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The nature of dark matter is one of the most important open questions in modern physics. The
search for dark matter is challenging since, besides gravitational interaction, it feebly interacts
with ordinary matter. Here, we propose entanglement-enhanced optomechanical sensing systems
to assist the search for DM with mechanical sensing devices. To assess the performance of our
setup, we adopt the integrated sensitivity, which is particularly suitable for broadband sensing
as it precisely quantifies the bandwidth-sensitivity tradeoff of the system. We then show that,
by coherently operating the optomechanical sensor array and utilizing continuous-variable multi-
partite entanglement between the optical fields, the array of sensors has a scaling advantage over
independent sensors (i.e.,

√
M → M , where M is the number of sensors) as well as a performance

boost due to entanglement. Such an advantage is robust to imhomogeneities of the mechanical
sensors and is achievable with off-the-shelf experimental components.

Introduction.— Identifying the nature of Dark Matter
(DM) is one of the most pressing quests for fundamental
physics research. The evidence for the existence and the
particle nature of DM are ubiquitous—such as the cos-
mic microwave background survey [1, 2], gravitational
lensing [3] and rotation curves of spiral galaxies [4–7]—
with a consistent DM mass ranging over eighty orders
of magnitude. Many searches focus on the particle-like
regime, such as weakly interacting massive particles via
direct detection searches. On the other hand, exploring
the sub-eV regime for wave-like DM poses interesting ex-
perimental challenges and new opportunities for particle
physics discovery.

Depending on the DM model, various types of DM sen-
sors have been designed. In axion DM model, DM can
induce photons in a background magnetic field; therefore
microwave cavities immersed in a powerful magnetic field
are leveraged for a DM search [8–18]. In other models,
DM induces forces on normal matter; therefore mechani-
cal sensors good at sensing weak forces can be used for a
DM search [18–27]. These new potential couplings could
reveal how the relic density of DM comes about and pos-
sibly explain other puzzles of fundamental physics, such
as the strong CP puzzle, the baryon-antibaryon asymme-
try of our universe, and many others.
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As the precision of sensors approaches the quantum
regime, shot noise from vacuum fluctuations becomes rel-
evant. To overcome vacuum noise, in the microwave cav-
ity case, a squeezing enhanced DM search has been pro-
posed [14, 15] and demonstrated [17]. Recently, arrays
of microwave cavities [28–31] and optomechanical sen-
sors [22, 32, 33] have been proposed to further enhance
DM searches. The benefits of coherent post-processing
with an optomechanical array operating at the standard
quantum limit (SQL) have been discussed [22, 32, 33],
but explicit details—as well as potential advantages from
entanglement-enhanced readout—remain largely unex-
plored. With backaction into play, it is unclear whether
an optomechanical array can enjoy the entanglement ad-
vantages previously shown in the microwave case [31].

In this work, we propose entanglement-enhanced read-
out of mechanical sensors for a DM search (see Fig. 1),
exploiting recently developed techniques in distributed
quantum sensing (DQS) [34–37]. Building upon the
quantum theory of optomechanics [38–40], we show that,
by coherently operating an array of mechanical sensors
and utilizing continuous-variable multi-partite entangle-
ment between the optical fields, entanglement enhance-
ment and advantageous scaling with the number of sen-
sors are simultaneously achievable.
Dark matter model.— The basic model of the driving

force exerted on the mechanical oscillator (in the surface
normal direction) by DM, with the mass density ρDM,
can be described by Fdr(t) ' FDM cos(ΩDMt+ ϕ) within
a coherence time, with the amplitude of the drive force
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Figure 1. Illustration of our DQS proposal. A stochastic
field (e.g., DM field; background cloud) faintly drives an ar-
ray of mechanical oscillators, in a correlated manner, leading
to feeble vibrations of the oscillators’ positions. To inter-
rogate the oscillators, squeezed laser light is distributed to
the array via passive elements (beam-splitters, described by
weights {wj0}), which generates an entangled state. The im-
pinging radiation reflects off the oscillators and is detected
via homodyne detection. The measurement results are jointly
combined via the weights {Wj0}, from which the signal is in-
ferred.

FDM = g
√
ρDMM, where g quantifies the coupling of

DM to the mechanics for a particular DM model andM
characterizes material and geometrical properties of the
sensor [21, 22, 41]. For the DM frequencies under consid-
eration ΩDM ∼ kHz (representing the dark matter parti-
cle’s mass), the de Broglie wavelength of DM is around
105 km; this large scale is pertinent for array-based se-
tups that wish to take advantage of the signal correla-
tions between the sensors within the array. Overall, the
phase ϕ is random and therefore F̂dr(t) is described by a
stationary random process with a coherence time 1/∆a,
and can be characterized by its power spectral density
(PSD) SFdr

∼ F 2
DM/∆a. For any time-dependent opera-

tors Ô, Ô′ with stationary statistics, the PSD is defined
as

SÔÔ′(ω) =
1

2π

ˆ +∞

−∞
dω′

〈
Ô†(−ω)Ô′(ω′)

〉
, (1)

where Ô†(ω) is the Fourier transform of the time-domain
operator. We also define a symmetrized PSD, S̄ÔÔ′(ω) ≡
[SÔÔ′(ω) +SÔÔ′(−ω)]/2. When Ô = Ô′, we simplify the
notation as SÔ(ω).
Simplified model.— For clarity, we start our discussion

with a simplified model for optomechanical sensors and
then proceed to the full cavity model [38–40]. As shown
in Fig. 1, each optomechanical sensor system is composed
of a highly reflective mechanical oscillator which couples
to a free electromagnetic field. DM hypothetically cou-
ples to the mechanics and drives the oscillator’s motion.

To detect the motion of the oscillator, one stimu-

lates an input light field Êin(t), which impinges on the
mechanics, and measures the output field Êout(t) post-
interaction. The mechanics completely reflects the input
field and induces a feeble phase shift, ζq̂(t) � 1, such
that Êin(t) → eiζq̂(t)Êin(t), where ζ = 2ΩL/c and q̂ is
the position operator of the mechanics in meters.

We decompose the input field operator at the
source in the frequency domain Êin(t) = e−iΩLt

[
E0 +´

dω
2π â

in(ω)e−iωt
]
, where E0 is the amplitude of the laser,

and we factored out the fast oscillations due to the car-
rier frequency, ΩL. Here, âin(ω) is the modal annihila-
tion operator with zero-mean, satisfying the commuta-
tion relation [âin(ω), âin †(ω′)] = 2πδ(ω − ω′). For later
use, we define X̂ in(ω) ≡ (âin(ω) + âin†(−ω))/

√
2 and

Ŷ in(ω) ≡ (âin(ω)−âin†(−ω))/
√

2i, which are power spec-
tral amplitudes of the amplitude and phase quadratures,
X̂ in(t) and Ŷ in(t), respectively, of the optical field.

The output (including, e.g., detector efficiency, 0 ≤
η2 ≤ 1) can be expressed to leading order as Êout(t) ≈
η
[
E0(1 + iζq̂(t) +

´
dω
2π â

in(ω)e−iωt
]

+ · · · , where loss-

induced vacuum terms and the overall factor e−iΩLt are
omitted for simplicity. The phase quadrature of the out-
put field is measured via homodyne detection with a local
oscillator field of the same carrier frequency. We calcu-
late its spectral amplitude directly as,

Ŷ out(ω) =
√

2η
[
Ŷ in(ω) +

√
2E0ζq̂(ω)

]
+ · · · (2)

where we omit a constant pre-factor from the amplitude
of the local oscillator. Overall, the motion of the oscilla-
tor leads to a detectable displacement on the quadrature.
Cavity optomechanics.— In order to analyze the setup

in a more complete fashion, we present a full optomechan-
ical cavity model [38–40] and comment how the simplified
model above corresponds to the theory of cavity optome-
chanics in the bad cavity limit.

We utilize linear input-output theory to describe ra-
diation coupling to an optical cavity with one vibrat-
ing mirror (the mechanics). In this theory, the intra-
cavity field and the mechanical motion of the mirror are
dissipatively coupled to ingoing bath-modes—(X̂ in, Ŷ in)

and (Q̂in, P̂ in)—at dissipation rates κ and γ, respectively.
The equations of motion for the open quantum system
lead to a set of coupled first-order differential equations
in the time domain for the intra-cavity modes (X̂, Ŷ ,
Q̂, and P̂ ) in terms of the coupling rates and the ingo-
ing bath modes, which can be analytically solved in the
frequency domain. Here, Q̂ = q̂/

√
2qzp is the normalized

position operator, where qzp ≡
√

~/2mΩ is the zero-point
motion, and P̂ is the conjugate momentum. The outgo-
ing fluxes—denoted by the operators (X̂out, Ŷ out) and
(Q̂out, P̂ out)—are then determined via the input-output
relations X̂out = X̂ in − √γX̂ etc.; see Appendix D and
Refs. [38, 39] for further details.

