data; curves: theory. Error bars account for the frequency
difference drifting, theory fitting, and fluctuations in the noise power measurements.

Entanglement-enhanced measurement sensitivity

We next investigate the performance of averaged force
F̄ = (F(1) + F(2))/2 estimation based on entangled
or classical probes interrogating two mechanical sen-
sors with a large resonant frequency difference (1422
Hz). Figure 2 (a) shows the joint homodyne PSDs for
the two cases with the joint SNL normalized to unity.
The noise peaks in the vicinity of the mechanical res-
onant frequencies are of equal magnitude for the en-
tangled and classical probes due to the dominant ther-
mal noise in this region. Nonetheless, the entangled
probes reduce the off-resonant imprecision noise floor
from the SNL by 2 dB. To characterize the advantage
this offers for force sensing, Fig. 2 (b) shows the joint
force noise

√
S F̄F̄ derived by rescaling the individual

output phase quadratures: F̂(i) = Ŷ (i)
out(ω)/(αiβi|χi(ω)|)

and adding them together(see Supplementary Informa-
tion). The minimum force noise PSDs S F̄min F̄min

asso-
ciated with the classical probes (black) is achieved at

ωmin = 1
2

√
−Γ2

1 − Γ2
2 + 2(Ω2

1 + Ω2
2) ≈ Ω1+Ω2

2 ≡ Ω̄ in

the shot-noise-dominant region between the two resonant
frequencies. The two mechanical susceptibilities coin-
cide |χ1(Ω̄)| = |χ2(Ω̄)| near Ω̄. The entangled probes
(red) reduce the force noise by 20%. In Fig. 2 (c), we plot
the minimum force noise

√
S F̄min F̄min

(filled dots) for the
entangled (red) and classical (black) probes at different
power levels and solid lines are theoretical predictions.
The minimum force noise PSD is approximated by

S F̄min F̄min
≈ m2

eff

β2α2
c
Ω̄2(Γ̄2 + ∆Ω2)S Y0Y0 + S F̄th F̄th

(2)

in the limit of |Ω1 − Ω2|,Γ1,Γ2 � Ω1,Ω2 where S Y0Y0 =

V/2 with V = 1 for coherent states and V ∼ 0.63 for
the entangled state with a measured 2 dB squeezing and

Γ̄ =

√
(Γ2

1 + Γ2
2)/2. ∆Ω = Ω1 − Ω2 is the resonant

frequency difference. The minimum force noise scales
as 1/αc until thermal noise becomes comparable to the
imprecision noise. We define the peak sensitivity as
S = 1/S F̄min F̄min

. The entangled probes offer an improve-
ment in the sensitivity by lowering the imprecision noise
floor from the SNL by 2 dB.
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Figure 3. Sensitivity and bandwidth reconfigured by resonant frequency differences. (a) Normalized PSD of joint homodyne
measurement and (b) joint force sensitivities based on entangled probes at 50 µW power. In (a, b), blue, red, purple, and yellow
curves correspond to resonant frequency differences of -1422, 262, 1339, and 2641 Hz. Shaded plane: shot-noise level. (c)
Sensitivity and (d) bandwidth at various resonant frequency differences for entangled (red), classical (black), and optimal entangled
(blue) probes with 50 µW power. Circles: experimental data; solid lines: theory; dashed lines: single classical sensor. Error bars
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In Fig. 2 (d), we plot the joint homodyne PSDs
of two sensors with a small resonant frequency differ-
ence (260 Hz) interrogated by entangled (red) or clas-
sical (black) probes each with 50 µW power. Fig. 2
(e) shows that the dominant thermal noise

√
S F̄th F̄th

=√
(S F(1)

th F(1)
th

+ S F(2)
th F(2)

th
)/2 around the resonant frequencies

limits the peak force sensitivity for the joint force mea-
surements with the entangled and classical probes, where√

S F(i)
th F(i)

th
=
√

2ΓimeffkBT ∼ 10−15 N/
√

Hz is thermal

noise at each sensor. Figure 2 (f) shows the minimum
force noise (filled dots) at different probe power levels.
The sensitivities for the entangled and classical probes
both converge to the thermal noise limit as the probe
power increases. However, the entangled probes can im-
prove the sensing bandwidth as we next elaborate.

Entanglement-enhanced measurement bandwidth

The response of a mechanical oscillator to external
stimuli is enhanced by its Q-factor, which boosts the
transduction efficiency around the resonant frequency.
Due to coupling to the thermal bath, the force sensitiv-
ity of single sensor is limited by the thermal noise which
scales inversely as the Q/mass ratio. Recent develop-
ment of ultra-high Q mechanical resonators has enable
dramatic improvements in force sensitivity at the cost
of narrow sensitivity bandwidth [36–40]. By contrast,
joint measurements undertaken by M identical mechani-
cal sensors with homogeneous resonant frequencies can
improve force sensitivity by the SQL scaling of 1/

√
M

while maintaining a bandwidth similar to that of a sin-
gle sensor. Entangled probes can moreover increase the
sensing bandwidth of sensor arrays, in analogy to recent
demonstrations of squeezed-light-enhanced bandwidths
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for a microwave cavity sensor [41, 42] and an optome-
chanical magnetometer [11].

