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The three-dimensional correlation function offers an effective way to summarize the correlation of the large-
scale structure even for imaging galaxy surveys. We have applied the projected three-dimensional correlation
function, ξp to measure the Baryonic Acoustic Oscillations (BAO) scale on the first-three years Dark Energy
Survey data. The sample consists of about 7 million galaxies in the redshift range 0.6 < zp < 1.1 over a
footprint of 4108 deg2. Our theory modeling includes the impact of realistic true redshift distributions beyond
Gaussian photo-z approximation. ξp is obtained by projecting the three-dimensional correlation to the transverse
direction. To increase the signal-to-noise of the measurements, we have considered a Gaussian stacking window
function in place of the commonly used top-hat. ξp is sensitive to DM(zeff)/rs, the ratio between the comoving
angular diameter distance and the sound horizon. Using the full sample, DM(zeff)/rs is constrained to be
19.00± 0.67 (top-hat) and 19.15± 0.58 (Gaussian) at zeff = 0.835. The constraint is weaker than the angular
correlation w constraint (18.84 ± 0.50), and we trace this to the fact that the BAO signals are heterogeneous
across redshift. While ξp responds to the heterogeneous signals by enlarging the error bar, w can still give a
tight bound on DM/rs in this case. When a homogeneous BAO-signal sub-sample in the range 0.7 < zp < 1.0
(zeff = 0.845) is considered, ξp yields 19.80±0.67 (top-hat) and 19.84±0.53 (Gaussian). The latter is mildly
stronger than the w constraint (19.86 ± 0.55). We find that the ξp results are more sensitive to photo-z errors
than w because ξp keeps the three-dimensional clustering information causing it to be more prone to photo-z
noise. The Gaussian window gives more robust results than the top-hat as the former is designed to suppress
the low signal modes. ξp and the angular statistics such as w have their own pros and cons, and they serve an
important crosscheck with each other.

I. INTRODUCTION

The Baryonic Acoustic Oscillations (BAO) [1, 2] has been
recognized as one of the most important probes in cosmol-
ogy. It is the primordial acoustic features imprinted in the
distribution of the large-scale structure. In the early universe,
photons tightly couple with the baryons (electrons and pro-
tons) to form a plasma and acoustic oscillations are excited.
The sound waves propagate until the recombination time, af-
ter which the plasma ceases to exist and the acoustic waves are
stalled. The acoustic patterns are preserved in the large-scale
structure, and the characteristic scale encoded corresponds to
the sound horizon at the drag epoch, which is about 150 Mpc
in standard cosmology. Since the physics for BAO forma-
tion is linear and well-understood (e.g. [3–7]), the sound hori-
zon scale can be computed to high precision and the BAO
is widely regarded as a standard ruler [8, 9]. Ever since its

∗ chankc@mail.sysu.edu.cn

clear detection in SDSS [10] and 2dFGS [11], the BAO mea-
surements have been repeated using numerous spectroscopic
datasets at different effective redshifts [12–20].

Imaging surveys are another type of major galaxy surveys,
in which the redshift of galaxies, photo-z, is inferred by means
of a few broadband filters. There are a number of ongoing
and future large-scale photometric surveys including the Kilo-
Degree Survey (KiDS) 1, Dark Energy Survey (DES) 2, Hyper
Suprime-Cam (HSC) 3, Rubin Observatory’s Legacy Survey
of Space and Time (LSST) 4, Euclid 5, and the Chinese Sur-
vey Space Telescope (CSST) 6. While the precision of photo-z
is limited, for instance the photo-z accuracy for the bright red

1 http://kids.strw.leidenuniv.nl
2 https://www.darkenergysurvey.org
3 https://www.naoj.org/Projects/HSC
4 https://www.lsst.org
5 https://www.euclid-ec.org
6 http://www.nao.cas.cn/csst
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galaxies in DES is about σ ∼ 0.03(1 + z) [21, 22], the pho-
tometric surveys can collect a large volume of data with deep
magnitude efficiently.

Photometric data suffer from photo-z smearing in the ra-
dial direction, but the information in the transverse direction
remains intact. Thanks to their large data volume and deep
magnitude, competitive BAO measurements can be obtained
[23–28]. This has been demonstrated using photometric data
by various groups: SDSS [29–34], DES [Y1 [35] and Y3 [36],
hereafter DES Y3], and DECaLS [37]. In particular, DES Y3
measured the BAO at the effective redshift of 0.835 and con-
strained the comoving angular diameter distance divided by
the sound horizon scale to be 18.92± 0.51. This constraint is
tighter than the corresponding result from eBOSS ELG sam-
ple at a similar redshift [38, 39] by roughly a factor of two.
This example highlights that the photometric galaxy clus-
tering analysis indeed can deliver strong cosmological con-
straints.

The DES Y3 BAO measurements are performed in two an-
gular statistics: the angular correlation function in configura-
tion space and the angular power spectrum in harmonic space,
and their results are well consistent with each other. Over-
all, the treatments of these angular statistics are similar and
highly correlated. In these angular tomographic analyses, the
data in the whole redshift range [0.6,1.1] are divided into five
tomographic bins of equal width. Only the auto-correlation
function is considered, but not the cross correlation. This
is mainly because the BAO information in the cross corre-
lation is still limited in current survey size [40]. Besides, for
the tomographic analysis, inclusion of the cross correlation
would increase the size of the data vector substantially. Al-
ternatively, the photometric data can be analyzed using the
three-dimensional correlation akin to the spectroscopic analy-
sis [41]. In this method, we use the three-dimensional position
of the galaxies deduced from photo-z to compute the spatial
correlation, which is then projected to the transverse direction.
We shall abbreviate this statistic as ξp. The initial modeling
proposed in [41] was limited to Gaussian photo-z approxima-
tion. Nonetheless, it had been applied to photometric survey
data to get promising results [35, 37]. To avoid the possibility
of introducing bias due to Gaussian photo-z approximation,
however, the ξp method was not adopted in the DES Y3 key
BAO analysis. Recently, the theory for ξp has been further
developed [42]. Among other things, the modeling is gen-
eralized to incorporate arbitrary photo-z uncertainties. The
advantage of the ξp statistic is that it can effectively com-
press the information into a data vector appreciably smaller
in size. The cross correlation information is included auto-
matically. However, due to photo-z mixing, the ξp covariance
has large off-diagonal elements, which cause some troubles
for the analysis. Nonetheless, it can be circumvented for the
BAO analysis. Based on mock tests, the improved ξp method
was demonstrated to give a statistically mildly stronger mea-
surement than the angular correlation analysis result [42], but
an application to the actual data is still lacking. Furthermore,
the DES Y3 BAO analysis yielded an interesting 2σ deviation
from the Planck result [43], it is imperative to crosscheck it
using an alternative statistic as they have different sensitivi-

ties to potential systematics. Thus it is the goal of this paper
to apply the ξp statistic to measure BAO on the DES Y3 data.

This paper is organized as follows. We present the prop-
erties of the galaxy sample used in this work and discuss its
photo-z measurement and calibration in Sec. II. In Sec. III,
we first review the computation of the ξp template and the co-
variance, and then describe the procedures for parameter in-
ference. We present some mock test results in Sec. IV. Our
main results are in Sec. V, where we show the measurement
of the BAO and the robustness tests conducted to check the
soundness of the results. We pay particular attention to con-
trast the ξp results against those from the angular correlation
function. Sec. VI is devoted to the conclusions. The pre-
unblinding test results are shown in Appendix A. In Appendix
B, we test the impact of heterogeneity in the BAO signals on
the error bar through mocks. The default cosmology for the
data analysis is a flat ΛCDM in the Planck cosmology [43]
with Ωm = 0.31, h = 0.676, ns = 0.97, and σ8 = 0.83
(abbreviated as Planck hereafter). Because the mock catalogs
were created in the MICE cosmology [44, 45], which is a flat
ΛCDM with Ωm = 0.25, ΩΛ = 0.75, h = 0.7, and σ8 = 0.8
(denoted as MICE), we also consider adopting the MICE cos-
mology as an alternative.
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FIG. 1. The footprint of the BAO sample used in this work. Shown
here is the galaxy density contrast at the pixel scale (Healpix resolu-
tion of 512). The full DES Y3 footprint spans nearly 5000 deg2, but
after various cuts, the footprint for the BAO sample is reduced to a
total area of 4108 deg2.

II. SAMPLE DATA PROPERTIES

In this section, we first introduce the galaxy sample used
for BAO measurement and then move to describe the photo-z
estimation and its calibration for this sample.

A. Galaxy sample

In this subsection, we describe the DES Y3 galaxy sample,
called the BAO sample hereafter, on which the BAO scale is
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measured. Through the angular correlation function and the
angular power spectrum analyses, it was previously used to
obtain the most precise measurement of the BAO from pho-
tometric data [36]. Here we outline the essential information
about the sample, and refer the readers to [22] for more de-
tails.