An exact output relation for the spectral amplitude of



3

the phase quadrature can be found [38, 39],

Ŷ out(ω) = −eiϕω Ŷ in(ω) + 2
√

2γCωQ̂(ω), (3)

where the phase ϕω and the optomechanical cooperativ-
ity Cω are defined via

eiϕω ≡
(
κ/2 + iω

κ/2− iω

)
, Cω ≡

2G2/γκ

(1− 2iω/κ)2
= |Cω|eiϕω .

(4)

Here G ≡ EG0 is the cavity-enhanced optomechanical
coupling-rate, G0 is the vacuum optomechanical coupling
rate, and E is the intra-cavity field (taken to be real).
The intra-cavity field, E, is related to the amplitude
of the input field, E0, via E2 = (4κr/κ

2)E2
0 , where κ

is the total dissipation-rate of the cavity and κr is the
dissipation-rate to the readout port. Here, the spectral
amplitude of the oscillator’s position, Q̂(ω), is given as,

Q̂(ω) = 2
√
γχω

(
P̂ in(ω)−

√
2CωX̂

in(ω)
)

+Qdr(ω), (5)

where Qdr(ω) is the diplacement induced by the
driving force, Fdr, and is related via Fdr(ω) ≡
(
√
~mΩ/χω)Qdr(ω) and χω = Ω/(Ω2 − ω2 − i2γω) is the

mechanical susceptibility. The term proportional to the
amplitude quadrature, X̂ in, represents the fluctuation of
the oscillator’s position due to radiation pressure.

Indeed, with the complete cavity optomechanics
model, we recover the mechanical motion induced
quadrature displacement identified in Eq. (2) in the sim-
plified model. The relation can be made quantitative by
treating the output mirror in the cavity model as a trans-
parent window, see Appendix D for further comparisons.

We estimate the force impressed on the mechanics from
homodyne measurements on the phase-quadrature via

F̂ (ω) ≡ e−iϕω/2

χω

√
~mΩ

8γ|Cω|
Ŷ out(ω), (6)

which has units N/
√

Hz. A general expression for the
noise spectrum can also be derived,

S̄Fnoise
(ω) =

~mΩ

8γ|Cω||χω|2
S̄Ŷ in(ω)+8~mγΩ|Cω|S̄X̂in(ω)

+
2~mΩ

|χω|
Re

(
χω
|χω|

S̃X̂inŶ in(ω)

)
+ 4~mγΩS̄P̂ in(ω), (7)

where we have defined,

S̃X̂inŶ in(ω) ≡
SX̂inŶ in(ω) + S∗

X̂inŶ in
(−ω)

2
. (8)

The first term in Eq. (7) is the shot noise, the sec-
ond term is the back-action noise due to radiation
pressure, the third term encodes the quadrature cor-
relations, and the fourth term consists of mechanical

fluctuations—e.g., S̄P in ≈ KBT/~Ω for thermally dom-
inated fluctuations. The SQL can be obtained by as-
suming initial vacuum fluctuations (S̄Ŷ in = S̄X̂in = 1/2

and S̃X̂inŶ in = 0) and choosing |Cω| = 1/8γ|χω|, then
(ignoring mechanical noise) the noise at the SQL is
S̄SQL
Fnoise

≡ ~mΩ/|χω|. We can also incorporate detection
loss 1 − η2 in the cavity model via the simple substi-
tution S̄Fnoise → S̄Fnoise + 1−η2

η2 (~mΩ/16γ|Cω||χω|2); see
Appendix D for more discussion on loss.
Quantifying performance.— Since the mass of the DM

signal is a priori unknown, one must integrate over many
frequencies to rule out a range of potential masses for
DM [8–13, 16, 17]. Hence, detection bandwidth of the
setup is paramount, however sensitivity is equally impor-
tant, as such is needed to quickly build statistical con-
fidence in our measurements. A general figure of merit
for broadband sensing of an incoherent force, which takes
both sensitivity and bandwidth into account, is the inte-
grated sensitivity,

IΩ ≡
ˆ ∞

0

(
S̄Fdr

(ω)

S̄Fnoise
(ω)

)2
dω

π
. (9)

For a thorough discussion about the integrated sensitiv-
ity being a good figure of merit in DM searches, see
Refs. [42, 43] and Appendix B 2 for further discussion.
Later, we evaluate the integrated sensitivity for an array
of M sensors and denote the quantity as I(M)

Ω .
Assuming S̄Fdr

is approximately flat over the integra-
tion range (e.g., due to no prior information about DM
mass [44]), we find the integrated sensitivity for the SQL,
ISQL

Ω /S̄2
Fdr

= 4γ/(~mΩγ)2, which is the ratio of the me-
chanical linewidth, γ, and the on-resonance sensitivity
at the SQL, S̄SQL

Fnoise
(Ω) = ~mΩγ/2. Without quantum

resources, this sets the ultimate classical limit in broad-
band detection for a given set of mechanical parameters
m, γ, andΩ, which in turn imposes limits on a DM search
with a mechanical system.
Squeezing enhanced performance.— Squeezing the in-

put radiation is known to increase the effective band-
width in optomechanical sensing while leaving the peak
sensitivity (set by the SQL) the same [46–52], thus re-
sulting in squeezing-enhanced broadband sensing. We
briefly analyze such for a single mechanical sensor, uti-
lizing the integrated sensitivity as a performance metric;
see Appendix D for more discussion on squeezing. In
Fig. 2, we plot the integrated sensitivity, IΩ, versus the
mechanical resonance frequency, Ω, for various detector
configurations (classical and squeezed setups), assuming
an approximately flat spectrum for the signal, S̄Fdr

.
We incorporate different optimization schemes in our

analysis. The values E?ω and θ?ω (where E is the field
amplitude and θ is the squeezing angle) in Fig. 2 are
chosen via (E?ω, θ

?
ω) = argmax[S̄F̂dr

/S̄Fnoise
], whereas Ẽ?

and θ̃? are chosen via (Ẽ?, θ̃?) = argmax [IΩ]. The for-
mer optimum (which is frequency dependent) may not
always be practically feasible. If the squeezing angle,
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Figure 2. Single-sensor, integrated sensitivity for various de-
tector configurations (with and without squeezing) versus the
mechanical resonance frequency, Ω. The Classical Limit (CL)
is set by the SQL (which optimizes the power for each fre-
quency ω) plus mechanical thermal fluctuations. The Practi-
cal CL operates with a fixed power, independent of frequency
ω. Squeezing level is 4.2 dB (equivalent Ns = .25 squeezed
photons) for each squeezed curve; θ is the squeezing angle.
Optomechanical parameters are T = 10 K, Q ≡ Ω/2γ = 109,
κ = 2π × 16 MHz, m = 10 ng, and G0 = 2π × 121 Hz (cf.
Refs. [20, 45]). Here, (E?

ω, θ
?
ω) = argmax[S̄F̂dr

/S̄Fnoise ] and
(Ẽ?, θ̃?) = argmax [IΩ].

θ, of the input radiation is tunable, such that θ = θ?ω
may be chosen, then squeezing can surpass the Classi-
cal Limit (CL, which is set by the SQL plus mechanical
thermal noise) on broadband detection sensitivity; see
Refs. [49–52], where tunability of the squeezing angle in
optomechanical systems is addressed.
Optomechanical sensor array.— We now present

our main contribution, where we extend the re-
sults on squeezing-enhanced broadband sensitivity to
entanglement-enhanced broadband sensitivity with an
array ofM mechanical sensors. In our setup, the optome-
chanics are not directly coupled across the array; rather,
we allow for mixing of the input and output optical fields
via linear optical elements (Fig. 1). We further suppose
that the stochastic drive force (e.g., the DM field) im-
presses a correlated displacement on the sensors. We
show that, by utilizing entangled optical fields to mea-
sure the mechanics, the squeezing-enhancement demon-
strated for a single sensor naturally extends to a sensor-
array with the same amount of squeezed photons.

ConsiderM input modes, {âin
n }M−1

n=0 , and a strong laser
field at frequency ΩL on the âin

0 mode, with non-trivial
quantum fluctuations (e.g., squeezing) on the sidebands.
This mode is mixed with the idling input-modes (consist-
ing of uncorrelated vacuum fluctuations) of the remaining
M −1 inputs via linear optical elements described by the
dividing-weights {wn0}, with wn0 ∈ C. After interac-

tion with the mechanics, we measure the outgoing phase
quadrature at each sensor, Ŷ out

n , via homodyne detection
(see Appendix E for more details). In post-processing,
we convert the measurement result at the nth sensor to
a force measurement via the relation (6) and write the
resulting value as F̂n. We then statistically combine the
signals from each sensor with combining-weights {W0n},
with W0n ∈ C, and construct a weighted average force
estimator,

F̂ (ω) ≡
M−1∑
n=0

W0nF̂n(ω). (10)

In this manner, we capitalize on the correlations of the
stochastic drive field (e.g., the spatial-uniformity of the
DM field) across the array to achieve favorable scaling
with the size of the array.