As shown in Fig. 2 (e), it is evident that the band-
width for entangled probes (red) is broadened compared
to that for the classical probes (black). To quantify the
bandwidth improvement by entangled probes, we define
the 3-dB sensing bandwidth as B3dB ≡ ω3dB+ − ω3dB−,
the width of the frequency band over which the force
noise power is within a factor of 2 of the minimum,
i.e., S F̄F̄(ω3dB±) = 2S F̄min F̄min

. Figure 2 (f) shows the
3-dB sensing bandwidths (open dots) at different probe
power levels and dashed lines correspond to theoretical
predictions. The bandwidth approximately scales as αc

in the thermal noise-dominated regime and the entangled
probes maintain a 20% sensing bandwidth improvement.
At large resonant frequency differences, for example in
Fig. 2 (c), the bandwidth is predominantly determined
by the resonant frequency difference (1422 Hz) and in-
creases marginally with the probe power. The bandwidth
for the entangled probes is worse than that of the classi-
cal probes because the entangled state around the reso-
nant frequencies is not optimized to account for the large
disparity in mechanical transduction efficiencies of the
two sensors. Frequency-dependent entangled states are
required to fully exploit the advantage of quantum corre-
lations.

Sensitivity-bandwidth product

The previous two sets of data illustrate that sensors
with a large resonant frequency difference enjoy a larger
measurement bandwidth, and their sensitivity minimum
can be enhanced by entangled probes. Conversely, sen-
sors with a small resonant frequency difference present
higher sensitivity while entangled probes can enlarge the
measurement bandwidth. To highlight this feature, we
first display in Fig. 3 (a) the homodyne PSDs acquired
by entangled probes with 50 µW power at four resonant
frequency differences. Figure 3 (b) then visualizes the
dependence of the force noise and bandwidth on the res-
onant frequency difference. Figure 3 (c) and (d) depict
the minimum force noise and 3-dB bandwidths associ-
ated with the entangled (red lines) and classical (black
lines) probes at different frequency differences, showing
a good agreement between theory and experiment. The
bandwidth with entangled light approaches the perfor-
mance of optimal entangled state (blue line) near zero
resonant frequency difference but drops below the band-
width of both optimal entangled and classical light at
large resonant frequency differences while the minimum

force noise using entangled light coincides with the mini-
mum force noise achieved by the optimal entangled state.
As a comparison, we also show the theoretical mini-
mum force noise and 3-dB bandwidth of a single sen-
sor (dashed gray lines) probed with classical light. The
minimum force noise for two sensors with similar reso-
nant frequencies is reduced by about 1/

√
2 as compared

to that of a single sensor. However, the peak sensitivity
of two sensors with a large resonant frequency difference
is worse than that of a single sensor as joint imprecision
noise is dominant over thermal noise. The bandwidth
of two sensors, however, is always larger than that of a
single sensor and increases with the resonant frequency
difference.

At this juncture, we introduce the sensitivity-
bandwidth product (SBP) [43] to assess the overall per-
formance of the joint force measurement. The SBPs of
the classical and optimal entangled state are given by (see
Supplemental Material):

S × B3dB ≈ βαc

ωminmeff

√
S Y0Y0

√
1

S F̄min F̄min

. (3)

The SBP of the entangled probe in our experiment is sub-
optimal and lies in between the ones for the classical and
optimal entangled probes. Figure 4 (a) shows the SBP
at various resonant frequency differences for the classi-
cal (black), entangled (red) and optimal entangled probes
(blue). The probe power is fixed at around 50 µW at
each sensor for both the classical and entangled probes.
SPBs decrease with respect to the resonant frequency dif-
ference as expected from Eq. (3) that joint imprecision
noise increases with resonant frequency differences. We
also plot the SBP for a classical single sensor (dashed
line) probed with 50 µW as a comparison. Beyond cer-
tain resonant frequency differences, the SBP for entan-
gled probes can even drop below that of a single sensor.
In the small resonant frequency difference scenario, the
SBP of the entangled probes in our experiment is on par
with that of the optimal entangled probes, surpassing the
SBP of classical probes by a factor of 1/

√
V ∼ 1.25. We

plot the SBPs against different probe power levels at two
resonant frequency differences of 262 Hz and 1422 Hz
in Fig. 4 (b,c). The SBPs of two sensors increase with
respect to the square root of the mean photon number αc

in the thermal noise dominant regime as shown in Fig. 4
(b) and the mean photon number α2

c in the imprecision
noise dominant regime as shown in Fig. 4 (c).
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−Ē
N

fN
2 /H

z

Time (ms) Time (ms)

Re
so

lu
tio

n 
(

)
fN
/

H
z

Re
so

lu
tio

n 
(

)
fN
/

H
z

Time (s)

Time (s)

Re
so

lu
tio

n 
(

)
fN
/

H
z

a b

c d

e

f

dΩ = 262

dΩ = 262

dΩ = 2641

dΩ = 2641

Hz Hz

Hz Hz

Re
so

na
nt

 fr
eq

ue
nc

y 
di
ffe

re
nc

e 
(H

z)
Re

so
na

nt
 fr

eq
ue

nc
y 

di
ffe

re
nc

e 
(H

z)

  (
)

E N
(t)

−Ē
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Hz.

ENTANGLEMENT-ENHANCED INCOHERENT
FORCE SENSING

Optomechanical sensors have been exploited in detect-
ing weak incoherent forces embedded in a thermal-noise

background [3, 44], a regime pertinent to dark matter
searches [22, 45]. Joint measurements taken by multiple
sensors can increase the SNR by lowering the measure-
ment noise, thereby enhancing the resolution in incoher-
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ent force sensing. Entangled probes, in this regard, can
further improve incoherent force sensing by increasing
the measurement bandwidth (resolution) in the thermal-
noise-dominant (imprecision-noise-dominant) scenario.
Following Ref. [3, 44], we choose the energy estimator
as a performance metric and use it to demonstrate a quan-
tum advantage in measurement of uncorrelated, incoher-
ent forces.

