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ABSTRACT

Observations of the Lyman-α (Lyα) forest from spectroscopic surveys such as BOSS/eBOSS, or
the ongoing DESI, offer a unique window to study the growth of structure on megaparsec scales.
Interpretation of these measurements is a complicated task, requiring hydrodynamical simulations
to model and marginalise over the thermal and ionisation state of the intergalactic medium. This

complexity has limited the use of Lyα clustering measurements in joint cosmological analyses. In
this work we show that the cosmological information content of the 1D power spectrum (P1D) of the
Lyα forest can be compressed into a simple two-parameter likelihood without any significant loss of

constraining power. We simulate P1D measurements from DESI using hydrodynamical simulations and
show that the compressed likelihood is model independent and lossless, recovering unbiased results even
in the presence of massive neutrinos or running of the primordial power spectrum.

Keywords: Lyman alpha forest (980) — Cosmology(343) — Large-scale structure of the universe(902)
— Astronomy data reduction(1861)

1. INTRODUCTION

The tightest constraints on cosmological parameters
are obtained from the joint analysis of complementary
probes, with different sensitivity to cosmological param-

eters. A common approach is to combine observations of
the cosmic microwave background (CMB) with late-time
probes of large-scale structure (LSS), such as galaxy
clustering or weak lensing (Planck Collaboration et al.
2020; Alam et al. 2021; Abbott et al. 2022). An alterna-
tive probe of LSS is the Lyman-α (Lyα) forest, a series
of absorption features in the spectra of z > 2 quasars,
caused by intervening neutral hydrogen along the line-
of-sight.

Cosmological analysis of the Lyα forest is driven by
large spectroscopic surveys, such as the Baryon Oscilla-
tion Spectroscopic Survey (BOSS, (Dawson et al. 2013))
and its extension eBOSS (Dawson et al. 2016), which

c.pedersen@nyu.edu, afont@ifae.es, gnedin@fnal.gov

between 2009 and 2019 observed ∼ 200, 000 Lyα forest

quasars. In 2021, the Dark Energy Spectroscopic Instru-
ment (DESI) (DESI Collaboration et al. 2016) started
a five-year program to survey a third of the sky and ob-
tain spectra of ∼ 800, 000 Lyα forest quasars. The main

goal of these quasar surveys is to measure the 3D correla-
tions in the Lyα forest and to provide accurate measure-
ments of the Baryon Acoustic Oscillations (BAO) fea-
ture to study the expansion of the universe (du Mas des
Bourboux et al. 2020). The same dataset, however, can
be used to measure correlations along the line of sight,
known as the 1D flux power spectrum (P1D), a unique
window to study the clustering of matter on megaparsec
scales (Chabanier et al. 2019a).

Cosmological analyses of the P1D are particularly pow-

erful in combination with CMB measurements due to
the large “lever arm” between the two measurements,
and these joint analyses have historically provided some
of the tightest constraints on the sum of the neutrino
masses, and on the shape of the primordial power spec-
trum of density fluctuations (Phillips et al. 2001; Verde
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et al. 2003; Spergel et al. 2003; Viel et al. 2004; Seljak
et al. 2005, 2006; Bird et al. 2011; Palanque-Delabrouille
et al. 2015a,b, 2020).

Massive neutrinos are known to affect the growth of
structure by suppressing the late-time clustering of mat-
ter on scales smaller than their free-streaming length
(Lesgourgues & Pastor 2006). The P1D alone is un-
able to constrain neutrino masses due to parameter de-
generacies (Pedersen et al. 2020), but when combined
with the early-time, large-scales measurements from the
CMB one can break these degeneracies. In the next
few years, and in combination with CMB measurements,
several LSS probes will be able to detect the impact of
massive neutrinos, even if the sum of the masses is near
the minimum of Σmν = 0.06 eV allowed by oscillation
experiments (Font-Ribera et al. 2014).

At the same time, inflationary models generically pre-
dict that the primordial power spectrum of fluctuations
should have small deviations from a power law, often

parameterised as a running of the spectral index. Due
to the wide lever arm between the large scale fluctua-
tions probed by Planck and the small scales accessed by
the P1D, the Lyα forest is one of the most promising

avenues towards tightening the constraints on inflation-
ary models which produce a measurable running of the
spectral index (Font-Ribera et al. 2014).