The BAO sample was built from the DES first three-year
(Y3) data, which were observed by the Dark Energy Cam-
era (DECam) [46] at the Blanco 4 m telescope at the Cerro
Tololo Inter-American Observatory in Chile. The raw data
cover about 5000 deg2 in the southern sky and include obser-
vations in five photometric bandpasses grizY . The data were
made available to the public in DR1 [47]. After further pro-
cessing and improvements, the Y3GOLD sample [48] suitable
for cosmological analyses was assembled. This sample com-
prises of 390 million galaxies with i-band limiting magnitude
up to 23 (AB, 10 σ level).

Red galaxies tend to be old galaxies that passively evolve
with time. They are often hosted in massive halos with signif-
icant galaxy bias. Thus they furnish a good tracer of the large-
scale structure. Furthermore, because there are more features
in their SED, their photo-z quality tends to be better than the
ones for blue galaxies. The BAO sample is a red galaxy sam-
ple constructed out of the Y3GOLD sample by applying color
cuts following the Year 1 sample definition [21]. The precise
cuts in magnitude and photo-z zp are given by [22]

(iSOF − zSOF)+2.0(rSOF − iSOF) > 1.7, (1)
iSOF <19 + 3.0 zp, (2)
0.6 <zp < 1.1, (3)

where SOF signifies the Single Object Fitting method used to
derive the magnitude. The cuts take into account the trade-
off between the number density and the photo-z quality. In
addition, a bright magnitude cut iSOF > 17.5 is imposed
to get rid of bright contaminants such as binary stars, and
objects that are deemed suspicious or problematic are also
removed. The star-galaxy separation is performed with the
EXTENDED_CLASS_MASH_SOF flag in the Y3GOLD cata-
log, and the star contamination on the BAO sample is esti-
mated to be under a few percent [22].

The resultant BAO sample consists of 7.03 million galaxies
in the redshift range [0.6,1.1] with i-band limiting magnitude
i < 22.3. The BAO sample footprint is shown in Fig. 1. In
Healpix resolution of Nside = 4096, each pixel is covered
at least once in griz with coverage greater than 80%. After
the foreground and other removals, the effective area of the
survey mask totals 4108 deg2. In Fig. 2, we show the number
of galaxies per unit redshift per unit squared degree for the
BAO sample. The effective redshift of the sample is 0.835.

Because the observations are taken over a long period of
time and in large spatial locations, the data are unavoidably
affected by the observational conditions (survey properties).
These effects may give rise to spurious signals if not cor-
rected for. From over 100 correlated survey property maps
available for Y3GOLD, using a principle component analysis
technique, 26 systematic property principle component maps
including the depth, air mass, stellar density, and extinction,
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FIG. 2. The number of galaxies per unit redshift per unit squared
degree for the BAO sample as a function of the photo-z best fit.

are extracted. These maps are used to calibrate the systematic
correction weights. The systematic weights are applied to the
galaxies iteratively until there is no appreciable dependence of
the galaxy density on the survey properties. See [22] for more
details on systematic corrections of the BAO sample.

B. Photo-z and its calibration

The photo-z of the galaxies is computed by the Directional
Neighborhood Fitting (DNF) algorithm [49] based on the data
in griz bands. DNF is a training method, and it predicts the
best-fit photo-z estimate (Z_MEAN) by performing a nearest-
neighbors fit to the hyper-plane in color-magnitude space of
the training sample. We use Z_MEAN as the primary redshift
estimate. Moreover, DNF outputs a second proxy for the red-
shift estimate (Z_MC), which is the nearest neighbor redshift
in its training set. The ensemble of Z_MC values serves as a
proxy for the total n(z) of a given selection. A large spectro-
scopic dataset including up to about 2.2 × 105 galaxies from
24 different spectroscopic surveys available in 2018 are used
for training, with the SDSS DR14 [50] and the OzDES pro-
gram [51] as the noted examples.

To calibrate the photo-z accuracy and to measure the true
redshift distribution φ (see Eq. (5) below), we use the spectro-
scopic data from the VIPERS survey [52]. An area of 16.32
deg2 overlapping with the DES footprint is used, in which
there are 12088 galaxies matching to the DES BAO sample
7. From now on, VIPERS sample always refers to the sample
matching to the DES BAO sample. By binning this galaxy
sample based on their photo-z values, the true redshift dis-
tribution for the photo-z bin can be estimated. Notice that
the distribution is obtained by counting galaxies, the resultant

7 There are 74591 VIPERS galaxies before matching to the BAO sample.
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FIG. 3. Upper panel: The photo-z distribution of the BAO sam-
ple (black), the VIPERS sample (blue), and the resampled VIPERS
(orange). While there are some differences between the BAO sam-
ple and the VIPERS, the BAO sample agrees with the resampled
VIPERS well by construction. Lower panel: The spec-z distribu-
tion of the VIPERS (blue) is in good agreement with the resampled
VIPERS result (orange), which is a more accurate representation of
the spec-z distribution of the BAO sample.

distribution is implicitly weighted by the underlying spectro-
scopic number density n(z), and hence it indeed furnishes an
estimate of φ.

We verify the consistency of these procedures by resam-
pling the VIPERS galaxy distribution. In Fig. 3, we show
the normalized distribution of the BAO sample galaxies in the
photo-z range of [0.5, 1.25] together with the photo-z dis-
tribution of the VIPERS sample. We find that there are in-
deed some differences between them. Note that this redshift
range is wider than that of the final BAO sample, [0.6,1.1].
The VIPERS sample is built by matching the angular position
of galaxies from the BAO sample and the original VIPERS
sample, and so the matched sample includes only the over-
lapping part of their distributions. The VIPERS galaxies can
be thought of as a resampling of the BAO sample with some
distribution, and its photo-z distribution does not necessarily
coincide with that of the BAO sample.

By resampling the VIPERS galaxies using the photo-z dis-
tribution of the BAO sample, we can ensure that they match
by construction. Resampling is a weighting of the original
data, and our method is similar to the bootstrap resampling
with replacement [53]. Formally we can express this as

nDES(zs) ≈
∫
dzp

nVIPERS(zs)nDES(zp)

nVIPERS(zp)
gVIPERS(zp|zs),

(4)
where gVIPERS(zp|zs) is the photo-z probability density con-

ditional on the spectroscopic redshift zs. The spectroscopic
redshift distribution of the resampled VIPERS galaxies is also
shown in Fig. 3. Except for small impacts in the redshift
range [0.6,0.8] and [1.0,1.2], overall the resampled spec-z
galaxy distribution is in good agreement with the original
VIPERS galaxy spec-z distribution. We note that the resam-
pled VIPERS spec-z distribution should be a more accurate
representation of the spec-z distribution of the BAO sample.

In Fig. 4, we show the true redshift distribution esti-
mated from the VIPERS sample, and Z_MC and the resampled
VIPERS in fine photo-z bin of width ∆zp = 0.01. Ref. [22]
found that the n(z) estimate from VIPERS is more accurate
than that from Z_MC, and hence the VIPERS estimation is
used as the fiducial choice. Here we find that the resampled
VIPERS results are in good agreement with the VIPERS ones,
and so from now on, we will only consider the distribution es-
timated from the VIPERS. These distributions will be used to
compute the theory template and the theory Gaussian covari-
ance.

The resampling method is more useful when there are larger
differences between the original distribution and the resam-
pled one. This can happen in e.g. DES Y6 because the pho-
tometric sample is expected to be deeper in magnitude and
higher in redshift and it is challenging for the reference spec-
troscopic sample to match, especially in the high redshift end.

III. ANALYSIS PIPELINE

In this section, we first review how to compute the theory
template and the Gaussian covariance for the ξp statistics. We
then discuss the fitting method used to extract the BAO scale
from the data.

A. ξp theory template and covariance

Here we review the method for computing the ξp template
and its covariance in [42]. The basic idea is to map the gen-
eral cross angular correlation functionwij(θ) to ξp. This takes
advantage of the fact that the machinery for the angular cor-
relation function has been well-developed. In particular, this
method can easily include general photo-z distributions.

As in the conventional angular tomographic analysis, the
whole redshift range is divided into a number of redshift bins,
but the number is much larger to ensure that the conditional
true redshift distribution φ and the bias parameter b approach
the intrinsic ones. The conditional true redshift distribution
φ(z|zp) is central to the clustering analysis of the photo-z data
and is given by

φ(z|zp) = f(z|zp)
n̄(z)

n̄p(zp)
, (5)

where n̄ and n̄p are the mean number density in spectroscopic
and photometric redshift space respectively, and f(z|zp) is the
conditional probability density for the true redshift z given the
photo-z being zp. As mentioned, we estimate φ with the help
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are shown.

of the spectroscopic sample from VIPERS survey [52]. The
linear bias parameters b for the tomographic bins are measured
using the angular auto correlation.

With these ingredients, we can compute the general cross
angular correlation function wij(θk) between the photo-z bin
i (zp) and j (z′p) [54–56]

wij(θ) =
∑

`=0,2,4

i`
∫
dzφ(z|zp)

∫
dz′φ(z′|z′p)

× L`(ŝ · ê)

∫
dkk2

2π2
j`(ks)P`(k, z, z

′), (6)

where L` and j` are the Legendre polynomial and the spher-
ical Bessel function, and ŝ · ê is the dot product between the
direction of the separation vector of the pair, s and the line-
of-sight direction ê. For convenience, we generally use zp

to refer to either the photo-z of an individual galaxy or the
photo-z bin if no confusion arises.