Suppose that the drive force obeys the following statis-
tics, 〈F̂dr,nF̂dr,n′〉 = MnMn′f2, where f is common to
each sensor and Mn is a sensor dependent pre-factor
(e.g., f ∼

√
ρDM/∆ag for DM). The signal PSD of the

force is then,

S̄
(M)

F̂dr
(ω) =

∣∣∣∣∣
M−1∑
n=0

W0nMn

∣∣∣∣∣
2

f2. (11)

Consider the ideal scenario where all the sensors are
identical. In this case, the dividing- and combining-
weights are chosen to satisfy

∑
kW

∗
0nwk0 = δnk and

|wk0| = |Wk0| = 1/
√
M . In words, since the performance

of each sensor is identical and the response of each sensor
to the drive force is identical, the best strategy is to dis-
tribute the input radiation uniformly to each sensor and
then uniformly combine the signals.

The signal PSD in the ideal setting is M times the
single-sensor signal PSD (S̄(M)

F̂dr
= MS̄F̂dr

) which follows
directly from Eq. (11). This is due to the classical cor-
relations of the drive field across the array. Moreover,
if we scale the laser power with the number of sensors,
E2

0 →ME2
0 , such that the power per sensor is held fixed

as we increase the number of sensors, then the multi-
sensor force noise [Eq. (E24) of Appendix E] reduces to
the single-sensor force noise of Eq. (7). Therefore, it fol-
lows that we can use the same amount of squeezing as in
the single sensor setting to achieve an equivalent broad-
band reduction of the noise in the multi-sensor setup,
which comes along with the aforementioned M -factor
boost to the signal.

Our results are captured in Fig. 3, where we plot the
integrated sensitivity for an array of identical sensors ver-
sus the number of sensors. The power per sensor is chosen
to optimize the SNR at each frequency (i.e., E = E?ω as
in Fig. 2, such that E2

total = ME? 2
ω ), prior to integrat-

ing over all frequencies. For the DQS setup, a squeezed
vacuum, with Ns = .25 squeezed photons and squeez-
ing angle θ = θ?ω, is distributed uniformly across the
array. We observe scaling enhancements for both Dis-
tributed Classical Sensing (DCS) and DQS setups. The
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Figure 3. Scaling of the integrated sensitivity versus the
number of mechanical sensors (with resonance frequencies
Ω = 10kHz) in the array. Independent sensors operate at
the SQL (plus mechanical fluctuations) with no joint post-
processing. CL-DCS scheme operates each sensor at the
SQL (plus mechanical fluctuations) and leverages joint post-
processing. DQS scheme leverages joint post-processing and
entanglement by distributing a squeezed vacuum (of Ns = .25
total squeezed photons) uniformly to the sensors. Inset shows
robustness of performance for two sensors (M = 2) versus the
amount of inhomogeneity (parameterized by 0 ≤ p ≤ 1) in the
array. Optomechanical parameters take on the same values
as in Fig. 2. The input power is optimized at the single-
sensor level, such that the total input power to the array is
E2

total = ME? 2
ω .

CL-DCS setup—which operates each sensor at the SQL
(plus mechanical fluctuations) and leverages joint post-
processing—enjoys a quadratic scaling enhancement over
independent sensors due to spatial correlations of the
drive field. For our DQS setup, we similarly witness a
quadratic scaling over independent sensors as well as a
constant factor improvement over the CL-DCS scheme,
due to compounding the benefits of classical correlations
from the drive field—which boosts the signal—and quan-
tum correlations between the optical fields—which leads
to a global, broadband reduction of the noise.

We stress that independent sensors cannot achieve the

performance of our proposed DQS array with the same
amount of squeezing—no matter the input laser power.
Moreover, if we allow for joint post-processing but do
not allow for entanglement between the modes, then M
independent squeezed vacua—each with Ns number of
squeezed photons—must be utilized (see Appendix E 6
for further discussion) in order to achieve the same per-
formance as our DQS setup. This implies that the im-
provement in our DQS scheme is not necessarily due to
the amount of squeezed light that impinges on a single
mechanical oscillator but, rather, is a consequence of the
quantum correlations between the optical fields that im-
pacts the mechanics as a collective.

We are furthermore able to show that our results are
robust to small non-idealities, which we illustrate nu-
merically with an example of two sensors in the inset
of Fig. 3. We introduce inhomogeneity through the sec-
ond sensor by taking γ2 = γ/(1− p), κ2 = κ/(1− p), and
G2 = G0(1 − p) for the sensor’s operating parameters,
where 0 ≤ p ≤ 1 and γ, κ, and G0 are the mechanical
damping rate, cavity damping rate, and vacuum optome-
chanical coupling rate of the first sensor, respectively (ac-
quiring the same numerical values as in Fig. 2). Thus,
for p > 0, the second sensor performs worse than the first
sensor; nevertheless, a performance boost remains.
Discussions.— We have shown that an entangled op-

tomechanical sensor array provides enhanced broadband
sensitivity over classical setups. Our theory also applies
to a recent proof-of-principle experiment [53] and futur-
istic optomechanical arrays, such as the proposed Wind-
chime project for DM search [32, 33], and may be relevant
to other array-based proposals [54, 55].
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Appendix A: Commutation relations and PSDs

The commutation relation of the creation and annihila-
tion operator of the optical field in the Heisenberg picture
is [âin(t), âin†(t′)] = δ(t− t′). We define the quadratures
of a mode as the real and imaginary parts of the anni-
hilation operator âin, respectively, as X̂ in(t) = [âin(t) +

âin†(t)]/
√

2, Ŷ in(t) = [âin(t) − âin†(t)]/
√

2i. By taking
Fourier transforms of the time domain fields, we define
X̂ in(ω) = [âin(ω) + âin†(−ω)]/

√
2, Ŷ in(ω) = [âin(ω) −

âin†(−ω)]/
√

2i, where the annihilation operator âin(ω)
in the frequency domain is Fourier transform of âin(t)
and obeys the commutation relation [âin(ω), âin†(ω′)] =
2πδ(ω − ω′).

In optomechanics, the PSD of the quadratures X̂ in,
Ŷ in are usually related to the back-action and shot noise.
They can be calculated with Eq. (1). When the optical
field is coherent, the PSD of the vacuum fluctuations are

Svac
X̂in =

ˆ
dω′

1

2π

〈
X̂ in†(−ω)X̂ in(ω′)

〉
=

ˆ
dω′

1

4π

〈
âin(−ω)âin†(ω′)

〉
=

ˆ
dω′δ(ω − ω′) =

1

2

Svac
Ŷ in =

ˆ
dω′

1

2π

〈
Ŷ in†(−ω)Ŷ in(ω′)

〉
=

ˆ
dω′

1

4π

〈
âin(−ω)âin†(ω′)

〉
=

ˆ
dω′δ(ω − ω′) =

1

2
,

(A1)

When the optical field is in a two mode squeezed
state (squeezed in the quadrature X̂ in′; see below),
the annihilation operator âin′(ω) is transformed by
the linear unitary Bogoliubov transformation âin′(ω) =√
NS + 1âin(ω) +

√
NS â

in†(−ω) and the quadrature op-
erators X̂ in′(ω), Ŷ in′(ω) by the tranformations X̂ in′(ω) =

(
√
NS + 1+

√
NS)X̂ in(ω), Ŷ in′(ω) = Ŷ in(ω)/(

√
NS + 1+√

NS). The symmetrized PSD of the quadratures are

S̄sqz

X̂in′ = (
√
NS + 1 +

√
NS)2S̄X̂in

=
(
√
NS + 1 +

√
NS)2

2
,

S̄sqz

Ŷ in′ =
S̄Ŷ in

(
√
NS + 1 +

√
NS)2

=
1

2(
√
NS + 1 +

√
NS)2

.

(A2)

Appendix B: Aside remarks on DM search

1. SNR and long observing runs

In a DM search, primary objectives are to either mea-
sure the DM driving-force—therefore confirming the ex-

istence of DM—or (more likely) to exclude regions in
physical parameter space (e.g., DM mass and coupling)
where no such signal is found. This must be accomplished
in the presence of various noise sources, whilst optimally
utilizing resources (e.g., laser power, squeezing, etc.).