Unfortunately for cosmologists, the statistical proper-
ties of the Lyα forest also depend on the thermal and
ionisation history of the intergalactic medium (IGM)
(McQuinn 2016) 1. This has two consequences that com-

plicate P1D analyses. First, it means that we need to run
expensive hydrodynamical simulations in order to make
accurate predictions for a given model. Second, it means

that we need to add multiple nuisance parameters in our
cosmological inference, and to carefully marginalise over
them to obtain robust cosmological constraints.

In the last few years, several groups have attempted to
tackle the first problem, introducing new tools to emu-
late P1D for parameters that are not covered by the rela-
tively small suite of simulations available (Walther et al.
2019; Bird et al. 2019; Rogers et al. 2019; Takhtaganov
et al. 2021; Rogers & Peiris 2021a; Pedersen et al. 2021).
In this publication, we will use the LaCE 2 emulator pre-
sented in Pedersen et al. (2021), and focus on the sec-
ond problem: the high-dimensionality of the parameter
space sampled, and the attractive possibility of dramat-
ically reducing the dimensionality of the P1D likelihood

into a small number of parameters describing the linear

1 This also makes the Lyα forest, specially at z > 5, a key probe
of reionisation, but we do not discuss this in this work.

2 https://github.com/igmhub/LaCE

matter power spectrum, without introducing biases or
losing relevant information.

The idea of compressing the P1D likelihood into a
handful of parameters describing the linear power spec-
trum is not new. Indeed, the first cosmological stud-
ies of the Lyα forest focused on recovering the mat-
ter power spectrum (Croft et al. 1998; McDonald et al.
2000; Croft et al. 2002; Gnedin & Hamilton 2002), and
the two-parameter (amplitude and slope) parameteri-
sation we focus on in this work was already used 20
years ago (McDonald et al. 2000). However, most re-
cent P1D analyses from BOSS and eBOSS surveys have
only presented their results in terms of direct fits to
the traditional ΛCDM parameters (Borde et al. 2014;
Palanque-Delabrouille et al. 2015a,b, 2020), with strong
dependence on the priors chosen. This has made it dif-
ficult for other groups to include these powerful results

into combined cosmological analyses. If the Lyα forest
constraints from P1D could be accurately and losslessly
represented by just the amplitude and a local slope at

a conveniently chosen pivot scale, it would significantly
simplify the combination of Lyα forest measurements
with other cosmological probes.

Motivated by the latest P1D measurements from

eBOSS, the start of the DESI survey, and the recent de-
velopments in emulation techniques, in this publication
we review the compression of the P1D likelihood. Note

that similar discussions are also happening in the con-
text of analysis of the galaxy power spectrum, in partic-
ular regarding the information content in measurements

of redshift space distortions (Hamann et al. 2010; Ivanov
et al. 2020; d’Amico et al. 2020; Brieden et al. 2021).

We will start in Section 2 with a description of the
simulated data, a summary of the emulator used, and

the parameterisation of the likelihood. In Section 3
we present cosmological constraints from simulated P1D

data, and discuss the impact of priors and model depen-

cency of the results. In Section 4 we present joint fits
when combining the P1D with an approximated CMB
likelihood, and show that the P1D likelihood can be ef-
ficiently compressed into two parameters without any
loss of information. Finally in Section 5 we discuss our
findings.

2. METHODOLOGY

We discuss here the Lyα forest P1D likelihood, includ-
ing an overview of the emulator used to make theoretical
predictions (based on (Pedersen et al. 2021)), a descrip-
tion of the mock dataset, and a discussion of the param-
eterisation of the likelihood.

2.1. Simulations
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We begin by describing the simulations used in the
analysis, which fall into two categories. First, a set of
training simulations are used to construct the emula-
tor. Second, a small number of test simulations are run,
to represent mock P1D measurements in a variety of dif-
ferent cosmologies, and are used to test and validate
our analysis pipeline. Both the training and most of the
test simulations were presented in Pedersen et al. (2021),
where we also described and tested the emulation frame-
work. Here we give an overview of the simulations, and
refer the reader to Pedersen et al. (2021) for a more
detailed description.

The simulations were run in MP-Gadget 3 (Feng et al.
2018), a TreeSPH code based on Gadget-2 (Springel
2005). All simulation boxes had a size of L = 67.5 Mpc
and 7683 gas and cold dark matter (CDM) particles.
The initial conditions were generated with MP-GenIC at
z = 99, with Fourier modes that had random phases but
fixed initial amplitudes (Angulo & Pontzen 2016; Ander-

son et al. 2019; Villaescusa-Navarro et al. 2018; Pedersen
et al. 2021). In order to further reduce cosmic variance,
for each model (both in the training and test sets) we
ran a pair of simulations with inverted phases, and each

quantity estimated from the simulations is taken as the
average of the pair.