The power spectrum multipole P` is related to the power
spectrum P by

P`(k, z, z
′) =

2`+ 1

2

∫ 1

−1

dµP (k, µ, z, z′)L`(µ). (7)

As in [36], we use the linear redshift-space power spectrum
[57] with anisotropic BAO damping:

P (k, µ, z, z′) = [b+ fµ2][b′ + f ′µ2]D(z)D(z′)

× [(Plin − Pnw)e−k
2Σ2

tot(µ) + Pnw], (8)

where D is the linear growth factor and f = d lnD/d ln a,
and Plin and Pnw denote the linear power spectrum and the
smooth power spectrum without BAO information. The BAO
feature is smoothed anisotropically by the damping factor

Σ2
tot(µ), which is computed analytically using the IR resum-

mation [58–61]. Here we follow [61] to compute Σ2
tot(µ) as

Σ2(µ) = µ2Σ2
‖ + (1− µ2)Σ2

⊥ + fµ2(µ2 − 1)δΣ2, (9)

where Σ‖ = (1 + f)Σ and Σ⊥ = Σ, and

Σ2 =
1

6π2

∫ ks

0

dq Pnw(q) [1− j0(qL) + 2j2(qL)] , (10)

δΣ2 =
1

2π2

∫ ks

0

dq Pnw(q)j2(qL), (11)

where L is the correlation length of BAO. Taking L =
110 Mpch−1 and ks = 0.2 Mpc−1 h, for the MICE cosmol-
ogy we obtain Σ = 5.80 Mpch−1 and δΣ = 3.18 Mpch−1

while for the Planck cosmology we find Σ = 5.30 Mpch−1

and δΣ = 2.81 Mpch−1.
After assuming a fiducial cosmology, angles and redshifts

can be converted to the separation distance s and its dot prod-
uct with the line of sight direction µ. To mimick the measure-
ment of ξp from the data, we loop over wij(θk) and bin it into
s and µ. That is, ξp can be expressed as a weighted mean of
wij(θk)

ξp(s, µ) =

∑
ijk fijkwij(θk)∑

ijk fijk
, (12)

where fijk denotes the weight for all the cross bin pairs
wij(θk) falling into the s and µ bins. This approach enables us
to compute ξp with general photo-z distribution, and it should
work as long as the bin size is small compared to the width of
n(z) and the intrinsic clustering scale.

Even though we consider the three-dimensional correlation,
it only effectively probes the transverse BAO scale, and so the
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BAO feature lines up at the transverse scale s⊥ ≡ s
√

1− µ2

rather than s [41]. This can be understood as an interplay be-
tween the true redshift distribution due to the photo-z uncer-
tainty and the Jacobian of the coordinate transformation [42].
For σz & 0.02(1 + z), while the true redshift distribution
peaks at the true BAO scales smoothly, because the Jacobian
diverges at the transverse scale, the integral is dominated by
correlation function at s⊥. Unfortunately, this also means that
ξp cannot be used to directly probe the Hubble parameter.

To increase the signal-to-noise of the measurement, we
stack the measurement of ξp(s, µ) with different µ together:

ξp(s⊥) =

∑
i ξp(s, µi)W (µi)∑

iW (µi)
, (13)

where W (µ) is the stacking weight. Because we effec-
tively project ξp(s, µ) along the line-of-sight, we also refer
to ξp(s⊥) as the projected three-dimensional correlation func-
tion. Following [41], previous analyses, including [42], con-
sider a top-hat window WTH

WTH(µ, µmax) =

{
1 if µ < µmax,
0 otherwise,

(14)

with µmax = 0.8. Here we assume that µ ≥ 0. However,
the strength of the signal decreases as µ increases because
the effective true redshift distribution becomes wider and less
sharply corresponds to the transverse scale (see Fig. 2 in [42]).
Stacking the pairs of different µ with equal weight is sub-
optimal. This motivates us to consider a cut-off Gaussian WG

defined as

WG(µ, σµ) =

{
exp

(
− µ2

2σ2
µ

)
if µ < µmax,

0 otherwise .
(15)

This stacking window gives more weight to the small-µ pairs.
The covariance of ξp(s⊥) is

Cov[ξp(s⊥), ξp(s′⊥)]

=

∑
i

∑
jW (µi)W (µj)Cov(ξp(s, µi), ξp(s′, µj))∑

iW (µi)
∑
jW (µj)

. (16)

Since the method allows us to map w to ξp, the same mapping
also provides a means to derive the covariance for ξp(s, µ) in
terms of the covariance of wij(θ):

Cov[ξp(s, µ), ξp(s′, µ′)]

=

∑
ijk

∑
lmn fijkflmnCov(wij(θk), wlm(θ′n))∑

ijk fijk
∑
lmn flmn

. (17)

The general Gaussian covariance for the angular correlation
function can be written in terms of the angular power spectrum
C` as [56]

Cov[ŵij(θ), ŵmn(θ′)] =
∑
`

(2`+ 1)

(4π)2fsky
L̄`(cos θ)L̄`(cos θ′)

[(
Cim` +

δimK
n̄i

)(
Cjn` +

δjnK
n̄j

)
+
(
Cin` +

δinK
n̄i

)(
Cjm` +

δjmK
n̄j

)]
,

(18)

where L̄` represents the bin-averaged Legendre polynomial
[62], fsky denotes the fraction of the sky coverage, and δK is
the Kronecker delta. The Poisson shot noise is assumed and
n̄i is the angular number density in bin i. We compute C`
using the camb sources code [63].

The theory template and the covariance described here are
the key ingredients for the likelihood analysis discussed be-
low.

B. Parameter inference

The correlation function measures the excess galaxy pair
counts relative to the random pair counts. We measure the
spatial correlation function using the Landy-Szalay estimator
[64]

ξp(s‖, s⊥) =
DD − 2DR+RR

RR
, (19)

where DD, DR, and RR denote the normalized pair counts
of the data-data, data-random, and random-random pairs, and
the results are binned in terms of the radial separation s‖ and
transverse separation s⊥. The measurements are performed
using the public code CUTE [65].

In this work, we consider maximum s‖ and s⊥ up to
120 Mpch−1 and 175 Mpch−1, respectively. The measure-
ments are further binned into s and µ. The final ξp is obtained
by stacking the pairs together with some window function.
Note that the maximum parameter s‖ and s⊥ and the stack-
ing window must be the same as those used in the template
computation.

Under the Gaussian likelihood assumption, the likelihood
L is

L ∝ exp
(
− χ2

2

)
(20)

with χ2 defined as

χ2 =
∑
ij

(Mi −Di)C
−1
ij(Mj −Dj), (21)

where M denotes the model vector, D the data vector, and
C−1 the inverse of the covariance matrix.

The full model for the BAO fit is given by

M(s⊥) = B T (αs⊥) +
∑
i

Ai
si⊥
, (22)

where T signifies the theory template computed in the fidu-
cial cosmology as described in Sec. III A. The parameters in
Eq. (22) are elaborated below.

The dilation parameter α enables us to shift the BAO po-
sition in the fiducial cosmology to match the one in the data
cosmology. Because ξp traces the underlying correlation at
the transverse scale at the level of DES photo-z uncertainty,
we adopt s⊥ as the independent variable. The measurement
of ξp constrains the transverse BAO scale via

α
rs

DM(zeff)
=

rfid
s

Dfid
M (zeff)

, (23)
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where rs and DM(zeff) denote the sound horizon at the drag
epoch and the comoving angular diameter distance to the ef-
fective redshift of the sample, and “fid” signifies that the quan-
tity is evaluated at the fiducial cosmology. At zeff = 0.835,
for the fiducial Planck cosmology, rs = 147.6 Mpc and
DM(zeff) = 2967.0 Mpc, while in MICE cosmology, rs =
153.4 Mpc and DM(zeff) = 2959.7 Mpc.

As in standard BAO analyses (e.g. [41, 66, 67]), extra pa-
rameters are introduced to accommodate the overall amplitude
and shape of the correlation. The parameter B allows for am-
plitude adjustment and the polynomial in 1/s⊥ is introduced
to absorb the imperfectness in the modeling of the correlation
function, shape changes due to difference in cosmology, and
possible residual systematic correction. The default choice for
Ai is i = 0, 1, and 2.

To look for the best fit, we minimize χ2 following the pro-
cedures in [40]. We first fit the linear parameters Ai analyti-
cally. Second, the residual χ2 is minimized with respect to B
numerically under the condition B > 0. Finally, we search
for the minimum of the resultant χ2 with respect to α. Note
that the sequential search is adopted mainly for its speed and
convenience, and it yields similar results as the MCMC fit, in
which all the parameters are varied simultaneously. We esti-
mate the 1-σ error bar for α by applying the ∆χ2 = 1 criterion
on the final residual χ2.