For a single detection interval (of size ∼ 1/∆a), the sig-
nal PSD of the DM-induced force is S̄Fdr

(ω) ∼ F 2
DM/∆a,

where FDM is the amplitude of the (partially coherent)
drive. For the optomechanical setup, the noise in the
force estimation is given generally by Eq. (7) in the
main text. For simplicity, we approximate the Lorentzian
PSD [20] of DM induced force as a delta-like peak of
width ∆a, centered about the (unknown) mass of the
DM particle.

Consider a long observation run of length TO, such
that ∆aTO � 1, where TO is the total observation time,
and decompose the total observation time into smaller
intervals, each of size ∼ 1/∆a. Statistically combining
the results from each detection interval, we find the SNR
over the entire observation,

SNR =
S̄Fdr

(ω)

S̄Fnoise
(ω)

√
∆aTO, (B1)

where the factor
√

∆aTO is due to the law-of-large num-
bers. For longer observation times, TO, smaller DM cou-
plings can be probed at each frequency, ω, thus providing
a method to detect or exclude DM candidates.

a. Random force perspective

We now take a different viewpoint and consider long
integration times, Tint∆a � 1, such that the DM-induced
force is incoherent and captured by the random force,
ξF (t), while the (partially coherent) deterministic drive
Fdr(t) = 0 ∀ t. In this case, we take the ratio of the signal
PSD (induced by the random force) and the other noise
terms to obtain the SNR directly,

SNR =
SξF (ω)

Snoise(ω)
, (B2)

As before, we consider a long observation time, such that
TO � Tint, and then break the entire observation run into
a large number of repetitions, TO/Tint. For fixed TO,
increasing Tint will not change the single-shot SNR in
Eq. (B2) but will otherwise reduce the number of repeti-
tions, resulting in a decreased SNR over the observation
time, TO. To increase the number of repetitions (and
thus increase the SNR over the entire observing run), we
could decrease the integration time, however we cannot
do so arbitrarily, as the DM signal has a finite linewidth.
Therefore, the best strategy is to set Tint ≈ 1/∆a, where
the precision is just enough to resolve DM signal. At this
point, one can multiply the single-shot SNR of Eq. (B2)
by the factor

√
TO/Tint ≈

√
TO∆a from repeated mea-

surements. Identifying SξF (ω) = SFdr
, one then arrives

at Eq. (B1). Hence, from a data processing perspective,
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it is useful to think about the DM-induced force as a
partially coherent drive, as discussed in the main text.

2. Comments on figures of merit in a DM search

Through exhaustively thorough analyses, Refs. [42, 43]
established the integrated sensitivity as a primary figure
of merit in a DM search. On the other hand, in original
DM search proposals with microwave cavities [8–13, 16,
17], a physically motivated figure of merit is the actual
time that it takes to scan frequency space in search for
a DM signal (by tuning the resonance frequency of the
cavity)—which is the “scan time” for the DM search.

In cavity setups, it can be shown that the scan rate
(the inverse of the scan time) is proportional to the
squared SNR, integrated over all resonance frequen-
cies [15, 31, 56]. It turns out that, for a microwave cavity
detector, the integrated sensitivity [defined in Eq. (9) of
the main text] and the scan-rate are equivalent (up to a
proportionality constant). This equivalence is due to the
fact that the microwave cavity response (characterized by
a Lorentzian profile) depends solely on the detuning from
the resonance frequency of the cavity. This equivalence
does not extend to optomechanical setups, due to the
non-Lorentzian response of the mechanics. In our work,
we follow the suggestions of Refs. [42, 43] and thus take
the integrated sensitivity as the preferred performance
metric. The integrated sensitivity furthermore has an
interpretation as the total amount of information about
the signal over the entire frequency spectrum, which is
important in broadband sensing scenarios, making this
figure of merit precise and more generally useful; see,
e.g., Ref. [57] for its use in a different context for two-
level sensors.

The integrated sensitivity has also been considered
in broadband detection of stochastic gravitational-wave
backgrounds [58–60].

Appendix C: Single sensor analyses of the simplified
model

In our simplified model, the optical field experience a
phase shift caused by the motion of the mirror (as shown
in Fig. 4). Êin(t) and Êout(t) are the input and out-
put field operators at the equilibrium position (q = 0)
of the mirror, respectively. There is a phase rotation
2kq̂(t′) between the input and output field caused by
the propagation. Here k is the angular wavenumber of
the field and q̂(t′) is the position operator of the mir-
ror at time t′. t′ is the time the wave arrives the mir-
ror before its return back to position q = 0 at time t.
But because the motion speed of the mirror is much less
than the light speed, we can treat q̂(t′) ≈ q̂(t) approxi-
mately. The input-output relation of the field can be ob-
tained as Êout(t) = e2ikq̂(t)Êin(t) = eiζq̂(t)Êin(t), where

Figure 4. Schematic of the simplified model. Êin and Êout

are the input and output field operators, respectively; m, Ω,
and γ are are the effective mass, resonance frequency, and
damping rate of the mechanical oscillator, respectively; and q̂
is the position operator of the mechanical oscillator.

ζ = 2ΩL/c. With the input field decomposed in the fre-
quency domain, considering the loss, the output field is

Êout(t) = eiζq̂(t)Êin(t)

≈ e−iΩLt
[
ηE0 (1 + iζq̂(t))

+

ˆ
dω

2π
ηâin(ω)e−iωt

]
+ · · · , (C1)

The output field is measured via homodyne detection
with the local oscillator field to be Êin(t)i/E0. The de-
tected quadrature is

Ŷ out(t) = Êout(t)[−Êin∗(t)i/E0] + h.c.

= −i
[
ηE0 (1 + iζq̂(t))

+

ˆ
dω

2π
ηâin(ω)e−iωt + · · ·

]
+ h.c.

= −i
[
i2ηE0ζq̂(t) +

ˆ
dω

2π
ηâin(ω)e−iωt

−
ˆ

dω

2π
ηâin†(ω)eiωt + · · ·

]
.

(C2)
Ŷ out in the frequency domain is obtained by Fourier
transformation,

Ŷ out(ω′) =

ˆ
Ŷ out(t)eiω′tdt

= −iη[âin(ω′)− âin†(−ω′)] + 2ηE0ζq̂(ω
′) + · · ·

=
√

2η
[
Ŷ in(ω′) +

√
2E0ζq̂(ω

′)
]

+ · · · .
(C3)

The dynamics of the mechanical oscillator is deter-
mined by the radiation force, F̂rad, from the light field
probing the motion of the mechanics, the external driv-
ing force, Fdr, exerted on the mechanics by the DM field
and the random force, ξ̂T induced by a thermal bath at
temperature T . The motion equation of the mechanical
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oscillator is

m¨̂q + 2mγ ˙̂q + kq̂ = Fdr(t) + F̂rad(t) +
√

4mγKBT ξ̂T (t).
(C4)

The oscillator position q̂ can be obtained by solving the
Langevin equation in the Fourier domain, resulting in the
solution,

q̂(ω) =
χω
mΩ

[
Fdr(ω) + F̂rad(ω) +

√
4mγKBT ξ̂T (ω)

]
,

(C5)
with m, γ, and Ω being the oscillator mass, mechanical
damping rate, and mechanical resonance frequency, re-
spectively. The random force ξ̂T (ω) has zero-mean and is
Gaussian distributed, with 〈ξ̂T (ω)ξ̂T (ω′)〉 = 2πδ(ω−ω′),
where KB is the Boltzmann constant. Finally, χω =
Ω/(Ω2−ω2− i2γω) is the complex linear response of the
mechanics.

The radiation pressure force in time domain is given
by

F̂rad (t) = κÊin †(t)Êin(t)

= κE0

ˆ
dω

2π
âin(ω)e−iωt + h.c., (C6)

where κ = 2~ΩL/c is the momentum change of a photon
reflected from the mirror. Its spectral amplitude is

F̂rad (ω′) =

ˆ
F̂rad (t) eiω′tdt = κE0[âin(ω′) + âin†(−ω′)]

=
√

2κE0X̂
in(ω′).