We define the equivalent force spectral resolution
(EFSR) as δFN =

√
δEN(t), i.e., the square root of the

standard deviation of the overall force noise within its
3-dB bandwidth, which includes the thermal force and
an equivalent force noise contributed by the imprecision
noise of the probes, where EN(t) =

∫ t
0 dtFN(t)2/t is the

noise force energy averaged over t seconds. An incoher-
ent force is detectable only if the EFSP is finer than its
standard deviation. Figure 5 (a) shows the EFSR ver-
sus integration time for the entangled (red) and classi-
cal (black) probes each carrying 50 µW of power. The
resonant frequency difference is 262 Hz so the mea-
surement is dominated by the thermal force, resulting
in similar force resolutions for the entangled and clas-
sical probes. The data corroborate the force-resolution
scaling of t−1/4 for both types of probes, as predicted by
theory[3]. However, the entangled probes offer a larger
measurement bandwidth (enabling accelerate search for
unknown signals, in the same spirit of squeezed-light-
enhanced dark matter search based on microwave cavity
sensors [41, 42]). Figure 5 (b) shows the time depen-
dence of the force resolution for sensors with 2641-Hz
resonant frequency difference. The entangled probes re-
duce the integration time by 60% over that of the classi-
cal probes in arriving at the same force resolution. Fig-
ure 5 (e, f) present the simulation result for the force res-
olution vs the resonant frequency difference and integra-
tion time attained by entangled (e) and classical probes
(f). The dashed lines in Fig. 5 (e, f) correspond to the
theory curves in Fig. 5 (a, b). The estimated force power
(EN(t) − ĒN) are shown in Fig. 5 (c, d) and converge to
zero at long integration time, where ĒN is the mean noise
force power. The dashed lines correspond to the force
resolution in Fig. 5(a,b). A stationary incoherent force
signal can only be resolved when its energy within the
detection bandwidth exceeds the noise power uncertainty
at a given averaging time. Without loss of generality, we
only plot the estimation for the total noise force. An ex-
ample for the signal-force estimation is presented in the
Supplementary Material.

CONCLUSIONS

In conclusion, we have experimentally demonstrated
entanglement-enhanced joint force measurements with
two optomechanical sensors. Sensitivity and band-
width enhancement enabled by entangled probes are pre-
dicted and observed. Specifically, optomechanical sen-
sors jointly probed by entangled light generated from a
passive beam splitter array with squeezed-light input out-
perform the same sensors probed by classical laser light
in force resolution and measurement bandwidth. A full
performance analysis of more sensors including back-
action effect and resource counting is given in the ac-
companying theoretical paper [45]. Our work opens a
new avenue for ultraprecise measurements with an array
of quantum-enhanced sensors, for applications ranging
from inertial navigation to acoustic imaging, to searches
for new physics.
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I. THEORETICAL FRAMEWORK

A. Notation convention

Following the standard definition, the Fourier transform of an operator (ignoring the hat for all operators) is:

X(ω) =
∫ +∞

−∞
X(t)eiωtdt. (S1)

The Hermitian conjugate of an operator in frequency domain is defined as X†(ω) = [
∫ +∞
−∞ X(t)eiωtdt]†. For Hermitian

operator X†(t) = X(t), we immediately find X†(ω) = X(−ω).
The quantum power spectral density (PSD) with stationary statistics is defined as [1]:

S XX(ω) =
∫ +∞

−∞
⟨X(t)X(0)⟩ eiωtdt

=

∫ +∞

−∞
⟨X(ω)X(ω′)⟩ dω′

(S2)

We employ the symmetrized PSD S̄ XX(ω) = (S XX(ω) + S XX(−ω))/2 in the following context which relates to the
homodyne detection of optical phase quadrature and keep the notation S XX(ω) for simplicity. The noise PSD of the
phase quadrature Y of phase squeezed light (assuming flat squeezing spectrum) is given by:

S YY (ω) =
V
2
, (S3)

where V = e−2r for pure squeezed states. r = 0 corresponds to the vacuum noise.
The noise PSD of the thermal force Fth (high temperature classical limit) driving the mechanical membrane is given

by:

S FthFth (ω) = 2ΓmeffkBT, (S4)
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where Γ is mechanical damping rate, meff is effective mass of mechanical mode. kB is Boltzmann’s constant and T is
the environmental temperature.

B. Optical readout of mechanical displacement

Considering an optomechanical system where the resonance frequency of intra cavity field a(t) = ā + δa is disper-
sively coupled to the displacement of mechanical resonator x(t), the linearized equations of motion are given by [2]:

δȧ =
(
i∆ − κ

2

)
δa + iGāδx +

√
κδain, (S5)

meff(δẍ + Γδẋ + Ω2δx) = Fth + Fsig + ℏGā(δa + δa†). (S6)

Here, G is the optomechanical coupling strength. meff ,Γ,Ω are the effective mass, damping rate, and resonance
frequency of the interested mechanical mode respectively. κ is the optical cavity coupling rate to the external field ain.
The steady state intracavity photon number is:

ā2 =
κ

∆2 + (κ/2)2
ā2in (S7)

In the experimentally relevant situation of resonant probing (∆ ≈ 0), bad cavity limit (κ ≫ Ω) and negligible
backaction noise (last term in Eq. (S6)), we can solve the coupled equations in the frequency domain, yielding

δa(ω) =
2√
κ
δain(ω) + iG

4
κ
√
κ
āinδx(ω) (S8)

δx(ω) = χ(ω)(Fth + Fsig), (S9)

where

χ(ω) =
1/meff

Ω2 − ω2 + iΓω
(S10)

is the mechanical susceptibility. Using the input-output relation δaout(ω)+δain(ω) =
√
κδa(ω), the quantum fluctuation

of output field is given by:

δaout(ω) = δain(ω) + i
4G
κ
āinδx(ω). (S11)

It is thus evident that the displacement information, δx, is encoded into the phase of output field. We define the phase
quadrature of the optical field as Yout(t) = (δaout(t) − δa†out(t))/i

√
2. We use homodyne detection to measure the phase

quadrature of output probe:

Yout(ω) = Yin(ω) + αβχ(ω)(Fth + Fsig), (S12)

where we define the optomechanical coupling efficiency β ≡ 4
√
2G/κ and the amplitude of input probe light α ≡ āin.