IV. MOCK TESTS

The ξp method has been extensively tested against a set of
dedicated DES Y3 mocks, the ICE-COLA mocks [68] in [42].
In this work we shall present some further mock test results.

We first briefly describe the mock catalog, the ICE-COLA
mocks, and refer readers to [68] for more details. The ICE-
COLA mocks are generated from the COLA simulations
which were run with the ICE-COLA code [69] employing the
COLA method [70]. This method combines the second order
Lagrangian perturbation theory with the particle-mesh simu-
lation technique to make sure that the large-scale modes re-
mains accurate when coarse simulation time steps are used.
The simulation consists of 20483 particles in a cube of side
length 1536 Mpch−1 so that its mass resolution coincides
with that of the MICE Grand challenge N -body simulations
[44, 45]. The mock galaxies are allocated to the halos us-
ing a hybrid Halo Occupation Distribution and Halo Abun-
dance Matching recipe as in [71]. The redshift distribution
and the bias parameters follow the measurements of the actual
data. The same VIPERS dataset used to calibrate φ, also en-
ables us to estimate a two-dimensional distribution P (zp, zs),
which is subsequently used to assign realistic photo-z to the
mock galaxies. The simulation is replicated three times in
each Cartesian direction (64 copies in total) to form a full sky
lightcone mock up to z ∼ 1.4. From each full-sky light-cone
mock, four DES-footprint mocks are extracted. Due to limi-
tation in computing power, about a hundred mocks are used,
with the precise number depending on the test in question.

Before going over the test results, let us discuss the blinding
policy in DES data analysis. The aim of this practice is to

prevent confirmation bias. Before fixing the analysis pipeline,
we are not allowed to look into the cosmologically interesting
part of the data. A battery of pre-unblinding tests were devised
in DES Y3 to test the validity of the data and the soundness of
the methodology without violating the blinding policy [36].
Only after the tests are passed, the pipeline is fixed and the
data are unblinded.

The initial phase of this project strictly followed the DES
blinding protocol. The pipeline for ξp is mainly guided by
the test results in [35, 41, 42]. We had performed a battery
of pre-unblinding tests similar to those in DES Y3. Many
of them are similar to the robustness tests to be presented in
Sec. V B. We initially adopted the stacking windowWTH with
µmax = 0.8 following [41]. However, after passing the pre-
unblinding tests and unblinding, we realized that this choice
was not ideal, and considered the Gaussian window as an al-
ternative. We find that WG is more robust to analysis choices,
and this will be evident below. Although the adoption of the
Gaussian window does not bias our results (will be clear later
on), the Gaussian window results are not blinded according
to the blinding policy. For completeness, we show the pre-
unblinding test results in Appendix A. Here we present the
tests on the stacking window on the mocks.

A. Test of stacking windows

In this subsection, we test the results obtained with the
top-hat window [Eq. (14)] and the cut-off Gaussian window
[Eq. (15)]. In the following mock test results, the fiducial cos-
mology is assumed to be Planck even though the mocks are
constructed in MICE cosmology.

In Fig. 5, we first show the results for WTH(µ, µmax)
against µmax. In the left panel, the best fit α from individ-
ual mocks, and their mean and standard deviation for different
µmax are shown. The best fit is approximately constant with
similar spread for µmax & 0.3, below which the spread starts
to increase. The increase in fluctuation can be attributed to
the reduction in the data size as µmax decreases. In the mid-
dle panel, the error bars from the individual mock fit and their
corresponding mean and standard deviation are plotted. As a
comparison, the standard deviation of the best fit is also over-
plotted. For the derived error bars, we find a similar trend that
they increase as µmax decreases for µmax . 0.3, consistent
with that of the standard deviation. While using µmax & 0.3
does not tighten the constraint on α, it does cost a larger χ2.
On the right panel of Fig. 5, we plot the χ2 per degree of
freedom (χ2/dof), which decreases as µmax decreases up to
µmax = 0.2, below which it shoots up. Photo-z mixing in the
radial direction caused the resultant covariance to be highly
correlated [42]. This poses difficulties for the data analysis.
Among them is that the χ2/dof is substantially larger than 1
(p-value can be 8 × 10−4) even though the fit appears to be
good, i.e. the best fit is well within all the (correlated) 1-σ er-
ror bars. In [42], using the orthogonal basis, it was shown that
the BAO scale is well fitted by the model and the issue stems
from the scale smaller than the BAO scale. Our results here
further support that the issue of large χ2/dof originates from
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FIG. 5. The BAO fit results obtained with the top-hat stacking window WTH(µ, µmax) [Eq. (14)] for different maximum cut-off µmax. The
left, middle, and right panels show the best fit α, the estimated error bar for the best fit, and the χ2 per degree of freedom, respectively. The
grey lines show the results from the individual mocks, and the blue curves with error bars indicate their mean and standard deviation. The
orange line corresponds to the actual data fit. The middle panel also displays the standard deviation of the best fit (green). Note that the best fit
α is expected to cluster around 0.959 for the fiducial Planck template fit to the MICE mocks.
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FIG. 6. Similar to Fig. 5 but for the cut-off Gaussian stacking window WG(µ, σµ) [Eq. (15)], as a function of the dispersion of the window
σµ. The WG window gives more stable results than WTH does.

photo-z mixing because reducing µmax decreases the impact
of the photo-z mixing. However, for µmax = 0.1, the resul-
tant χ2/dof shoots up significantly. This coincides with the
(less dramatic) increase in the fluctuation of the best fit. Re-
duction in the data size causes the likelihood to deviate from

Gaussianity, violating the Gaussian likelihood approximation.
The mock test suggests that using µmax ∼ 0.3 − 0.4 is close
to optimal for WTH because it does not weaken the constraint
on α and still enjoy the benefit of low χ2/dof .

We display the corresponding results for WG(µ, σµ) in
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Fig. 6. This window gives more weight to the small µ pairs,
and hence suppresses the high noise modes. The best fit be-
haves stably with σµ. Small fluctuations are observed for the
largest σµ shown, but these already include a significant frac-
tion of the high µ pairs. Shown in the middle panel are the
estimated error bars. Similar to the best fit, the error bars are
also stable w.r.t. variation in σµ. Unlike the top-hat window
case, in the smallest range shown σµ ∼ 0.1, there is only mild
increase in the error bar size accompanying with tiny incre-
ment in the standard deviation of the best fit. Similar to WTH

window case, we find that the χ2/dof decreases as σµ de-
creases. However, it does not increase for σµ = 0.1; instead it
becomes saturated.

The mock test results demonstrate that adopting σµ ∼ 0.2−
0.3 achieves a low value of χ2/dof without losing parameter
constraint. Moreover, WG is preferred to WTH because the
former gives more stable results. In the following, we shall
mainly discuss two cases: WTH with µmax = 0.8 for the “his-
torical reason” and the optimal case WG with σµ = 0.3. For
convenience we will often simply abbreviate these two cases
as WTH and WG, respectively. We note that the WTH with
µmax = 0.8 results are blinded in accordance with the blind-
ing policy. The precise reason for the choice of σµ = 0.3 is
that its error bar size for the actual data fit is close to mean
error in the low σµ regime.

B. Correlation of the statistics

To better understand the ξp statistics and to facilitate the
comparison with the Y3 BAO results, we compare the best fit
results from ξp against those derived from the angular correla-
tion function w and the angular power spectrum C` (see [36]
for the details on these measurements). The best-fit α and the
corresponding error bars from these statistics are compared
in Fig. 7. The ξp results are obtained using WG. We find that
there is larger scatter between ξp and w (or C`) results relative
to that between w and C`.

To quantify the correlation of the measurements, we use the
Pearson correlation coefficient

rXY =
cov(X,Y )

σXσY
, (24)

where cov(X,Y ) is the covariance betweenX and Y , and σX
(σY) is the standard deviation of X (Y ). The correlation co-
efficients are also shown in Fig. 7. The correlation between
αξp and αw (αC`) is only 0.73 (0.67), and it is low compared
to that between αw and αC` , which reaches 0.89. The corre-
lation between the error estimates are 0.66, 0.56, and 0.83 for
rσξpσw , rσξpσC` , and rσwσC` , respectively. These are gener-
ally smaller than those for the best fit values. In contrast, for
WTH, we have rξpw = 0.70, rξpC` = 0.66, rσξpσw = 0.59,
and rσξpσC` = 0.50, respectively.

It is easy to understand that w and C` exhibit high level of
correlation because both are the auto-correlation analysis of
five tomographic bins, with the difference that one is in con-
figuration space and the other in harmonic space. On the other
hand, ξp combines the information in five tomographic bins

TABLE I. Constraints on the physical parameter DM/rs in Planck
and MICE cosmologies. The all bin cases and the combo 2-4 bins
cases are compared.