(C7)
Substituting Eq. (C5) and Eq. (C7) to Eq. (C3), we ob-
tain

Ŷ out(ω) =
√

2η
{
Ŷ in(ω) +

√
2E0ζχω
mΩ

[√
2κE0X̂

in(ω)

+ Fdr(ω) +
√

4mγKBT ξ̂T (ω)
]}

+ · · · . (C8)

The force estimator can be then expressed with the phase
quadrature as

F̂ (ω) =
mΩ

2ηE0ζχω
Ŷ out(ω)

= B(ω)Ŷ in(ω) +
√

2κE0X̂
in(ω) + Fdr(ω)

+
√

4mγKBT ξ̂T (ω)
]

+ · · · (C9)

where

B(ω) =
mΩ√

2E0ζχω
. (C10)

from which the PSD of the force can be derived,

SF̂ (ω) = |B(ω)|2
[
SŶ in(ω) +

1− η2

2η2

]
+ 2κ2E2

0SX̂in(ω)

+
1

2π

ˆ
dω′

〈
B∗(−ω)Ŷ in†(−ω)

√
2κE0X̂

in(ω′)
〉

+
1

2π

ˆ
dω′

〈√
2κE0X̂

in†(−ω)B(ω′)Ŷ in(ω′)
〉

+ 4mγKBT + SFdr
(ω)

= |B(ω)|2
[
SŶ in(ω) +

1− η2

2η2

]
+ 2κ2E2

0SX̂in(ω)

+B′∗(−ω)SŶ inX̂in(ω) +B′(−ω)SX̂inŶ in(ω)

+ 4mγKBT + SFdr
(ω),

(C11)
where

B′(ω) =
√

2κE0B(ω). (C12)

In the derivation above, we have used the stationary
statistic properties 〈Ô†(ω)Ô′(ω′)〉 = fÔÔ′(ω)δ(ω − ω′)

for Ô and Ô′ to be anyone of X̂ in and Ŷ in. There is no
correlations between the field quadrature, Fdr and ξ̂T , so
the PSD of the force estimator is just the summation of
the PSD of each of them. The PSD of force noise is just
the summation of the residual terms apart from SFdr

(ω)
on the right hand side of Eq. (C11). Therefore the sym-
metrized PSD of noise is

S̄Fnoise
(ω) = 4mγKBT + |B(ω)|2

[
S̄Ŷ in(ω) +

1− η2

2η2

]
+ 2κ2E2

0 S̄X̂in(ω) +
B′∗(−ω)SŶ inX̂in(ω)

2

+
B′(−ω)

[
SŶ inX̂in(−ω) + SX̂inŶ in(ω)

]
2

+
B′(ω)SX̂inŶ in(−ω)

2

= 4mγKBT + |B(ω)|2
[
S̄Ŷ in(ω) +

1− η2

2η2

]
+ 2κ2E2

0 S̄X̂in(ω) + 2Re[B′(−ω)S̃X̂inŶ in(ω)], (C13)

where we have used the properties B′(ω) = B′∗(−ω),
SÔÔ′(ω) = S∗

Ô′Ô
(ω) in the derivation above.

Appendix D: Single cavity optomechanics

1. Brief review of dynamics

We start with the non-linear Hamiltonian of a cavity
with one oscillating mirror. Let X̂ and Ŷ be the ampli-
tude and phase quadratures, respectively, of the intra-
cavity field and Q̂ and P̂ be the (dimensionless) position
and momentum operators, respectively, of the movable
mirror, such that [X̂, Ŷ ] = [Q̂, P̂ ] = i, with all other
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commutators vanishing. The Hamiltonian is then given
by a sum of terms,

Ĥ = Ĥ free + Ĥ int + Ĥdr, (D1)

where,

Ĥ free =
~ωc
2

(
X̂2 + Ŷ 2

)
+

~Ω

2

(
Q̂2 + P̂ 2

)
(D2)

Ĥ int = 2~G0Q̂
(
X̂2 + Ŷ 2

)
(D3)

Ĥdr = ~EX̂. (D4)

The first term is the free evolution of the intra-cavity
quadrature operators (rotating at the cavity resonance-
frequency, Ωc = ΩL, which we assume is on-resonance
with the laser drive) plus the free-motion of the mirror
(oscillating at the mechanical frequency, Ω), the second
term is the radiation-pressure interaction, which induces
a shift of the cavity resonance-frequency depending on
the mirror’s position, and the last term is a linear-drive
of the cavity field, which can be related to the input
laser drive flux E2

0 (see Ref. [39] for explicit expressions).
Here, G0 is the (normalized) vacuum optomechanical
coupling rate. For a Fabry-Perot cavity of length L,
G0 = Ωc

L

√
~

2mΩ , where m is the mass of the oscillator.
One can linearise the Hamiltonian by expanding

around the steady-state values of the intra-cavity field
and the mirror’s motion (the latter being induced by
a strong field inside the cavity). We then go to the
rotating frame of the cavity. This leads to the linear-
approximation of the Hamiltonian in the rotating frame
of the laser,

Ĥ =
~Ω

2

(
Q̂2 + P̂ 2

)
+ 2~GQ̂X̂, (D5)

where G ≡ EG0 is the cavity-enhanced optomechanical
coupling-rate and E is the intra-cavity amplitude (taken
to be real). The intra-cavity amplitude is related to the
input flux of the laser-drive, E0, via,

E2 =
4κr
κ2

E2
0 , (D6)

where κ is the total dissipation-rate of the cavity and κr
is the dissipation-rate to the readout port. If there is
loss at a rate κ`, then κ = κr + κ`. Note that, given
the laser field has frequency ΩL, the input laser-power
is Pin = ~ΩLE

2
0 ≈ ~ΩLκE

2/4, where the approximation
assumes over-coupling (κr ≈ κ).

We include noise by assuming that the intra-cavity field
and the mechanical motion of the mirror are dissipatively
coupled to bath-modes—(X̂ in, Ŷ in) and (Q̂in, P̂ in)—at
rates κ and γ, respectively, such that [X̂in(t), Ŷin(t′)] =

[Q̂in(t), P̂in(t′)] = iδ(t − t′). In words, these modes rep-
resent an incoming photon-flux for the cavity field and
an incoming phonon-flux for the oscillator’s motion. The

interactions with the baths lead to a coupled set of first-
order, linear differential equations,

dX̂

dt
= −κ

2
X̂ +

√
κX̂in, (D7)

dŶ

dt
=
κ

2
Ŷ +

√
κŶin − 2GQ̂, (D8)

dQ̂

dt
= ΩP̂ , (D9)

dP̂

dt
= −ΩQ̂− 2γP̂ + 2

√
γP̂in − 2GX̂. (D10)

The outgoing fluxes can be found from the time-reversal
of Eqs. (D7)-(D10) and are related to the ingoing flux
via the input-output relations X̂out = X̂ in −

√
κX̂ etc.,

from which the (spectral) output amplitude and phase
quadratures can be found,

X̂out(ω) = −eiϕωX̂ in(ω), (D11)

Ŷ out(ω) = −eiϕω Ŷ in(ω) + 2
√

2γCωQ̂(ω), (D12)

with the latter expression agreeing with Eq. (3) of the
main text and

Q̂(ω) = 2
√
γχω

(
P̂ in(ω)−

√
2CωX̂

in(ω)
)

+Qdr(ω),

(D13)
where we have added an additional drive term Qdr(ω)
due to a background, classical force.

2. Bad cavity limit

Here we show that, in the bad cavity limit, the simpli-
fied model (Appendix C) and the cavity optomechanics
model agree. The goal is to show that the overall input-
output relations agree. We accomplish this by comparing
the force estimator of the simplified model, Eq. (C9), to
the force estimator of the optomechanical model, Eq. (6).
Writing the latter out explicitly,

F̂ (ω) =
e−iϕω/2

χω

√
~mΩ

8γ|Cω|
Ŷ out(ω)

= − 1

χω

√
~mΩ

8γ|Cω|
Ŷ in(ω) +

√
4~mγΩP̂ in(ω)

+ Fdr −
√

8~mγΩCωX̂
in(ω). (D14)

In the bad cavity limit, eiϕω ≈ 1 and Cω ≈ 2G2/γκ =
8E2

0G
2
0/γκ

2. If we shift the phase reference of the ho-
modyne detection by π, we have Ŷ ′in(ω) = −Ŷ in(ω) and
X̂ ′in(ω) = −X̂ in(ω), and Eq. (D14) can be expressed as

F̂ (ω) =

√
~mΩκ

8E0G0χω
Ŷ ′in(ω) +

√
4~mγΩP̂ in(ω)

+ Fdr +
8E0G0

κ

√
~mΩX̂ ′in(ω), (D15)
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Comparing Eq.(C9) and Eq.(D15) (at unity efficiency
η = 1), we make the following correspondence

√
~mΩκ

8E0G0χω
= B(ω), (D16)

where B(ω) can be found in Eq. (C10). This implies that

~ζ =
4G0

κ

√
2~mΩ =

4~ΩL
Lκ

. (D17)

where we have used E2 = (4/κ)E2
0 and taken G0 ∼√

~/2mΩΩL/L, which holds identically for a Fabry-Perot
cavity. In the bad cavity limit of the cavity optomechan-
ics model, the output mirror of the cavity is seen as a
window (i.e., almost completely transparent) and thus
κ ∼ c/L, which is due to the fact that it roughly takes
a time L/c for a photon to leave the cavity after entry
through the mirror. Consequently, in this limit, the PSD
expressions for each model agree.