α is assumed real for simplicity. Without signals, the measured PSD and its corresponding minimum detectable force
PSD are calculated to be

S YoutYout = S YinYin + α
2β2|χ|2S FthFth , (S13)

S FminFmin = S YinYin/(α
2β2|χ|2) + S FthFth . (S14)

It is possible to improve force sensitivity at off-resonance frequencies and the sensing bandwidth near the resonance
frequency by engineering the quantum noise properties of the probe light, i.e., S YinYin (ω), using, e.g., squeezed light to

2



surpass the shot noise limit as demonstrated in recent experiments.

C. Two mode entangled optical probe

Let us now consider two independent optomechanical sensors. The phase quadratures of the two output probes are
given by

Y (i)
out(ω) = Y (i)

in (ω) + αiβiχi(ω)
(
F(i)
th + F(i)

sig

)
, (S15)

where i ∈ {1, 2} denotes the sensor index. To estimate global properties across the two sensors, e.g., the average of the
two force signals F̄sig =

(
F(1)
sig + F(2)

sig

)
/2, we can choose the force estimator as

Fest =
1
2


Y (1)
out

α1β1χ1
+

Y (2)
out

α2β2χ2



=

√
(α1β1|χ1|)2 + (α2β2|χ2|)2

2α1β1χ1α2β2χ2
Y0 + F̄th + F̄sig.

(S16)

Here, we define the averaged thermal force F̄th =
(
F(1)
th + F(2)

th

)
/2, and a normalized quadrature operator Y0 = η1Y

(1)
in +

η2Y
(2)
in , where the coefficients are

η1(ω) =
α2β2χ2√

(α1β1|χ1|)2 + (α2β2|χ2|)2

η2(ω) =
α1β1χ1√

(α1β1|χ1|)2 + (α2β2|χ2|)2
.

(S17)

The joint force-noise PSD is determined by the averaged thermal noise S F̄th F̄th
=

(
S F(1)

th F(1)
th
+ S F(2)

th F(2)
th

)
/4 and joint

quadrature noise

S Y0Y0 = |η1|2S Y (1)
in Y (1)

in
+ η1η

∗
2S Y (1)

in Y (2)
in
+ η∗1η2S Y (2)

in Y (1)
in
+ |η2|2S Y (2)

in Y (2)
in
. (S18)

We now show how to engineer the quantum correlation between the two probes such that S Y0Y0 < 1 to beat the shot
noise limit. The entangled probe in our experiment is generated by splitting a squeezed light into two arms, similar
to the entangled light used in the recent experimental demonstration of distributed quantum sensing. The squeezed
quadrature b mixes with quadrature c of the vacuum port of the beam splitter with transmissivity v1 and reflectivity
v2, where |v1|2 + |v2|2 = 1. The noise PSDs of the two quadratures are S bb = e−2r/2 and S cc = 1/2 respectively. The
output beams from the beam splitter are entangled and are used to probe the optomechanical sensors. The probes’
phase quadratures are expressed as:

Y (1)
in = v1b − v2c, (S19)

Y (2)
in = v2b + v1c. (S20)

The associated PSDs and cross spectral densities can be derived as follows:

S Y (1)
in Y (1)

in
= v21e

−2r/2 + v22/2

S Y (2)
in Y (2)

in
= v22e

−2r/2 + v21/2

S Y (1)
in Y (2)

in
= v1v2e−2r/2 − v1v2/2

(S21)

Plugging Eq. (S21) into Eq. (S18) yields the join quadrature noise PSD.
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Before discussing the entangled probes, we first present the case with classical probes to set the SQL for quantum
metrology. Using laser light for the probes, one has S bb = 1/2, and the joint noise PSD

S c
F̄F̄ =

(α1β1|χ1|)2 + (α2β2|χ2|)2
(2α1β1|χ1|α2β2|χ2|)2

1
2
+ S F̄th F̄th

(S22)

In a simple case of α1 = α2 = α, β1 = β2 = β, χ1 = χ2 = χ, the joint force-noise floor is

1
2

[
1
αβ|χ|

2

+ S FthFth

]
,

3 dB below the noise floor for a single sensor. The force sensitivity is thus improved by 1/
√
2 as guaranteed by the

central limit theorem.
For the entangled probes, the quantum correlations are generally frequency dependent as shown in Eq. (S17). How-

ever, when χ1(ω) = χ2(ω), Eq. (S17) become frequency independent:

η1 =
α2β2√

(α1β1)2 + (α2β2)2

η2 =
α1β1√

(α1β1)2 + (α2β2)2
.