Case ξp: WG ξp: WTH w
Planck (all bins) 19.15± 0.58 19.00± 0.67 18.84± 0.50
MICE (all bins) 19.22± 0.50 19.15± 0.42 18.86± 0.42
Planck (2, 3, 4 bins) 19.84± 0.53 19.80± 0.67 19.86± 0.55
MICE (2, 3, 4 bins) 19.86± 0.35 20.12± 0.39 19.76± 0.47

into a single data vector by including all the correlation with-
out explicit binning in redshift. Moreover, they differ in the
order of projection and correlation measurement. While the
angular statistics first project the data to the angular space and
then measure the correlation, ξp goes the opposite way. We
will argue that the difference in ordering has important con-
sequences on the stability of the estimator. The correlation
coefficients from WTH are lower than those of WG, in agree-
ment with the expectation that the high µ pairs give lower cor-
relation with the transverse scale. The fact that the ξp mea-
surements are less correlated with the tomographic angular
analysis results implies that it can provide a relatively inde-
pendent measurement and can offer an important crosscheck
because they could have different sensitivity to the potential
systematics.

V. RESULTS

In this section, we first present measurements of the BAO
with ξp on the Y3 BAO sample, and then discuss the robust-
ness tests performed to test the stability of the results.

A. BAO measurements

Before presenting the BAO measurements, let us turn to
discuss the stacking windows. As mentioned previously, ini-
tially we strictly abided by the blinding protocol, and the
pipeline was fixed based on the previous mock test results
[35, 41, 42]. In particular, the blinded pipeline uses the top-hat
window with µmax = 0.8. However, after unblinding, we re-
alized that the stacking window can have a large impact on the
results. The effects of the stacking window are tested on the
mocks and the actual data, and the results are shown in Figs. 5
and 6 for the top-hat and the Gaussian window, respectively.
Because the high-µ pairs are less correlated with the low-µ
ones, the top-hat window results are less stable w.r.t. variation
in µmax.

This expectation is corroborated by the mock test results.
We also find a similar trend in the data. For the actual data
fit with WTH, there are large fluctuations in the best fit value,
and it becomes stable for µmax . 0.3. The resultant error bar
from the data fit shows even larger fluctuations, and it only be-
comes relatively mild for µmax . 0.3. In this regime, however
the mock test suggests that the spread increases as µmax de-
creases. The trend for the χ2/dof is similar to the mock result,
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FIG. 7. The scatter plot for the best fit α and the error bar σ from the ICE-COLA mocks. The results obtained using ξp (WG), the angular
correlation function w, and the angular power spectrum C` are compared. The best fit α from ξp and w, ξp and C`, and w and C` are plotted
in the upper panels, while the derived error bar σ’s (σξp versus σw, σξp versus σC` , and σw versus σC` ) are shown in the lower panels. The
Pearson correlation coefficients are also printed. The best fit ξp results are less correlated with w or C` results relative to the those between w
and C`. The result are similar for ξp with WTH, but the correlation coefficients are slightly smaller.

i.e. it decreases as µmax decreases until µmax ∼ 0.1, where it
starts to increase. The Gaussian window offers higher stability
than the top-hat. Except for the largest σµ’s shown, the best
fit α in the actual data fit is stable w.r.t. σµ. There are larger
uncertainties for the error bar from the data fit. It shows sub-
stantial fluctuations for σµ < 0.5. The χ2/dof shows a clear
decreasing trend as σµ decreases, consistent with the trend
found in the mock results. We adopt σµ = 0.3 because the es-
timated error bar is close to the average error bars in the range
σµ < 0.5. It is worth emphasizing that although the Gaussian
window is adopted after unblinding, the best fit is insensitive
to the precise value of σµ. This choice is also consistent with
the recommendations we get from the mock test.

We now apply the fitting pipeline to the BAO sample and
the results are shown in Fig. 8, where we plot the measurement
of ξp and its best fit using both the template with and without
BAO feature. The results obtained with WTH and WG are
visually similar. The best fit α is constrained to be 0.953 ±
0.029 for WG, and α = 0.945 ± 0.033 for WTH. In contrast,
the angular correlation function yields α = 0.937 ± 0.025.
Using Eq. (23), we can translate them to the constraint on the
physical parameter combination, DM/rs. Shown in Table I

are the results in Planck and MICE fiducial cosmologies.
Table II displays the χ2/dof for the BAO template and

the no-BAO template fit. For WG, the fit is very good with
the BAO template yielding a p-value of 0.84. Although the
p-value for the no-BAO template fit is also good (0.49), the
BAO template results in a significantly smaller χ2. For WTH,
the BAO template fit is decent with a p-value of 0.15 relative
to the no-BAO template fit (0.08). For reference, the p-values
for the w fit are 0.31 (BAO) and 0.07 (no-BAO), respectively.
Fig. 9 shows the constraint on α by means of the χ2 values.
It displays ∆χ2 as a function of α, where ∆χ2 is defined as
∆χ2 ≡ χ2 − χ2

min with χ2
min being the minimum of χ2. The

1-σ error bar is given by the intersection of the ∆χ2 curve
with the ∆χ2 = 1 horizontal line. We also show the result
obtained with the no-BAO template, for which we have sub-
tracted the minimum of χ2, χ2

min from the BAO template fit.
The difference between the minimum of the χ2 from the no-
BAO template and BAO template can be used to claim the sig-
nificance of the BAO detection. As a comparison, the angular
correlation function fit is overplotted.

We find that the error bar derived from ξp is bigger than
that from w by a sizable amount. Furthermore, the ∆χ2 be-
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√
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The model with the BAO feature (solid, orange) and without the BAO
(dashed, green) are compared. The results obtained with WTH and
WG are displayed in the upper and lower panel respectively.

tween the BAO and the no-BAO model is much smaller than
the w result indicating that the significance of the BAO de-
tection is lower. By contrast, the error bars from the angular
statistics are quite similar, with α = 0.937±0.025 fromw and
0.942± 0.026 from C`. While the mock tests suggest that ξp
is likely to yield a slightly more competitive constraint than w
on average, Fig. 7 reveals that there is a significant fraction of
mocks with σξp > σw and the correlation between ξp and the
angular statistics are not strong. Nonetheless, the somewhat
weak constraint from ξp is worth further exploration.

To shed light on this intriguing result, we look at the BAO fit
on individual tomographic bin data. The individual bin results
are shown in Table II and visually in Fig. 10. While there is no
detection of BAO for the first bin, the signals are measured in
all other redshift bins. BAO is considered to be non-detectable
if the best fit 1-σ interval for α does not fall entirely within the
interval [0.8,1.2]. The last bin shows unusually large deviation
from the rest of the bins, and it is responsible for the overall
deviation from the Planck cosmology in DES Y3.

For single tomographic bin fit, ξp with WG overall yields
the smallest error bars and the size of the error bars from
WTH are similar to those from w. This raises the question
why for the full dataset, ξp gives a weaker constraint. Notice
that the BAO information in the first and fifth bin are distinct
from the rest, and this implies that the combined data are het-
erogeneous in terms of the BAO signals. The BAO signals
should be constant according to standard model, however, due
to random fluctuations, the measured signals could be hetero-
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FIG. 9. ∆χ2 ≡ χ2 − χ2
min as a function of α. The BAO fit

results from ξp (orange for WTH and green for WG) are compared
with those from w (blue). The WTH results are blinded, while WG

ones are unblinded. Both the results from the BAO template (solid)
and the no-BAO template (dashed) are shown. In either case, χ2

min

from the BAO template fit is subtracted. The dotted red line indicates
∆χ2 = 1, whose intersection with the ∆χ2 curve gives the 1-σ
error bar. Because the BAO signal in the sample is heterogeneous in
redshift, the ξp constraint from the combined sample is weaker than
that from w (c.f. Fig. 11).
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FIG. 10. The BAO fit constraint on α obtained with data in a sin-
gle redshift bin of width ∆z = 0.1. The results for ξp (circles for
WTH and squares for WG) are contrasted with those for w (trian-
gles). Note that there is no BAO detection for the first bin. Both the
results obtained with the fiducial weight (blue) and the alternative
PCA50 weight (orange) are compared. The results from ξp and w
are consistent with each other.

geneous across redshift. A more pernicious cause for the het-
erogeneity in signals is some untreated systematics. Here we
emphasize that among the tests performed, there are no evi-
dences suggesting that the heterogeneity in signals is caused
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FIG. 11. Similar to Fig. 9, but for the combo 2-4 bins, whose BAO
signals are homogeneous across redshift. For this sample, ξp with
the Gaussian window WG yields the best constraint.

by systematics.
Because the bin 2, 3, and 4 share similar BAO signals, it is

illuminating to consider the BAO results for these bins com-
bined, which are also shown in Table II. The effective redshift
of this homogeneous BAO-signal sample is 0.845. The χ2 fit
results for this sample are plotted in Fig. 11. We find that the
best fit values are very consistent with each other. For WG

and w, the goodness of the fit is broadly similar to the all bin
case, but the WTH fit is significantly worse (p-value of 0.01).
In this case, ξp with WG yields an error bar of 0.026, smaller
than the all bin results by 0.03. For WTH, the error bar size is
0.33, the same as the all bin case. On the other hand, w yields
an error bar of 0.027, larger than the all bin case (0.025). Thus
this test reveals that the ξp statistic constraint is deteriorated if
the signals in the sample are heterogeneous. The degradation
is less severe for the Gaussian window. The angular statis-
tics, however, still yield a tight bound in the presence of the
heterogeneous signals.