3. Squeezing enhancement

We introduce squeezing into the input optical field,
which generally correlates the phase and amplitude

quadratures and allows us to go below the SQL when in-
terrogating the mechanics. Given a squeezing strength,
r, and a squeezing angle, θ, the PSDs of the input optical
field are,

S̄Ŷ inŶ in(ω) =
1

2

(
e−2r cos2 θ + e2r sin2 θ

)
, (D18)

S̄X̂inX̂in(ω) =
1

2

(
e2r cos2 θ + e−2r sin2 θ

)
, (D19)

S̃X̂inŶ in(ω) = S̃Ŷ inX̂in(ω) =
1

2
cos θ sin θ(e2r − e−2r).

(D20)

We then assume the mechanical noise in the system is ap-
proximately flat, such that S̄P inP in(ω) = KBT/~Ω. Sub-
stituting these expressions into Eq. (7) of the main text
and rearranging, we obtain,

S̄sqz
Fnoise

(ω) =
~mΩ

16γ|Cω||χω|2

(∣∣∣ cos θ − 8γ|Cω|χω sin θ
∣∣∣2e−2r +

∣∣∣ sin θ + 8γ|Cω|χω cos θ
∣∣∣2e2r

)
+ 4mγKBT, (D21)

where we have used χ∗ω = χ−ω. In terms of the num-
ber of squeezed photons, Ns, we have e−2r = 1/(

√
Ns +√

Ns + 1)2.
For a fixed amount of squeezed photons, Ns > 1, and

at a given frequency ω 6= Ω, there exists a laser-drive
amplitude, E?ω, and a squeezing angle, θ?ω, such that the
force noise dips below the SQL. This can be seen by com-
paring the (dashed) black and red curves in Fig. 5, which
are the ultimate performances for classical and squeezing-
enhanced detection, respectively, for some finite temper-
ature, T (T = 10K here).

In practice, the SQL and the squeezed-noise limit can
only be reached at a particular frequency because the
laser power, E, is constant (independent of ω). Since
we are concerned with broadband detection performance,
we can otherwise choose the laser power to optimize the
integrated sensitivity of the detector, such that E = Ẽ?,
in accordance with the optimization schemes discussed
in the main text. This leads, for instance, to a practical
classical-limit in broadband detection sensitivity without
squeezing; see the dark blue curve [Practical CL (E =

Ẽ?)] in Fig. 5.
Squeezing can beat classical limits in broadband detec-

tion if the squeezing angle, θ, is appropriately chosen, a

known result [46, 47, 49–52]. [Note that enhanced broad-
band sensing is best highlighted by the integrated sensi-
tivity, which we plot in Fig. 2 of the main text. We give
qualitative analysis by directly observing the noise spec-
trum here.] This is especially pronounced if the squeezing
angle is frequency tunable, such that we may operate the
system at the optimal point, θ = θ?ω. We can qualita-
tively observe this by inspecting the squeezed-noise in
Fig. 5 [light blue curve; Squeezed (E = Ẽ?, θ = θ?ω)]
and comparing it to the classical limit (dark blue curve).
There, we notice that squeezing admits lower noise than
the practical classical-limit at all frequencies and even
surpasses the SQL+Thermal noise limit [black dashed
curved] for a vast range of frequencies. Similar (though
not as advantageous) benefits arise when the squeezing
angle is not arbitrarily tunable but may be nonethe-
less be chosen to take on a single value which maxi-
mizes the integrated sensitivity [orange curve; Squeezed
(E = Ẽ?, θ = θ̃?)].

We now consider the effect of loss on perfor-
mance. As mentioned in the main text, for de-
tection loss 1 − η2, the force noise when loss is
present can be found by the simple substitution,
S̄Fnoise → S̄Fnoise + 1−η2

η2 (~mΩ/16γ|Cω||χω|2). [We have
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Figure 5. Force noise (in units Newtons/
√

Hz) for a single
optomechanical sensor. The amount of squeezing for each
squeezed curve is taken as 4.2 dB (equivalent Ns = .25
squeezed photons). Operational parameters are Ω = 2π ×
1 kHz, T = 10 K, Q ≡ Ω/2γ = 109 (thus, 2γ = 2π × 1µHz),
κ = 2π × 16 MHz, m = 10ng, and G0 = 2π × 121 Hz

(cf. Refs. [20, 45]). Values Ẽ? and θ̃? are chosen via
(Ẽ?, θ̃?) = argmax [IΩ], whereas E?

ω and θ?ω are chosen via
(E?

ω, θ
?
ω) = argmax[S̄F̂dr

/S̄Fnoise ].

thus factored out loss from the signal and pushed it in
the noise, hence the η2 in the denominator.] The first
term is the force noise without loss, and the second term
is additional measurement noise from the vacuum fluc-
tuations of the loss port. As an example, for the SQL,
S̄SQL
Fnoise

→ S̄SQL
Fnoise

/η; this can be shown by optimizing the
force noise (assuming vacuum fluctuations for the input
optical field), from which one finds the optimal cooper-
ativity, |Cω| = 1/(8ηγ|χω|), that leads to the aforemen-
tioned expression. In Fig. 6, we plot the integrated sen-
sitivity for a mechanical oscillator with resonance fre-
quency Ω = 1 kHz versus loss, for various detection con-
figurations (with and without squeezing). For 1−η2 > 0,
the benefits from squeezing is ultimately limited by loss
(as well as the thermal floor). Furthermore, the over-
all performance of each configuration degrades as the
amount of loss increases, however squeezing is still bene-
ficial for all non-zero values of the loss.

Appendix E: Optmechanical array analysis

Below are detailed analyses of an array of optomechan-
ical sensors, where we discuss some subtleties about the
interaction Hamiltonian (describing the coupling between
the mechanics and radiation) for an array, provide deriva-
tions of the force noise for an array of optomechanical
sensors, discuss the SQL of the array, derive an explicit
expression for the noise when input squeezed radiation is
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Figure 6. Integrated sensitivity versus loss, 1 − η2. Mechan-
ical resonance frequency is taken as Ω = 1 kHz; all other
operational parameters are the same as in Fig. 5.

utilized, and, finally, derive an optimal squeezing angle
for the array.

1. Optomechanical interaction Hamiltonian for an
array

Consider the interaction Hamiltonian for the jth sensor
[see, e.g., Eq. (D3)] in an optomechanical quantum array,

Ĥ int
j = 4~g0;jQ̂j

(
â†j âj

)
, (E1)

where we have rewritten the expression in terms of the
intra-cavity annihilation and creation operators, âj and
â†j . The annihilation operator in the Heisenberg picture
is given in the Fourier domain by,

âj =

ˆ
dωâj(ω)e−iωt. (E2)

We now linearise the interaction Hamiltonian by con-
sidering the intra-cavity field around its mean spectral
amplitude, βj(ω). This amplitude is linearly related to
the input field amplitude, βin;j(ω), via

βj(ω) =

√
κr;j

i(ω − Ωc) + κj/2
βin
j (ω), (E3)

where ΩC is the resonant frequency of the cavity, κj is
the total dissipation rate of the cavity, and κr;j is the
dissipation rate to the readout port. For simplicity, we
assume all cavities in the array have approximately the
same resonance frequency. Let E0(ω) be the input laser-
field amplitude to the primary mode (i.e., the 0th input
mode; all other modes are vacuum) prior to the beam-
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splitter array. Then, βin
j (ω) = wj0(ω)E0(ω) and

βj(ω) = wj0(ω)

( √
κr;j

i(ω − Ωc) + γj/2
E0(ω)

)
≡ wj0(ω)Ej(ω),

(E4)

where Ej(ω) is the intra-cavity amplitude if the entire
laser field impinged on the cavity (i.e., in the absence of
the power-dividing array). We now make the substitu-
tion âj(ω) −→ âj(ω) + βj(ω) into Eq. (E2), using the
equations above, and assuming the input field, E0(ω), to
be sharply peaked around the laser frequency, ΩL. We
then find,

âj → âj +

ˆ
dω wj0(ω)Ej(ω)e−iωt

≈ âj + wj0(ΩL)Ej(ΩL)e−iΩCt.

(E5)

We shall further assume that the laser-frequency is on-
resonance with the cavities, such that ΩL = ΩC . Then,
substituting the prior expression back into the interaction
Hamiltonian of Eq. (E1) and linearizing the result, we
obtain, in the rotating reference frame of the cavity/laser,

Ĥ int
j ≈ 4~g0;jQ̂j |wj0(ΩL)Ej |

(
âje
−iΦj + â†je

iΦj

)
≡ 2~gjQ̂jX̂j(Φj),

(E6)

where Φj ≡ arg[E0] + arg[wj0(ΩL)]; gj ≡
g0;j |wj0(ΩL)Ej |; X̂j(Φj) ≡ Re

{
âje
−iΦj

}
; and we

have discarded a term ∝ Q̂j |wj0(ΩL)Ej |2 which sim-
ply determines the steady-state of the mechanical
oscillations.