(S23)

We can engineer the entanglement by setting v1 = η1 and v2 = η2 such that the effective quadrature operator Y0 = b.
The joint force-noise PSD then simply reads

S o
F̄F̄ =

(α1β1)2 + (α2β2)2

(2|χ|α1β1α2β2)2
e−2r

2
+ S F̄th F̄th

, (S24)

showing that the reduced quantum noise due to the entangled probes is equivalent to that of the single mode squeezed
vacuum state at the input of the beam splitter.
When χ1 , χ2, the optimal entangled state for the probes is in general frequency dependent as the mechanical

transduction efficiencies ∝ χi(ω) for the two sensors are disparate across their sideband frequencies. To produce
the optimal entangled states for the probes, frequency-dependent beam splitting ratios, e.g., v1(ω) = |η1(ω)| and
v2(ω) = |η2(ω)|, would be needed. In this case, the joint quadrature noise PSD becomes

S Y0Y0 =

[
e−2r

2
+ v21v

2
2(1 − cos (θ1 − θ2))(1 − e−2r)

]
, (S25)

where we define the transduction phase as θi(ω) = Arg(χi(ω)). The transduction phase difference θ1 − θ2, however,
degrades the performance as the second term in Eq. (S25) increases the total noise power. The transduction phase
difference can be compensated by delaying either one of the force signal F(i)

sig → F(i)
sige

iϕ or probe phase quadrature

Y (i)
in → Y (i)

in e
iϕ, making cos (θ1 − θ2 − ϕ) = 1. In doing so, the joint force-noise PSD is found to be

S o
F̄F̄ =

(α1β1|χ1|)2 + (α2β2|χ2|)2
(2α1β1|χ1|α2β2|χ2|)2

e−2r

2
+ S F̄th F̄th

(S26)

In comparison with the force-noise PSD for the classical probes in Eq. (S22), one finds that Eq. (S26) indeed quantifies
the performance achieved by the optimal entangled probes.

D. Practical entangled probes in experiment

Due to technical constraints, the splitting ratio in the experiment is frequency independent. Our objective is to
generate a frequency-independent entangled state that minimizes the measurement noise in the shot-noise-dominant
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region. At far-off-resonance frequencies |ω −Ωi| ≫ Γi, the shot noise dominates the measurement and the mechanical
response functions converge χ1 ≈ χ2. We could choose the same entangled state for the probes as the one for identical
mechanical susceptibilities that led to the minimized force-noise PSD described by Eq. (S24), with the splitting ratio

v1 =
α2β2√

(α1β1)2 + (α2β2)2

v2 =
α1β1√

(α1β1)2 + (α2β2)2
.

(S27)

The joint force-noise PSD is:

S e
F̄F̄ =

α21β
2
1 + α

2
2β

2
2

(2α1β1α2β2)2


v21S Y (1)

in Y (1)
in

|χ1|2 +
v22S Y (2)

in Y (2)
in

|χ2|2 +
2v1v2
|χ1||χ2|S Y (1)

in Y (2)
in
cos (θ1 − θ2 − ϕ)

 + S F̄th F̄th
(S28)

We note that the power at the optical carrier frequency is also split by the beam splitter in generating the entangled
probes. Specifically, the squeezed light in our experiment comprises a coherent state portion with amplitude αc at
carrier frequency and squeezed vacuum states at sideband frequencies, rendering α1 = v1αc, α2 = v2αc. Substituting
α1 and α2 into Eq. (S27), v1, v2 can be derived in terms of the transduction efficiencies β1, β2 at two sensors:

v1 =

√
β2
β1 + β2

(S29)

v2 =

√
β1
β1 + β2

. (S30)

The above equations indicate that a lower optomechanical coupling efficiency requires more probe power to balance
the overall force detection efficiency at two sensors. The joint force PSD for the experimental entangled probes can
then be derived as

S e
F̄F̄ =

(β1 + β2)2

(2β1β2)2α2c


v21S Y (1)

in Y (1)
in

|χ1|2 +
v22S Y (2)

in Y (2)
in

|χ2|2 +
2v1v2
|χ1||χ2|S Y (1)

in Y (2)
in
cos (θ1 − θ2 − ϕ)

 + S F̄th F̄th
. (S31)

The joint force-noise PSDs of the classical light and optimal frequency dependent entangled light are shown below for
comparison:

S c
F̄F̄ =

(β1 + β2)2

(2β1β2)2α2c


v21
|χ1|2 +

v22
|χ2|2

1
2
+ S F̄th F̄th

,

S o
F̄F̄ =

(β1 + β2)2

(2β1β2)2α2c


v21
|χ1|2 +

v22
|χ2|2

e−2r

2
+ S F̄th F̄th

.

(S32)

E. Sensitivity-bandwidth product

In many sensing scenarios, the bandwidths of the signals to measure are typically much broader than the mechanical
linewidth. For example, accelerometers usually operate below their fundamental resonance frequencies where the
mechanical response displays an almost flat frequency response at the cost of a reduced force sensitivity from the
resonance frequencies. To quantify the overall performance of optomechanical sensors that account for both the
sensitivity and measurement bandwidth, we next introduce the sensitivity-bandwidth product (SPB) as a figure of
merit [3].
We first derive the SPBs for classical and optimal entangled probes, building on their joint force-noise PSDs formu-

lated in Eq. (S32). Without loss of generality, the transduction efficiencies are intentionally set to similar (β1 ≈ β2 = β)
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in our experiment such that the entangled probes can be generated by evenly splitting the squeezed light into two arms
(v1 = v2 = 1/

√
2). We take the derivatives of Eq. (S32) to find the minimum of the force-noise PSD S F̄min F̄min

and its
corresponding frequency ωmin:

ωmin =
1
2

√
−Γ21 − Γ22 + 4Ω̄2 + ∆Ω2 ≈ Ω̄ (S33)

S F̄min F̄min
=

m2
eff(β1 + β2)