We output 11 snapshots, equally spaced in redshift

between z = 2 and z = 4.5. To produce mock Lyα for-
est spectra from each snapshot, we use fake spectra 4

(Bird 2017) to calculate a 2D grid of 5002 transmission

skewers from each snapshot, with a line-of-sight resolu-
tion of 0.05 Mpc. The cosmological and astrophysical
parameters used in both the training and test simula-

tions are listed in Table 1.

2.2. Emulator

We provide a brief overview of the emulator parame-
ters and framework. We use the LaCE5 framework pre-
sented in Pedersen et al. (2021), and refer the reader
to this reference for a more complete description. LaCE

uses a Gaussian Process emulator6 to predict P1D as a
function of six parameters: the dimensionless amplitude
(∆2

p) and slope (np) of the linear power spectrum around

a pivot scale of kp = 0.7 Mpc−1; the mean transmitted
flux fraction (or mean flux, F̄ ); a thermal broadening
scale defined in comoving units (σcom

T ), set by the tem-
perature of the gas at mean density; the slope of the
temperature-density relation (γ); the filtering length in

3 https://github.com/MP-Gadget/MP-Gadget.
4 https://github.com/sbird/fake spectra.
5 https://github.com/igmhub/LaCE.
6 We use the Python implementation GPy (GPy since 2012).

Training set Central Neutrino Running

As(×10−9) [1.35–2.71] 2.006 2.251 2.114

ns [0.92–1.02] 0.9676 0.9676 0.9280

αs 0.0 0.0 0.0 0.015

Ωm 0.316 0.316 0.324 0.316

Σmν (eV) 0.0 0.0 0.3 0.0

∆2
p(z = 3) [0.25–0.45] 0.35

np(z = 3) −[2.35–2.25] -2.30

zrei [5.5–15] 10.5

HA [0.5–1.5] 1.0

HS [0.5–1.5] 1.0

Table 1. Cosmological and astrophysical parameters for
the training and test simulations. The limits of the Latin
hypercube for the training simulations are shown in the left
column, where only the primordial power spectrum and as-
trophysical parameters are varied. The primordial param-
eters As and ns here are defined at the CMB pivot scale
of k = 0.05 Mpc−1. The Central, Neutrino and Running
simulations are constructed such that they have the same
small scale linear matter power spectrum (∆2

p and np) at
z = 3. For all simulations, we fix ωc = 0.12, ωb = 0.022 and
h = 0.67.

inverse comoving units (kcomF ), a proxy for gas pressure.
Note that whilst the P1D is naturally observed in ve-

locity units, the above quantities are all defined in co-
moving units in the emulator. The motivation for this
is so that the simulated P1D is estimated at a fixed set
of wavenumbers for snapshots at all redshifts.

We train the emulator using 30 pairs of simulations
described in Table 1. These simulations explore different
thermal and reionisation histories by varying zrei, HA,

and Hs, which control the redshift of reionisation and
the heating rates of the gas (see (Pedersen et al. 2021) for
more detail). The simulations have different amplitudes

and slopes of the primordial power spectrum (As, ns),
but have the same value for the physical densities of
CDM (ωc = Ωch

2) and baryons (ωb = Ωbh
2), the same

value of H0, and do not include massive neutrinos. All
11 snapshots from all 30 models are used simultaneously,
for a total of 330 points in the training sample.

In the implementation of the emulator presented in
Pedersen et al. (2021), the Lyα P1D was emulated di-
rectly on a grid of comoving wavenumbers. Because of
the limited box size of our simulations, the P1D measure-

ments on large scales are affected by cosmic variance.
Given that each simulation was run with the same ran-
dom seed, there are random noise spikes in the power
spectrum that align at the same comoving wavenumbers
in each simulation used to train the emulator. When it
came to testing the pipeline on simulated mock data
with a different background evolution, we found that

https://github.com/MP-Gadget/MP-Gadget
https://github.com/sbird/fake_spectra
https://github.com/igmhub/LaCE
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these noise spikes are interpreted by the emulator as
sharp features in the power spectrum, artificially en-
hancing the emulator sensitivity to changes in cosmol-
ogy. This is due to the fact that the likelihood evaluation
is performed in velocity units, which require a conversion
from comoving units using H(z). The pipeline would
therefore try and find the H(z) which would align the
noise spikes in the observed data with the noise spikes
in the training set, with two consequences. When run-
ning on mock simulations with the same training seed,
the pipeline is artificially sensitive to the conversion be-
tween comoving and velocity units, and therefore H(z),
due to the presence of these sharp features. When run-
ning on mock simulations with a different random seed,
the pipeline struggles to return the correct cosmology,
as the likelihood maximisation is dominated by the in-
centive to align the different noise features.