In Appendix B, we look into this issue further using the
mock catalog. We select a sub-sample with heterogeneous
BAO signals from the mock, by applying the criterion that the
standard deviation of the best fit α among the five individual
bins is larger than certain threshold. Motivated by the actual
data results, the threshold is set to be 0.07. This threshold also
balances with the number of mocks available. We compute
the probability that ξp yields a larger error bar than w for the
whole sample and the heterogeneous sample. Indeed, we find
that the probability of getting ξp with error bar larger than that
of w becomes more appreciable for the heterogeneous mocks.
This further supports the idea that ξp yielding a larger error
bar on the full sample is driven by the heterogeneity of the
BAO signals.

In Table II, we also show the χ2/dof obtained with the BAO
template and the no-BAO one. For the no-BAO template, we

choose the lowest χ2 in the range [0.8,1.2]. For the full sam-
ple, the ∆χ2 between the no-BAO template and the BAO one
for ξp with eitherWTH (∆χ2 = 3.1) orWG (7.1) are substan-
tially lower than that for w (14.0). Thus for the full sample,
the detection significance of the BAO from ξp is significantly
lower. However, for the fit on individual bins, we find that
WG yields a significantly higher ∆χ2 and WTH yields a simi-
lar ∆χ2 relative to the corresponding w result. For the combo
2-4 bins, WG results in the highest ∆χ2 (14.3), w the sec-
ond (12.2), and WTH the lowest (7.6). Overall, we find that if
the BAO signal in the sample is homogeneous, WG gives the
highest detection significance.

Their different response to the heterogeneous signals in the
data is due to the ways that signals in tomographic bins are
combined. ξp is measured by averaging the correlation signal
in the whole sample and the signals from the bins are com-
bined to form a single data vector, and so the total BAO signal
is smeared out if the signals in different sub-samples are not
similar. On the other hand, for w, the signals in the tomo-
graphic bins are combined at the likelihood level. It is easy
to see this if the covariance between different bins can be ne-
glected. The constraint always tightens when the likelihoods
are combined. In the extreme, it is well-known that when the
likelihoods from inconsistent datasets are combined, the re-
sultant constraint is artificially stringent. In this case, if some
hyperparameters are introduced to model the systematics, the
constraint will be loosened [72, 73]. Thus the fact that ξp
yields a weaker constraint than w for heterogeneous signals
does not necessarily mean that ξp is inferior compared to w.
On the bright side, ξp is capable of detecting the potential in-
consistency in the dataset and reflects this in a poor constraint.
Then it boils down to whether the heterogeneous signals are
genuine or not. The consistency of the data can be quantified
by various tension metrics, e.g. [74–76], which can serve as
diagnostic of potential systematics but not solution. We note
that there is no evidence suggesting that the heterogeneous
signals in the full sample are caused by systematics.

B. Robustness tests

In this subsection, we conduct various robustness tests to
check the validity and soundness of the results. The results
are presented in Table III. Analogous test results from angular
correlation function in DES Y3 are also reproduced here to
facilitate comparison. Many of the robustness tests are similar
to the pre-unblinding tests and they are indicated with a star
in Table III.
• Impact of systematics correction The observational sys-

tematic effects are corrected by the systematic weights to
avoid contamination of the cosmological results. Recall that
the fiducial systematic weights are assigned iteratively until
the galaxy density does not show appreciable dependence on
the survey properties. Testing of the impact and the effec-
tiveness of the systematic weights on the mocks have been
presented in [22]. Here we test the impact of the systematic
weights on the data measurement.

When there is no systematic weights applied at all, α is
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TABLE II. Comparison of ξp (WG andWTH) andw BAO fit results on individual tomographic bins and other combinations. Each tomographic
bin is of width ∆zp = 0.1. The best-fit result and its corresponding χ2/dof (in parentheses) are shown. Besides, the χ2/dof for the no-BAO
template fit is shown in square brackets. Although for the full sample, ξp with WG yields a weaker constraint than w, it gives a tighter bound
if the BAO signal in the sample is homogeneous as in the case of individual bins and the combo 2-4 bins.

Case Fit Results (χ2/dof ); [ χ2/dof for the the no-BAO fit ]
ξp: WG ξp: WTH w

Bin 1 only No detection No detection No detection
Bin 2 only 0.973± 0.037 (22.4/29); [28.8/29] 0.973± 0.041 (30.7/29); [34.2/29] 0.997± 0.051 (13.7/17); [16.8/17]
Bin 3 only 0.960± 0.045 (51.6/29); [58.1/29] 0.965± 0.050 (42.6/29); [47.2/29] 0.978± 0.048 (16.7/17); [21.3/17]
Bin 4 only 0.987± 0.039 (28.8/29); [37.8/29] 0.984± 0.041 (39.9/29); [48.2/29] 0.977± 0.038 (23.1/17); [29.3/17]
Bin 5 only 0.891± 0.019 (21.7/29); [36.8/29] 0.869± 0.028 (31.1/29); [44.5/29] 0.895± 0.033 (10.1/17); [20.3/17]
Bins 2, 3, 4 0.977± 0.026 (22.9/29); [37.2/29] 0.975± 0.033 (49.3/29); [56.9/29] 0.978± 0.027 (53.9/53); [66.1/53]
All bins 0.953± 0.029 (21.5/29); [28.6/29] 0.945± 0.033 (36.9/29); [40.0/29] 0.937± 0.025 (95.2/89); [109.2/89]

TABLE III. Numerous robustness tests are conducted to check the stability and soundness of the results. ξp with WG and WTH are compared
with w results. The tests that are part of the pre-unblinding tests are indicated with a star.

Case ξp: WG ξp: WTH w
Default 0.953± 0.029 (21.5/29) 0.945± 0.033 (33.4/29) 0.937± 0.025 (95.2/89)
No sys. corr. 0.942± 0.029 (39.7/29) * 0.938± 0.033 (46.4/29) 0.935± 0.026 (94.6/89)
sys− PCA50 0.945± 0.029 (22.8/29) 0.943± 0.028 (36.0/29) 0.937± 0.025 (94.9/89)
n(z) Z_MC 0.948± 0.029 (21.6/29) * 0.943± 0.034 (33.6/29) 0.935± 0.025 (95.6/89)
MICE template 0.989± 0.038 (53.5/29) * 0.988± 0.032 (78.5/29) 0.980± 0.026 (95.1/89)
MICE cov. 0.956± 0.021 (23.7/29) * 0.955± 0.025 (41.0/29) 0.936± 0.021 (125.8/89)
MICE cosmology 0.996± 0.026 (59.3/29) 0.995± 0.021 (90.7/29) 0.977± 0.022 (125.8/89)
Unmodified cov. 0.956± 0.030 (21.3/29) 0.953± 0.035 (32.7/29) —
[70, 130] Mpch−1 0.955± 0.030 (11.7/16) 0.965± 0.031 (17.1/16) —
∆r = 5 Mpch−1 0.953± 0.030 (19.1/15) 0.953± 0.036 (16.2/15) —
∆r = 2 Mpch−1 0.949± 0.028 (38.1/44) 0.941± 0.031 (44.5/45) —
No bin 1 0.976± 0.024 (29.5/29) * 0.960± 0.030 (38.7/29) 0.948± 0.026 (67.8/71)
No bin 2 0.928± 0.034 (19.0/29) * 0.931± 0.034 (32.4/29) 0.929± 0.026 (80.7/71)
No bin 3 0.938± 0.034 (27.0/29) * 0.941± 0.038 (38.7/29) 0.935± 0.028 (78.4/71)
No bin 4 0.928± 0.033 (24.7/29) * 0.943± 0.034 (38.8/29) 0.925± 0.028 (70.0/71)
No bin 5 0.950± 0.030 (21.5/29) * 0.959± 0.029 (40.6/29) 0.967± 0.026 (82.3/71)

measured to be 0.942± 0.029 for WG and 0.938± 0.033 for
WTH. While there is no change in error bar relative to the
default value, a shift in the best fit value by -1.1% and -0.7%,
respectively are observed. For w there is only a shift in the
best fit by 0.2% although it also accompanies with a change
in error bar size by 4%.

There is an alternative means to derive the de-
contamination weights using the principle components of the
survey properties as the input systematic maps. The end prod-
uct is another set of weights, referred to as PCA50 (see [77]).
We have compared the single bin fit results for these two types
of weights in Fig. 10. The change in the best fit for bins 2,
3, 4, and 5 are -0.4%, 0.9%, -0.1%, and 0.6% for WTH and
0.2%, 0.1%, -0.6%, and -0.7% for WG respectively. The cor-
responding change in the error bars for these bins are 21.6%,
-2.0%, 8.7%, and 7.9% for WTH and 12%, 0.0%, -12.8%, and
1.1% for WG. We find that the maximum percentage changes
in both the best fit and the error bar forWG are less than those
for WTH. In contrast, w again shows remarkable insensitiv-
ity to systematics treatment with the maximum change in best
fit less than 0.4% and maximum change in error bar less than

2.4%.