In gist, these results show that:

• The bare coupling parameter of the jth sensor,
g0;j , gets enhanced to gj , but only by a fraction
of the total input laser field. Thus, if Cj(ω) de-
notes the mechanical cooperativity (as defined per
Eq. (4)) of the jth sensor when the total laser
field, E0, interacts with the mechanics, then the
actual cooperativity of the mechanics is C ′j (ω) =

|wj0(ΩL)|2Cj(ω), as claimed in the main text.

• From X̂j(Φj) and the definition of Φj , we observe
that the beam-splitter array can cause the quadra-
ture bases of sensors within the array to differ, due
to the angle arg[wj0(ΩL)]. This can cause problems
when power-combining signals later on, as the sig-
nal at the jth sensor is encoded in the jth phase
quadrature, Ŷj(Φj), and we want to align these
quadratures in order to maximize signal output.
To avoid potential mishaps here, we can choose
arg[wj0(ΩL)] = 0 ∀ j.

2. Input-output relations

We now derive the input output relations for the sensor
array depicted in Fig. 1, which leads to the general force

noise in Eq. (E24) of the main text. A non-trivial input
mode, Ŷ in

0 , is mixed with vacuum fluctuations fromM−1
idling input modes via a beam-splitter array governed by
the weights {wk0}, with wk0 ∈ C. Just after the beam-
splitter array, the phase-quadrature that impinges on the
the nth mechanical-sensor is given as,

Ŷ ′ in
n = wn0Ŷ

in
0 + vac, (E7)

where “vac” indicates the (linear combination of) vacuum
fluctuations from the M − 1 idle input modes. After
interaction with the mechanics, the phase quadrature at
the output of the nth cavity is, which we measure via
homodyne detection,

Ŷ out
n = −eiϕn(ω)Ŷ ′ in

n + 2
√

2γnC ′n(ω)Q̂n

− 8γnC
′
n(ω)χn(ω)X̂ ′ in

n , (E8)

where Q̂n is defined similarly as in Eq. (5), X̂ ′ in
n

is defined likewise to Eq. (E7) (which is required to
preserve the canonical commutation relations between
the phase and amplitude quadratures), and C ′n(ω) ≡
Cn(ω)|wn0(ΩL)|2, with ΩL the laser frequency, which we
have assumed to be the same for all sensors and assumed
to be resonant with each cavity. Here, the cooperativity
Cn(ω) [see Eq. (4) for an explicit expression] is defined
with respect to the total power E2

0 . In our work, we take
arg [wn0(ΩL)] = 0 (or some constant independent of n).
Without this choice, the quadrature bases of the output
radiation at each sensor will not be aligned, which will
lead to poorer performance when attempting to combine
the signal amplitudes; see previous section for further
details about this.

After detection, the quadrature measurements can be
converted to force measurements via the conversion for-
mula (6), from which the signal and noise PSDs can be
derived.

3. Noise Analysis

From the previous section and Eq. (10) of the main
text, it follows that the PSD noise is,

Snoise(ω) =
∑
j,k

W ∗0jW0k

〈
F̂ †j F̂k

〉
noise

, (E9)

where we have dropped frequency dependence for brevity.
The subscript “noise” here indicates that we disregard
the signal contribution to the PSD when evaluating this
expression. The expression 〈F̂ †j F̂k〉noise has four main
terms: mechanical thermal noise, shot noise, back-action,
and quadrature correlations. We consider the noise con-
tributions in parts.

Mechanical thermal fluctuations at each sensor con-
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tribute to the total noise and obey the relations,

〈
F̂ †j F̂k

〉
Θ
≡
√

~2mkmjΩkΩj

χkχ∗j

〈
Q̂†kQ̂j

〉
noise

(E10)

= 4
√

~2mkmjΩkΩjγkγj

〈
P̂ in †
j P̂ in

k

〉
︸ ︷︷ ︸

=δjk(KBTk/~Ωk)

(E11)
= δjk (4mkκkKBTk) , (E12)

where Θ labels “thermal" and Eq. (5) was used to move
from the first line to the second. The total thermal con-
tribution to the PSD of Eq. (E9) is then,

SΘ
noise ≡

M−1∑
k=0

|W0k|2 (4mkγkKBTk) , (E13)

which is just an average thermal noise over all sensors,
according to the probability distribution |W0k|2. [Recall,
0 ≤ |W0k|2 ≤ 1 and

∑
k |W0k|2 = 1.]

The fluctuations in the phase quadrature leads to shot-
noise (SN), which is determined by,

〈
F̂ †j F̂k

〉
SN
≡ ei(ϕk−ϕj)/2

8χkχ∗j

√
~2mkmjΩkΩj

γkγj |C ′k|
∣∣C ′j ∣∣

〈
Ŷ ′ in†j Ŷ ′ ink

〉
,

(E14)
We can expand the expectation value using Eq. (E7) to
write everything in terms of the PSDs of the input modes,〈

Ŷ ′ in†j Ŷ ′ ink

〉
=
∑
r,s

w∗jrwks

〈
Ŷ in†
r Ŷ in

s

〉
︸ ︷︷ ︸
∝δrs

(E15)

=
∑
r

w∗jrwkr

〈
Ŷ in†
r Ŷ in

r

〉
(E16)

= w∗j0wk0SY in
0 Y in

0
+
(
δjk − w∗j0wk0

)
Svac,

(E17)

where Svac = 1/2 and we have used the unitary relation∑M−1
r=0 w∗jrwkr = δjk (together with the assumption that

the idle input modes all consist of vacuum fluctuations)
to move from the second equality to the third equality.
The first term in the last equality corresponds to the
squeezed-vacuum on the primary (the r = 0) mode, and
the second term is a troublesome term which encodes the
vacuum fluctuations from the other M − 1 idling input
modes. Defining the complex numbers,

∆jk ≡

ei(ϕk−ϕj)/2
√
~2mkmjΩkΩj

(
δjk − w∗j0wk0

)
W ∗0jW0k,

(E18)

and using Svac = 1/2, we can write the force PSD due to
shot noise generally as,

SSN
noise ≡

∣∣∣∣∣
(
M−1∑
k=0

eiϕk/2

2χk

√
~mkΩk
κk|C ′k|

W0kwk0

)∣∣∣∣∣
2

SY in
0 Y in

0

+

∑
j,k

∆jk

8χkχ∗j

√
1

κkκj |C ′k|
∣∣C ′j ∣∣

 . (E19)

The fluctuations in the amplitude quadrature leads to
back-action noise (BA), which is determined by,〈

F̂ †j F̂k

〉
BA
≡

8ei(ϕk−ϕj)
√
~2mkmjΩkΩjγkγj |C ′k|

∣∣C ′j ∣∣ 〈X̂ ′ in†j X̂ ′ ink

〉
,

(E20)

with〈
X̂ ′ in†j X̂ ′ ink

〉
= w∗j0wk0SXin

0 X
in
0

+
(
δjk − w∗j0wk0

)
Svac,

(E21)
which follows from similar analyses that led to Eq. (E17).
We can then write the force noise due to back-action
generally as,

SBA
noise ≡∣∣∣∣∣
(
M−1∑
k=0

2eiϕk/2
√

2~mkΩkγk|C ′k|W0kwk0

)∣∣∣∣∣
2

SXin
0 X

in
0

+

∑
j,k

4∆jk

√
γkγj |C ′k|

∣∣C ′j ∣∣
 . (E22)

One can likewise find an explicit expression
for the quadrature correlation terms by using〈
Ŷ ′ in†k X̂ ′ inj

〉
= w∗k0wj0

〈
Ŷ in†

0 X̂ in
0

〉
. From which we

can derive the contribution from quadrature correlations
to the force PSD,

Scorr
noise ≡ 2 Re

[(M−1∑
k=0

e−iϕk/2

χ∗k

√
~mkΩk
γk|C ′k|

W ∗0kw
∗
k0

)

×

M−1∑
j=0

eiϕj/2
√
~mjΩjγj |C ′k|W0jwj0

 S̃X̂in
0 Ŷ

in
0

]
,

(E23)

where S̃X̂in
0 Ŷ

in
0

is defined in Eq. (8) of the main text.
Finally, combining Eqs. (E13), (E19), (E22),

and (E23), we derive a general expression of the
force noise for the array,
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S̄
(M)
Fnoise