2

(2β1β2)2α2c

(8Ω̄2 − Γ21 − Γ22)(Γ21 + Γ22) + 2∆Ω2(8Ω̄2 + Γ21 + Γ
2
2)

16
S Y0Y0 + S F̄th F̄th

≈ m2
eff

β2α2c
Ω̄2(Γ̄2 + ∆Ω2)S Y0Y0 + S F̄th F̄th

. (S34)

Here, Ω̄ = (Ω1 + Ω2)/2, Γ̄ =
√
(Γ21 + Γ

2
2)/2 and ∆Ω = Ω1 − Ω2. S Y0Y0 = 1/2 (e−2r/2) is the quadrature-noise PSD for

the classical (optimal entangled) probes. The first term in Eq. (S34) represents the joint imprecision noise while the
second term describes the averaged thermal noise. The entangled probes reduce the imprecision noise by a factor of
e−2r compared to the classical probes.
We next define the force sensitivity as

1/S F̄F̄ =
16P

16PS F̄th F̄th
+ (8Ω̄2 − Γ21 − Γ22)(Γ21 + Γ22) + 2∆Ω2(8Ω̄2 + Γ21 + Γ

2
2) + 16(Ω

2 − ω2
min)

2
, (S35)

where P = β2α2c/m
2
effS Y0Y0 . The peak sensitivity S is then given by

S = 16P
16PS F̄th F̄th

+ (8Ω̄2 − Γ21 − Γ22)(Γ21 + Γ22) + 2∆Ω2(8Ω̄2 + Γ21 + Γ
2
2)
= 1/S F̄min F̄min

. (S36)

The 3-dB bandwidth, B3dB ≡ ω3dB+ − ω3dB−, is defined as the frequency range over which the force noise is within
a factor of 2 of the minimum force noise, i.e.,

S F̄F̄(ω3dB±) = 2S F̄min F̄min
. (S37)

One can show that the 3-dB frequencies are given by

ω3dB± =

√√√
ω2
min ±

βαc
meff

√
S F̄min F̄min

SY0Y0

, (S38)

and the 3-dB bandwidth is

B3dB =

√√√
ω2
min +

βαc
meff

√
S F̄min F̄min

SY0Y0

−

√√√
ω2
min −

βαc
meff

√
S F̄min F̄min

SY0Y0

≈ βαc
ωminmeff

√
S F̄min F̄min

SY0Y0

.

(S39)

The minimum force noise and 3-dB bandwidth for the entangled probes in the experiment are numerically calculated
using Eq. (S31) and plotted together with those for the classical and optimal entangled probes in Fig. S1. The opti-
mal entangled probes offer the largest bandwidth compared to both the experimental entangled and classical probes.
The experimental entangled probes approach the bandwidth of the optimal entangled probes at the vicinity of zero
frequency difference but offer less bandwidth as compared to the classical probes at large frequency differences. The
force sensitivity is limited by the thermal noise near zero frequency difference for all types of probes. Nevertheless,
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FIG. S1. Simulation of bandwidth and force sensitivity at different resonance frequency differences and probe power. (a-c) Band-
width using classical, practical entangled, and optimal entangled probe. (d-f) Sensitivity using classical, practical entangled, and
optimal entangled probe. Black solid lines: contours. Horizontal black (red) dashed lines: same as bandwidth (dashed lines) and
sensitivity (solid lines) using classical (black) and practical entangled probe (red) in main text Fig. 2 (c,f). Vertical black (red)
dashed lines: same as bandwidth and sensitivity using classical (black) and practical entangled probe (red) in main text Fig. 3 (c,d).
Vertical white dashed line in (c): same as bandwidth using optimal entangled probe (blue) in the main text Fig. 3 (d). Simulation
parameters are the same in our experiment.

the optimal and experimental entangled probes enhance the force sensitivity over the classical probes by suppressing
the shot noise at large frequency differences.
It is straightforward to derive the SBPs associated with the classical and optimal entangled probes using Eq. (S39):

S × B3dB ≈ βαc
ωminmeff

√
1

S F̄min F̄min
SY0Y0

(S40)

In the limit of thermal-noise-dominant minimum sensitivity, i.e., S F̄min F̄min
≈ S F̄th F̄th

, entangled probes improve the
SBP by

√
e2r. When the joint imprecision noise is much larger than the thermal noise due to, e.g., the large resonance

frequency difference between the two sensors or weak probe power, the entangled probes can enhanced the SBP by a
factor of e2r. Regardless of the more prominent quantum advantage, homogeneous resonance frequencies are desired
in general to maximize the SBP.

F. Incoherent force sensing

Optomechanical sensors are ideally suited for weak incoherent force sensing. As an example, we consider joint
estimation of weak random forces F(i)

sig buried in the thermal and imprecision noise at two optomechanical sensors.
We assume the random forces are Gaussian white noise and uncorrelated at two sensors with PSD much less than the
force-noise PSD, namely S sig

F(i)F(i) ≪ S F̄F̄ . We choose an unbiased force power estimator E(t) = 1/t
∫ t
0 F2

est(τ)dτ with
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mean

⟨E(t)⟩ =
〈
1/t
∫ t

0
F2
est(τ)dτ

〉
(S41)

= 1/t
∫ t

0
⟨F̄2

N(τ)⟩ dτ + 1/t
∫ t

0
⟨F̄2

sig(τ)⟩ dτ (S42)

= δ2F̄N + δ
2F̄sig. (S43)

Here, we denote the equivalent joint noise force F̄N with noise PSDs given in Eq. (S31, S32), subject to the probe
power. To resolve weak signals embedded in the noise background, the imprecision of the estimator need be less than
the power of signal, i.e., δE(t) < δ2F̄sig. As such, we define the equivalent force spectral resolution (EFSR) as