In order to remove residual noise in the measurements
of P1D, we fit a 4th order polynomial 7 to the logarithm

of P1D as a function of the logarithm of wavenumber,
using scales k‖ < 8 Mpc−1:

logP1D(k‖) =
4∑

n=0

cn
(

log k‖
)n

. (1)

Instead of predicting directly P1D the emulator now pre-
dicts the five coefficients cn of this polynomial, that can

later be used to predict P1D on all scales. The variance
on the emulated coefficients (σ2

cn) can be used to obtain
an estimate for the variance of the emulated P1D:(σP1D

P1D

)2
=

4∑
n=0

σ2
cn

(
log k‖

)2n
. (2)

We discuss the impact of cosmic variance on emulator
predictions in Appendix B.

2.3. Mock data

In order to test our analysis pipeline, we have gener-
ated three synthetic datasets (or mocks) for models that
are not included in the training set of the emulator:

• Central simulation: this is the simplest case, a
simulation without massive neutrinos or running,
with the same background expansion as was used
in all training simulations, and a primordial power
(As,ns) corresponding to the centre of the Latin

Hypercube used to setup the training set.

• Neutrino simulation: a simulation with Σmν = 0.3
eV, where the cosmological constant (Λ) has been

7 This setting performed better than 3rd or 5th order polynomials,
but we did not explore other functions.

lowered to compensate the increase in the total
matter density. The amplitude of the primordial
power is also ∼ 10% larger to compensate the sup-
pression of power caused by massive neutrinos. In
Pedersen et al. (2021) we used this simulation to
show that we could recover unbiased predictions
in cosmologies with massive neutrinos, even when
the emulator was trained exclusively with simula-
tions with massless neutrinos.

• Running simulation: a simulation with the same
cosmology than the Central simulation, except
that its primordial power spectrum has a non-zero
running of αs = 0.015. The other parameters de-
scribing the primordial power (As, ns) have been
modified to compensate the change in running and
have the same linear power around the pivot scale

used in the emulator (kp = 0.7 Mpc−1, see Table
1).

We start by running a pair of simulations (with in-
verted phases) for each of the three test models. From
each of their 11 snapshots we measure P1D, in comov-
ing units, and fit a 4th order polynomial as described

in Section 2.2 above. In order to roughly simulate the
statistical power of DESI, we use a rescaled version of
the SDSS DR14 covariance matrix of Chabanier et al.

(2019b), where all elements are divided by 5 to approx-
imately take into account the difference in the number
of spectra between SDSS DR14 and DESI 8. As is com-

mon in P1D measurements, the band powers presented
in Chabanier et al. (2019b) are defined in velocity units.
At each redshift we compute H(z)/(1+z) using the sim-
ulation cosmology to translate these into wavenumbers

in comoving units.

2.4. Likelihood

We use a Gaussian likelihood, naturally decomposed
into 11 independent sub-likelihoods, one for each snap-
shot (redshift bin). The covariance matrix is the sum
of the data covariance and an extra term describing the
uncertainty in the emulator predictions, computed with
Equation 2. The typical emulator uncertainty is smaller
than 1% for models near the centre of our training set,
and it only has a minor impact on likelihood evaluations
around the best-fit values of our analyses. However, it
can be larger than 10% when evaluating the likelihood
near the convex hull of our training sample.

8 A more detailed forecast should also take into account the differ-
ences in pixelisation, spectral resolution and signal to noise, but
we leave this for future work.
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Different sub-sections in Section 3 and Section 4 use
a different number of free cosmological parameters, in-
cluding: the amplitude (As), slope (ns) and running
(αs) of the primordial power spectrum at the usual CMB
pivot scale of ks = 0.05 Mpc−1; the physical densities of
baryons (ωb = Ωbh

2) and of CDM (ωc = Ωch
2); the sum

of the neutrino masses (Σmν); the Hubble parameter
H0; the angular acoustic scale of the CMB (θMC).