We can understand why ξp is more sensitive to the system-
atic correction weights from its effects on the density field.
The systematic correction weights modify the density field
in the radial direction and the angular position. For w, only
the angular density is affected as the radial direction has been
projected out, while for ξp, the weights affect both the radial
density and the angular one.

• Impact of the true redshift distribution To compute the
theory prediction, we need the conditional weighted true red-
shift distribution φ given by Eq. (5). We consider φ estimated
using the Z_MC output in the DNF algorithm. This serves as
a cross check on the fiducial conditional true z distribution
derived from the VIPERS sample. The percentage change in
the best fit α is -0.5%, -0.2%, and -0.2% for WG, WTH, and
w respectively. For the error bar, WTH yields change by a
few percent and others are unchanged. Thus the true redshift
distribution is not a major concern.

• Alternative fiducial cosmology In the fiducial analysis,
the Planck cosmology is adopted. Here we consider using
the alternative MICE cosmology. This affects the cosmology
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used to compute the template and the covariance on the theory
side and to perform the pair counts for the data measurement.
Because of the difference in shape and amplitude of the corre-
lation function, the bias parameters are different in these cos-
mologies. We show the results obtained with the MICE tem-
plate, the MICE covariance, and MICE cosmology, by which
we mean both the MICE template and the MICE covariance
are used. We note that there is an additional layer of cosmol-
ogy dependence in ξp relative tow as in the data measurement
a fiducial cosmology is necessary to convert angles and red-
shifts to distances. This cosmology is taken to be the same as
that of the template.

The best fit values for ξp with WG and WTH are similar.
When the MICE template is used, the error bar for WTH and
w show little changes, but that forWG is significantly inflated.
We further note that χ2 increases substantially for ξp. For the
MICE covariance case, for w the best fit is little affected (-
0.1%), while ξp with WG and WTH show changes by 0.3%
and 1.1% respectively. In MICE covariance, the error bars are
reduced in all cases, with w and WG yield the same error bar.
Finally for MICE fiducial cosmology, the constraints on the
physical parameter are shown in Table I. In MICE cosmology,
the best fit increases slightly, but the error bar are reduced by
a significant amount. The percentage changes in the best fit
are 0.4% (WG), 0.8% (WTH), and 0.1% (w), and -14%, -37%
and -16% in the error bar, respectively.

Overall, w is the most robust to changes in fiducial cosmol-
ogy. ξp with WG is generally more stable than WTH, but it
sometimes still shows large fluctuations such as in the MICE
template case.
• Variation in the fitting conditions In [42], a couple of

issues related to the highly correlated covariance were dis-
cussed. Some of the fit results are manifestly bad because the
best fit completely fall above (or below) all the data points.
The problem was alleviated by suppressing the largest eigen-
values in the correlation matrix. We have adopted the pre-
scription as the fiducial setup. We show the results for the
original unmodified covariance, the percentage change in the
best fit and error bar are 0.1% and 3.4% (0.8% and 6.1%) for
WG (WTH).

The default fit range is [40,140] Mpch−1. We show the re-
sults for a narrower range, [70,130] Mpch−1. For a narrower
range, while WG seems to remain at the same best fit position
with the error bar slightly loosened, WTH is quite different
from the fiducial one.

We also test the bin width dependence. The default value
is ∆r = 3 Mpch−1. For ∆r = 5 Mpch−1, the percent-
age change in the best fit and error bar are 0.0% and 3.4%
(0.8% and 9.0%) for WG (WTH). For ∆r = 2 Mpch−1, the
percentage change in the best fit and error bar are -0.4% and
-3.4% (-0.4% and -6.1%) for WG (WTH).

These test results again show that ξp with WG is more ro-
bust than WTH.
• Missing bin test In this test, data in one of the tomo-

graphic bins is removed. It is easy to understand this missing
bin test by referring to the single bin results in Table II (or
Fig. 10). The first bin is unusual because there is a trough at
the anticipated BAO peak position, but there is large bump at

the scale much larger than the expected, driving α to a very
small value, which is so small that it does not meet the detec-
tion criterion. Removing this bin, all the best fit α increases.
For ξp, as the first bin contributes “signal” very different from
the rest, removing it actually tightens the bound. However,
w always gives a tighter bound when the data size increases
because it effectively combines the likelihoods from different
bins. The behavior of removing the second, the third, or the
fourth bin are similar as they contribute similar signals. The
best fit from WG is similar to the w results, and the results
from WTH is slightly more different from the others. We find
that the error bars generally increase in all cases. Remov-
ing the fifth bin impacts the three statistics more disparately.
The best fit α for WTH and w both increase, but the error bar
size for WTH decreases and that of w increases. On the con-
trary, the best fit for WG actually decreases. Judging from
the best fit and the χ2, removing the fifth bin does not affect
the likelihood much for WG. These highlight that combining
heterogeneous signals at the data vector level can be tricky
and non-intuitive, while the combining likelihood is relatively
straightforward.

In summary, from these tests we find that w is the least sen-
sitive to changes in the fitting conditions, WG the second, and
WTH the most sensitive. A main difference between ξp and
the angular statistics such as w is the order of the projection
and the correlation measurement. For angular statistics, we
first project and then do the correlation measurement, while
ξp goes the other way. Because photo-z errors affect only the
radial direction, by projecting the field to the angular space
first, the photo-z errors can be nulled to a large extent, and the
subsequent angular correlation measurement is little contami-
nated by the noise owing to the photo-z errors. ξp aims to keep
some radial information, and so the correlation measurement
is first performed and it is projected to the transverse direction
afterwards. However, this approach comes with the price that
the photo-z noise can sneak in to contaminate the correlation
function. The noise causes ξp to be less stable. The Gaussian
window with WG reduces the weight of the pairs with large
µ, and this can limit the impact of the photo-z contamination
making the results more stable. As we mentioned, because
w combines signals in different bins at the level of likelihood
while ξp works at the level of data vector, this also contributes
to the stability of w relative to ξp. This is apparent in the
missing bin tests.

DES Y6 shares the same footprint as DES Y3 but with
deeper magnitude, and so the BAO sample will have higher
number density and will extend to redshift 1.2. It will undergo
a new round of photo-z and other systematics check, and these
will help further verify if there is untreated systematics con-
taminations, especially in the high redshift bins. Whether ξp
will give strong constraint in this case will depend on the fi-
nal dataset, but in any case, it offers an important means to
crosscheck with the conventional angular statistics results.
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VI. CONCLUSIONS

We have presented measurements of the BAO scale us-
ing the 3D correlation projected to the transverse scale, ξp.
The dataset is derived from the DES Y3 and the final sample
consists of about 7 million galaxies in the redshift range of
[0.6,1.1] over a footprint of 4108 deg2. Although the angular
correlation function and angular power spectrum had been ap-
plied to this sample to measure the BAO in DES Y3 [36], the
treatments in these statistics are similar in many aspects. On
the other hand, ξp is less correlated with the angular statistics
and can serve as an independent check. We have systemati-
cally compared the ξp results against those from the angular
correlation function w, which has been a benchmark for the
tomographic analysis of the photometric data.

Our work follows the improved modeling in [42]. In par-
ticular, realistic photo-z distribution is incorporated in the
template modeling and the Gaussian covariance computation.
These overcome the shortcomings of the Gaussian photo-z
approximation in previous works and help us to isolate the
remaining potential systematics in the ξp method. The ξp
statistic is obtained by averaging over µ pairs with a suitable
stacking window. We have presented results for two windows.
The first one is a top-hat [Eq. (14)] with µmax = 0.8 [41],
which had always been assumed in previous works. This is
the blinded result, which has passed a battery of robustness
tests similar to those of w and C` in DES Y3. However,
we point out that the signal-to-noise decreases as µ increases,
equal weighting is sub-optimal. We propose a cut-off Gaus-
sian window [Eq. (15)], which downweights the high µ pairs
in favor of the low µ ones. This window increases the stabil-
ity of the ξp method, and we have verified that with the mock
test results. Although the Gaussian window is adopted after
unblinding, the updated pipeline does not bias the results be-
cause the best fit is not sensitive to the precise value of σµ and
the choice of σµ = 0.3 reflects the average error bar size in
the low σµ vicinity.

For the full sample, we have measuredDM/rs to be 19.15±
0.58 forWG (unblinded) and 19.00±0.67 forWTH (blinded).
Especially for WTH, the resultant error bar is bigger than that
from the angular correlation function w, 18.84 ± 0.50. The
deviation from Planck results is reduced to 1.6 σ (1.7 σ) for
WG (WTH) and it is less significant than DES Y3 w analysis.
On the other hand, we find that for individual redshift bin fit,
WG actually gives a tighter bound than w. We deduce that the
poor error bound for the whole sample is caused by the BAO
signals in the full sample being heterogeneous and hence the
total BAO signal is smeared out. From the mock test, we also
find that if the sample is heterogeneous in BAO signals, the
chance that ξp yields a larger error bar thanw is enhanced. We
then consider a sub-sample with more consistent BAO signals
composed of data in the redshift range 0.7 < zp < 1. The
effective redshift for the homogeneous sample is 0.845. The
constraint on DM/rs is 19.84 ± 0.53 for WG and 19.80 ±
0.67 for WTH. For WG, the error bound is tighter than the
corresponding w result, which reads 19.86± 0.55.