δFE(t) =
√
δE(t) ≈

√
δEN(t) (S44)

in the limit of weak signals F̄sig ≪ F̄N , where EN = 1/t
∫ t
0 F̄2

N(τ)dτ. Over a long sampling time, the EFSR can be well
approximated by

δFE(t) = δF̄N/(tBs)1/4, (S45)

where Bs is the sampling bandwidth. The EFSR’s time dependence of (tBs)−1/4 is consistent with previous reports[4].
In the case of shot-noise-dominant F̄N due to, e.g., a large frequency difference between the two sensors, entangled
probes reduce the integration time in achieving the same force resolution attained by the classical probes. On the
contrary, both the classical and entangled probes require a similar integration time to achieve the same force resolution
when the force noise F̄N is overwhelmed by the thermal noise. In this regime, entangled probes enlarge the sensing
bandwidth to effectively increase the scanning rate in searches for weak signals with unknown frequencies. Similar
behaviours have been observed in squeezed-light-enhanced haloscope in searches for the axion dark matter[5].

II. SAMPLE DESIGN AND FABRICATION

Fabrication begins by coating a 1.5 um thick photoresist (S1813) on a double-sided 100 nm thick silicon nitride
(Si3N4) on a silicon (Si) wafer. The resist on one side of the wafer is patterned in the shape of a square window using
a photolithography system (MLA-150), while the resist on the other side protects the wafer from handling scratches.
After developing the exposed area, the pattern is transferred to the silicon nitride using fluorine-based (Ar+SF6)
reactive ion etch. After removing the remaining resist, chips are thoroughly cleaned using hydrofluoric acid (HF),
water, and Isopropanol (IPA) and mounted on a Teflon holder compatible with strong acid and bases. Then the mount
is placed in a potassium hydroxide (KOH) bath at 80 °C for 21 hours to wet etch the silicon in the patterned region and
subsequently release the 100 um wide membrane on the other side of the wafer. The released membrane is dried using
a gradual dilution process, including iteratively replacing KOH with DI water followed by a 10 min HF dip, IPA, and
methanol rinse. Finally, the chips are dried in air and optically bonded on a clean mirror to realize a membrane on a
mirror cavity system.

III. EXPERIMENTAL DETAILS

A. Squeezed light generation

Squeezed light at 1550 nm is generated by pumping an optical parametrical amplifier (OPA) cavity below threshold.
The pump light at 775 nm is phase locked to amplify the seed laser at 1550 nm through a type-0 periodically-poled
KTiOPO4 (PPKTP) nonlinear crystal embedded in an optical cavity. The output power of the squeezed light can be
effectively tuned by adjusting the seed laser power. All cavity lengths are locked based on the Pound-Drever-Hall
technique using 24-MHz sidebands created by phase modulating the 1550-nm pump laser. More details of squeezed-
light source are reported in the Supplemental Material of a previous work [6]. We upgrade the solid-state laser in
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FIG. S2. Spectrum of squeezed light. Yellow: squeezed light. Red: shot noise. Blue: electrical noise. RBW: 300 KHz. VBW: 300
Hz. 4 dB squeezing above 5 MHz. 4 MHz peak is the beating frequency between two phase locking signals.
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FIG. S3. (a) Optomechanical sensor. QWP: quarter-wave plate; PBS: polarizing beam splitter. LO: local oscillator. (b) Measured
displacement noise spectra. Yellow: classical light. Blue: squeezed light. Solid lines: theory fit. Shot noise is normalized to unity.
RBW: 20 Hz, VBW: 10 Hz. Traces are averaged over 50 times.

earlier experiments to a low-noise fiber laser (NP Photonics, Power Rock). The squeezing spectrum is plotted in
Fig. S2. We observe squeezing below the shot-noise level down to 2 MHz and 4 dB squeezing above 5 MHz. To fully
exploit the squeezed light, we address the first higher-order mode of the optomechanical sensor at around 6 MHz, in
lieu of its fundamental resonance frequency at around 4 MHz.
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FIG. S4. PSDs and force sensitivities at two sensors with frequency difference 1422 Hz. PSD at (a) sensor 1, (b) sensor 2. (c) Joint
PSD replicated from main text Fig. 2(a). Force sensitivity at (d) sensor 1, (e) sensor 2. (f) Joint force sensitivity replicated from the
main text Fig. 2(d).

B. Measurement and calibration of mechanical displacement

Our optomechanical sensor comprises a 100 × 100 µm2 Si3N4 membrane with a reflectively R ≈ 11.5% atop a
high reflectively (R > 99.9%) mirror, forming a Finesse ∼ 3 optical cavity, as shown in Fig. S3 (a). The sensors are
placed inside a vacuum chamber. To measure the membrane displacement, the probe light is first converted to circular
polarization by a QWP and then focused onto the membrane. The optomechanical coupling efficiency is maximized
when the optical mode spot is centered near the antinodes of mechanical mode. The displacement is encoded on the
phase of reflected probe which is then separated by the same QWP and PBS. The phase quadrature is subsequently
measured by a homodyne detector. The propagation loss is measured to be around 18% before interfering with a
local oscillator (LO). The interference visibility of homodyne measurement is optimized to 92%. The dc signal of
the photocurrent is used to lock the phase between the LO and the probe light. The ac component of photocurrent
is sampled by a time-domain spectrum analyzer. The measured PSDs with the classical and squeezed probes are
shown in Fig. S3 (b). The thermal peaks for both probes near the resonance frequency due to the Brownian motion of
mechanical oscillator almost overlap. The shot noise away from the resonance frequency is suppressed by squeezed
light. We observe 2.4 dB squeezing, consistent with the overall loss. The measured PSDs are fitted using Eq. (S13)
to extract the optomechanical coupling efficiency β and the mechanical susceptibility χ(ω). The resonance frequency
slightly drifted over the measurements based on classical and squeezed probes. The fitted mechanical linewidths with
the classical and squeezed probes are both around 358 Hz, differing less than 1%.