= ∣∣∣∣∣
(
M−1∑
k=0

eiϕk/2

2χk

√
~mkΩk
2γk|C ′k|

W0kwk0

)∣∣∣∣∣
2

S̄Y in
0

+

∣∣∣∣∣
(
M−1∑
k=0

2eiϕk/2
√

2~mkΩkγk|C ′k|W0kwk0

)∣∣∣∣∣
2

S̄Xin
0

+ 2 Re

(M−1∑
k=0

e−iϕk/2

χ∗k

√
~mkΩk
γk|C ′k|

W ∗0kw
∗
k0

)M−1∑
j=0

eiϕj/2
√
~mjΩjγj |C ′k|W0jwj0

 S̃X̂in
0 Ŷ

in
0


+
M−1∑
k=0

|W0k|2 (4mkγkKBTk) + S̄(M−1)
res , (E24)

where

S̄(M−1)
res =

∑
j,k

∆jk

(
1

8χkχ∗j

√
1

κkκj |C ′k|
∣∣C ′j ∣∣ + 4

√
γkγj |C ′k|

∣∣C ′j ∣∣
)

=
M−1∑
k=0

|W0k|2
(

~mkΩk

16γk|C ′k||χk|
2 + 4~mkΩkγk|C ′k|

)
−

∣∣∣∣∣
(
M−1∑
k=0

eiϕk/2

4χk

√
~mkΩk
γk|C ′k|

W0kwk0

)∣∣∣∣∣
2

−

∣∣∣∣∣
(
M−1∑
k=0

2eiϕk/2
√
~mkΩkγk|C ′k|W0kwk0

)∣∣∣∣∣
2

. (E25)

In Eq. (E24), the first three terms are due to the shot
noise, back-action noise, and quadrature correlations, re-
spectively, of the non-trivial input mode, âin

0 ; these gen-
eralize the single-sensor, quadrature noises of Eq. (7) to
an array of sensors. The fourth term is the weighted av-
erage of the independent mechanical fluctuations of the
various sensors. The final term [written out explicitly
in Eq. (E25)] contains the residual vacuum fluctuations
from the M − 1 idling input modes. These residual vac-
uum fluctuations do not contribute much to the noise, so
long as the resonance frequencies of the mechanical sys-
tems are nearly identical, Ωk ≈ Ω ∀ k; see below for more
discussion on this.

From Eq. (E24), we can assess the performance of the
array for any input radiation to the âin

0 mode. For in-
stance, the SQL for the array is readily obtained by set-
ting the input to vacuum noise. Doing so, it is straight-
forward to show that the SQL noise for the array is
a weighted average (with respect to the distribution,
|W0k|2) of the SQL noises for the individual sensors. Sim-
ilarly, when squeezing is present in the input field, an
expression for the noise in terms of the squeezing param-
eters can be found, from which we can, e.g., derive a
formula for the squeezing angle that approximately can-
cels anti-squeezing noise; see the next section for details
on squeezing. Finally, for a set of identical sensors, it is
easy to show that Eq. (E24) reduces to the single-sensor
noise of Eq. (7) in the main text (i.e., the residual vacuum
fluctuations vanish identically), upon taking wk0 = W ∗0k
and |W0k| = 1/

√
M .

a. Residual vacuum fluctuations We make a few
comments about power distribution and the residual vac-
uum fluctuations from idling input modes of the array
[i.e., S̄(M−1)

res of Eq. (E25)]. We can choose the distri-
bution weights, {wk0}, to minimize the residual vacuum
fluctuations, but in general, we can not eradicate the vac-
uum noise entirely. The reason being that, in Eq. (E25),
there is a phase difference between the third term and
the fourth term—specifically due to the phase of the
complex mechanical susceptibility, arg(χk). This gener-
ally restricts us from eliminating the residual shot noise
and back-action noise simultaneously [first and second
terms in Eq. (E25), respectively], however we can get
rid of one or the other by choosing wk0 appropriately,
ultimately leaving some small amount of residual noise
which depends on the phases arg(χk). On the one hand,
this is not much of an impediment near resonance, since
argχk(Ω) = π/2∀ k nor is it an issue far off resonance,
where the susceptibility is approximately real. Thus, in
these regimes, the residual vacuum noises can be approx-
imately canceled. This, of course, assumes that the res-
onance frequencies of the mechanical systems are almost
identical, Ωk ≈ Ω ∀ k.

4. Squeezing the array

Assuming that the primary input mode to the array
is squeezed (see Fig. 1), such that Eqs. (D18)-(D19) are
satisfied, the force noise of Eq. (E24) can be written in
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terms of the squeezing strength, r, and squeezing angle, θ,

S̄
sqz,(M)
Fnoise

=
1

2

∣∣∣∣∣
(
M−1∑
k=0

eiϕk/2

2χk

√
~mkΩk
2γk|C ′k|

W0kwk0

)
cos θ −

(
M−1∑
k=0

2eiϕk/2
√

2~mkΩkγk|C ′k|W0kwk0

)
sin θ

∣∣∣∣∣
2

e−2r

+
1

2

∣∣∣∣∣
(
M−1∑
k=0

eiϕk/2

2χk

√
~mkΩk
2γk|C ′k|

W0kwk0

)
sin θ +

(
M−1∑
k=0

2eiϕk/2
√

2~mkΩkγk|C ′k|W0kwk0

)
cos θ

∣∣∣∣∣
2

e2r

+
M−1∑
k=0

|W0k|2 (4~mkγkKBTk) + S̄(M−1)
res , (E26)

where a specific form of the residual vacuum noises,
S̄

(M−1)
res , is in Eq. (E25). We can choose the squeezing

angle, θ, to approximately cancel the anti-squeezed noise
(the term proportional to e2r),

tan θ?ω = −

∣∣∣∑M−1
k=0 8eiϕk/2

√
~mkΩkγk|C ′k|W0kwk0

∣∣∣∣∣∣∣∑M−1
k=0 eiϕk/2

Ω2
k−ω2

Ωk

√
~mkΩk

γk|C ′
k|
W0kwk0

∣∣∣∣ ,
(E27)

where we have made explicit that this optimal squeezing
angle is frequency dependent. For identical sensors (or
a single sensor), this expression reduces to that found in
standard texts; see, e.g., Section 5.4.2 in Ref. [39].

5. Classical limits and SQL

If we assume initial vacuum fluctuations in all input
quadratures, then the total noise at the output is simply
an average of each individual sensor noise, weighted by
the distribution |W0k|2. Concretely,

S̄ cl
Fnoise

(ω) =
M−1∑
k=0

|W0k|2 (4~mkγkKBTk)

+
M−1∑
k=0

|W0k|2
(

~mkΩk

16γk|C ′k||χk|
2 + 4~mkΩkγk|C ′k|

)

(E28)

where “cl” stands for classical. The SQL for the array
is then the average SQL of the sensors. This is found
by setting |C ′k| = 1/8γk|χk| in the above and summing
the shot noise and back-action, resulting in (ignoring the
mechanical fluctuations momentarily),

S̄SQL
Fnoise

(ω) ≡
M−1∑
k=0

|W0k|2
(
~mkΩk
|χk|

)
. (E29)

The total noise is then the noise at the SQL plus the
thermal fluctuations of the mechanics.

We note that operating at the each sensor indepen-
dently at the SQL but allowing for joint post-processing
is a distributed classical sensing (DCS) scheme which al-
lows for better scaling with the size of the array than
independent sensors. Without squeezing/entanglement,
the peak performance of a purely classical setup is set by
such a CL-DCS scheme.

6. DQS vs. DCS

Here, we briefly elaborate on the differences between
distributed quantum sensing (DQS) and distributed clas-
sical sensing (DCS) schemes; see Fig. 7. In the DQS
scheme (Fig. 7, left), an input entangled state of M
modes is prepared by splitting a squeezed vacuum state
of Ns photons between the modes. The entangled ra-
diation is then distributed to an array of M mechani-
cal oscillators, after which joint post-processing on the
signals occurs. In the DCS scheme with squeezed light
(Fig. 7, right), M squeezed vacuum—each with Ns num-
ber of photons—are generated and independently dis-
tributed to M mechanical oscillators, after which joint
post-processing on the signals occurs. These two schemes
are equivalent in terms of their performance (quantified
via, e.g., the SNR or the integrated sensitivity), however
the former DQS scheme demands only Ns/M photons
per sensor, while the latter DCS scheme demands Ns
squeezed photons per sensor. The essential difference be-
tween these two setups is that the former utilizes CVMP
entanglement to correlate the shot-noise and radiation
pressure fluctuations across the sensor array to alleviate
the total noise of the mechanics.
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Figure 7. DQS versus DCS. (Left) A distributed quantum sensing (DQS) scheme, where a squeezed vacuum of Ns photons is
distributed through a passive linear network—thus generating an entangled state—to an array of M mechanical oscillators. The
laser power is ME2

0 . (Right) A distributed classical sensing (DCS) scheme with squeezing, where M squeezed vacuum—each
with Ns squeezed photons—impinge on an array of M mechanical oscillators. The power per laser is E2

0 (i.e., the total power
is ME2

0). These two setups have equal performance, but the DQS scheme consumes only Ns/M squeezed photons per sensor
while the DCS scheme consumes Ns squeezed photons per sensor.