We conducted numerous robustness tests to check the sta-
bility of the results. Overall we find thatw yields the most sta-

ble results, WG the second, and WTH the least stable. These
tests also help us better understand the properties of these
statistics. First, they differ in the order of projection and cor-
relation measurement. Because for w, the data is projected to
the angular space first, the effects of the photo-z contamina-
tion can be effectively limited. By measuring the 3D correla-
tion first, ξp not only measures the transverse information but
also some radial signals, but this also allows the photo-z noise
to sneak in and cause some instability in the results. Second,
they treat the signals in the tomographic bins differently. For
ξp, the signals in the whole dataset are combined primitively,
at the level of data vector, while for w, they are combined
at the level of likelihood. This causes w to be more robust
to heterogeneous signals, and the contribution of signals from
individual bins to be more predictable. For heterogeneous sig-
nals, w can give a tight error bound, while ξp tends to give a
loose bound. Thus it is important to verify that the heteroge-
neous signals are self-consistent, otherwise w can give an ar-
tificially tight bound. Conversely, ξp gives a loose bound for
heterogeneous signals does not necessarily imply that it is an
inferior statistic because its weak bound can reflect potential
systematics in the data or hints of deviation of the underlying
cosmological model.

Our analysis further clarifies the properties of the ξp method
and demonstrates its utilities. ξp andw (or angular statistics in
general) have their own advantages and drawbacks, and they
can crosscheck each other. We anticipate that ξp will con-
tinue to play an important role in the forthcoming imaging
data analysis such as DES Y6 and other photometric surveys
mentioned in the introduction.
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Appendix A: Pre-unblinding test

To avoid the possibility of confirmation bias, in [36], the
cosmologically interesting part of the data is blinded from the
analysts until the pipeline is finalized. A set of pre-unblinding
tests were performed to check the validility of the methodol-
ogy and the data in particular. Only after the tests are passed,
the data are considered ready for cosmological analysis and
hence unblinded. For this work, although the BAO sample

had been unblinded, we follow the DES practice to carry out
the pre-unblinding tests laid down in [36]. They serve as addi-
tional tests to the ξp statistic. Many of these tests are similar to
the robustness tests presented in Sec. V B. Note that the Gaus-
sian window is adopted after unblinding, and so these tests
only incudes theWTH results. Nonetheless, for completeness,
we show the pre-unblinding results here for reference.

The results are shown in Table IV. These tests check how
the best fit value and the estimated error bar change in re-
sponse to removing one of the tomographic bins, using the
alternative Planck template, Planck covariance or the Z_MC
photo-z estimation. The confidence intervals are derived by
applying the tests to the mock catalog. The tests on the mocks
are performed in MICE fiducial cosmology, and for the data,
the tests are done in both MICE and Planck cosmologies. If
all the test results on the data fall within the 90% intervals, the
tests are considered passed. If some of the test results only sat-
isfy more extreme intervals, then further conditions are used
to judge the “normality” of the results. We find that all the
test results fall within the 90% interval, and hence the tests
are passed.

Note that the mocks are designed to follow the VIPERS dis-
tribution, but there is no exact Z_MC analog on the mocks. To
this end, we directly use the Z_MC distribution for the data in
the mock test. We find that the intervals are negatively biased.
To investigate this further we perform a test using the original
VIPERS distribution, and the results are aslo shown in Table
IV. The intervals are also found to be shifted to the negative
side slightly. We conclude that the shift to the negative side
could be caused by the photo-z distribution calibation in the
mock construction.

Appendix B: Error bars in the mocks with heterogeneous
signals

In the main text, we find that the error bar derived from
ξp is larger than that obtained from w by a significant frac-
tion. On the other hand, when the fits are performed on the
individual tomographic bins or the homogeneous BAO-signal
sample bins 2, 3, and 4, the errors obtained from ξp is tighter
or compatible with that from w. We conclude that the error
bar from ξp is loosened when the signals are heterogeneous,
while the angular correlation function seems less affected. In
this appendix, we shall further investigate the impact of the
heterogeneity using the mocks.

We first perform the BAO fit on the individual tomographic
bins each of width ∆z = 0.1 in the redshift range [0.6,1.1].
Owing to limitation in computing power, we only use 93
mocks (one mock is removed because no detection for ξp in
one of the bins). We use the standard deviation of the best fit
to the individual tomographic bins to select mocks with het-
erogeneous BAO signals. We illustrate this with the Gaussian
window with σµ = 0.3. The average of the standard deviation
of the best fit to the individual tomographic bins is 0.049 for
ξp (0.051 for w). Because there is no detection for the first
bin, to compute the standard deviation for the actual data fit,
we assign the α value to be the lower boundary, 0.8. Both ξp
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TABLE IV. The pre-unblinding tests for ξp with WTH, showing the impact of removing data in individual tomographic bins, of changing the
assumed cosmology for the BAO template or the covariance, and of considering an independent estimate of the true redshift distributions.
Both the change in the best fit values and the error bars are shown. The confidence intervals are derived from the mock. The mock tests are
done in MICE cosmology, but both MICE and Planck fiducial cosmologies are considered in the actual data tests. All the data results fall
within the 90% interval, and so the pre-unblinding tests are considered passed.

Threshold 0.9 0.95 0.97 0.99 data
(Fraction of mocks) min max min max min max min max MICE Planck

102(α− αfiducial)

No bin 1 -3.13 2.68 -3.55 3.61 -4.16 4.75 -4.49 5.62 2.42 1.49
No bin 2 -2.72 2.62 -3.04 3.21 -4.26 3.29 -5.56 3.84 -0.82 -1.48
No bin 3 -2.73 2.40 -2.97 2.88 -3.21 4.24 -3.43 5.54 -0.74 -0.44
No bin 4 -1.52 2.54 -1.71 3.12 -2.19 3.35 -2.90 3.53 0.10 -0.24
No bin 5 -1.19 1.80 -1.55 2.11 -1.61 2.36 -1.85 2.88 0.66 1.37
Planck Template -2.66 1.56 -2.97 1.61 -3.46 2.18 -4.62 2.62 0.34 —
Planck Covariance -0.67 0.56 -1.01 0.59 -1.06 0.62 -1.27 0.68 -0.42 —
n(z)DNF−ZMC -1.13 -0.20 -1.20 -0.15 -1.24 -0.01 -1.34 0.08 -0.18 -0.24
original VIPERS -1.24 0.42 -1.31 0.92 -1.34 1.03 -1.57 1.16 – –

(σ − σAll Bins)/σAll Bins

No bin 1 -0.24 0.45 -0.30 0.49 -0.30 0.53 -0.40 0.70 -0.03 -0.08
No bin 2 -0.22 0.50 -0.24 0.59 -0.25 0.73 -0.26 0.86 0.37 0.02
No bin 3 -0.11 0.77 -0.13 0.87 -0.20 0.94 -0.25 1.22 0.16 0.13
No bin 4 -0.12 0.35 -0.17 0.38 -0.20 0.40 -0.30 0.61 0.35 0.01
No bin 5 -0.16 0.24 -0.22 0.32 -0.23 0.34 -0.35 0.38 0.06 -0.14

and w give the same standard deviation, 0.07. Thus, we take
the mocks with the standard deviation value larger than 0.07
as the heterogeneous mocks. This threshold also ensures that
there are decent number of mocks available. The set of mocks
satisfying this heterogeneity condition differs slightly for ξp
and w. We then end up with 23 mocks for ξp (22 for w).

We consider the probability for the condition σξp > fσw,
where σξp and σw denote the error bars derived from the BAO
fit using ξp and w on the data including all five bins and f is a
parameter. In Fig. 12, we plot the probability as a function of
f .

We show the unconditional case computed with all the
available mocks, and the conditional case obtained with the
heterogeneous BAO-signal mocks. For the conditional cases,
we show both the results derived from the heterogeneous
mocks defined with ξp and w, respectively. We indeed find

that there is an increased probability of finding mocks meeting
the condition σξp > fσw compared to the unconditional one.
We caution that because the size of the heterogeneous sample
is small, the probability obtained only serves as a rough esti-
mation. This is even more true for the probability in the high f
end. We also indicates the f value corresponding to the actual
data results on the plot, and our estimate gives a probability of
16% for this heterogeneous sample.

For WTH, we also find that the probability is enhanced rel-
ative to the unconditional case. Unlike the WG case, it is en-
hanced even at f = 1.3, and this trend agrees with the fact that
WTH yields an even larger error bar in the data fit. Further-
more, we have considered alternative definition of heteroge-
neous mock by utilizing the difference between the maximum
and the minimum among the tomographic bin fit results, and
the results are qualitatively similar.
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