C. Calibration of individual sensors

We balance the optomechanical coupling efficiencies at the two sensors by slightly displacing the position of the
light spot on one membrane. With identical coupling efficiencies, near-optimum entangled probes can be generated
via splitting the squeezed light evenly into two arms so that each sensor receives 50% of the squeezed light. The
resonance frequency disparity between the fabricated membranes can be as large as 300 kHz. We pick two membranes
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FIG. S5. PSDs and force sensitivities at two sensors with frequency difference 262 Hz. PSD at (a) sensor 1, (b) sensor 2. (c) Joint
PSD replicated from main text Fig. 2(a). Force sensitivity at (d) sensor 1, (e) sensor 2. (f) Joint force sensitivity replicated from the
main text Fig. 2(d).

with similar resonance frequencies with difference close to the linewidth and then tune the resonance frequency by
shining thermal light (Thorlabs OSL2) onto the chip.

The entangled probes are measured by two homodyne detectors. The photocurrents are filtered by high-pass filters
(Thorlabs EF513), demodulated by an electrical mixer, and amplified by a low-noise voltage preamplifier (Stanford
Research Systems SR560). The data are acquired by an oscilloscope (LeCroyWaverunner 604HD) at 1 MHz sampling
rate for 20 seconds and post processed to derive the individual and joint PSDs. An example of joint PSD is presented
in Fig. 2(a) of the main text. The associated PSDs at individual sensors are shown in Fig. S4 (a, b), while the joint
PSD in (c) reproduced from Fig. 2(a) of the main text is plotted as a comparison. Since each sensor only receives
half of the squeezed light, the measurement noise is merely 1 dB below the shot-noise level However, due to the
quantum correlation between the measurement noise at the two sensors, the joint noise floor using entangled probes
is reduced to 2 dB below the shot-noise level. The magnitude of the two thermal peaks remains unchanged near the
two resonance frequencies because the thermal noise at the two sensors is uncorrelated. The force sensitivities of the
individual sensors obtained using Eq. (S14) are plotted in Fig. S4 (d,e). In contrast to the shot-noise-dominant joint
force sensitivity, the force sensitivity at each individual sensor is limited by the thermal force. The entangled probes
only marginally improve the sensing bandwidth. The minimum joint force noise for the classical probes is around 2
times higher than that of an individual sensor, but the bandwidth of the joint force sensing is around 2.8 times larger
than that of an individual sensor. The configuration of large frequency difference is suitable for broadband sensing
while entangled probes further improve the measurement sensitivity.

On the other hand, when the two resonance frequencies are close, the joint force sensitivity is limited by the thermal
noise for both entangled and classical probes, as shown in Fig. S5 (c,f) replicated from Fig. 2(d,e) of the main text. As
a comparison, the corresponding PSDs and force sensitivities at each sensor are presented in Fig. S5 (a,b) and (d,e).
The joint force sensitivity is improved by

√
2 compared to the force sensitivity of single sensor while entangled probes

further enlarges the sensing bandwidth.
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D. Radiation pressure force sensing

We are interested in detecting averaged stationary incoherent signal introduced by the radiation pressure force. Two
laser beams at 780 nm with randomly modulated amplitude are sent to drive the membranes. The amplitude modu-
lations are uncorrelated such that we ignore the mechanical induced phase shift θi. The measured phase quadrature
Y (i)
out(t) at two sensors are first converted to the equivalent sampled force F(i)(t) by the mechanical response functions.

Then individual sampled force F(i) is filtered by a bandpass filter with a bandwidth obtained from Eq. (S39) during
post-processing. The average joint force is given by F̄est(t) = (F(1)(t) + F(2)(t))/2. The estimated force power at dif-
ferent time ti is E(ti) = 1/ti

∫ ti
0 F̄2

est(t)dt. The normalized signal force power (E(ti) − δ2F̄N)/δ2F̄N is plotted in Fig. S6.
The red line shows the noise force power without signal. The mean of noise converges to zero at large integration time.
The dashed lines is the statistical uncertainty fitted from Eq. (S45). Turning on the signal force, we observe a constant
displacement of the total power, shown as blue line in Fig. S6. The signal can be resolved as long as the displacement
is above the statistical uncertainty of the total noise. Here, the applied signal is about only 6.6% of the total noise and
is clearly resolvable after about 1 second.
In the limit of weak signals δ2F̄sig ≪ δ2F̄N , the statistical uncertainty of estimator mainly arises from noise. Without

loss of generality, we only characterize the noise properties of our optomechanical sensors. To determine the accuracy
of the power estimator, we recorded N = 20 independent measurement of F̄N(t). Each of the measured traces gives an
estimator of E(n)(ti) with respect to the acquisition time ti up to 1 second. The root mean square error of the estimator

is calculated by δE(ti) =
√∑N

n=1
[
E(n)(ti)

]2 /N. The EFSR after a ti-second averaging thus reads

δFE(ti) =
√
δE(ti). (S46)

Two examples of the measured EFSR are presented in Fig. 5 (a,b) of the main text. The fitted solid lines are given by
Eq. (S45).
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