We use four functions to describe thermal and ioni-
sation history of the IGM: the effective optical depth
as a function of redshift τ(z) = − log F̄ (z), the thermal
broadening scale (in km s−1) at mean densities σvel

T (z),
the slope of the temperature-density relation γ(z) and
the filtering / pressure scale kvelF (z) (in s km−1). Fol-
lowing Pedersen et al. (2021), we measure each of these
functions from the Central simulation, and use two pa-
rameters to describe a power law rescaling for each of
the four functions. For instance, the thermal broadening
scale z is parameterised as

lnσvel
T (z) = lnσvel

T (z)
∣∣
cen

+ lnσT0 + lnσT1
1 + z

1 + 3
, (3)

where σvel
T (z)

∣∣
cen

is the thermal broadening scale in the
Central simulation.

Therefore we use a total of 8 nuisance parameters re-
lated to IGM physics. There is no guarantee that this
simple parameterisation is accurate enough to do an

analysis on real data, but it should be flexible enough
to test the compression of the likelihood in a realistic
setting. As described in Table 2, we use combined pri-
ors: each parameter is allowed to vary within a given

range of values (top hat prior) and an additional weak
Gaussian prior is applied to all parameters; the actual
prior is a product of the two.

In the next sections we will discuss constraints on two
derived parameters that are able to capture most of the
cosmological information in P1D: the (dimensionless)

amplitude and slope of the linear power spectrum at
a pivot point k? = 0.009 s km−1 and redshift z? = 3 9:

∆2
? =

k3?PL(k?, z?)

2π2
, (4)

n? =
dlnPL(k, z)

dlnk

∣∣∣∣
k?, z?

(5)

where PL(k, z) is the linear power spectrum in velocity
units. It is important to highlight that these parameters
are defined in velocity units, since P1D measurements are

9 This pivot scale was found in McDonald et al. (2005) to be op-
timal for their dataset, but it might be sub-optimal for other
surveys.

Parameter Range allowed Gaussian prior

As(×10−9) [1.0 – 3.2] N (2.1, 1.1)

ns [0.89 – 1.05] N (0.965, 0.08)

αs [−0.8 – 0.8] N (0.0, 0.8)

ωb [0.018 – 0.026] N (0.022, 0.004)

ωc [0.10 – 0.14] N (0.12, 0.02)

Σmν (eV) [0.0 – 1.0] N (0.0, 0.5)

H0 [50 – 100] N (67.0, 25.0)

θMC(×10−3) [9.9 – 10.9] N (10.4, 0.5)

ln τ0 [−0.1 – 0.1] N (0.0, 0.05)

ln τ1 [−0.2 – 0.2] N (0.0, 0.1)

lnσT0 [−0.4 – 0.4] N (0.0, 0.2)

lnσT1 [−0.4 – 0.4] N (0.0, 0.2)

ln γ0 [−0.2 – 0.2] N (0.0, 0.1)

ln γ1 [−0.4 – 0.4] N (0.0, 0.2)

ln kF0 [−0.2 – 0.2] N (0.0, 0.1)

ln kF1 [−0.4 – 0.4] N (0.0, 0.2)

Table 2. Priors used for the cosmological parameters (top),
and for the nuisance parameters describing the thermal and
ionisation history of the IGM (bottom). All parameters have
a limited range of values allowed, and a Gaussian prior.

also presented in velocity units and parameters defined
in comoving units would be model dependent.

Let us finish this section by summarising the steps
needed to make a likelihood evaluation:

• Given a set of cosmological parameters, we use the

Boltzman solver CAMB (Lewis et al. 2000) to make
predictions for PL(z, k) and H(z) at all redshifts
and scales.

• For each redshift zi in our mock P1D measurement,
we compute the value of the amplitude (∆2

p) and

slope (np) of the linear power, PL(zi, k), around
the pivot point kp = 0.7 Mpc−1. These are two
of the six parameters that will be passed to the
emulator to get a prediction of P1D at zi.

• The other four parameters (F̄ , σcom
T , γ, kcomF ) are

computed from the eight nuisance parameters and
the four IGM-related functions measured from the
Central simulation. For instance, we use Equation
3 to compute the thermal broadening scale (σvel

T )
in velocity units at redshift zi, and the comoving
scale passed to the emulator is σcom

T = σvel
T (1 +

zi)/H(zi).

• For each redshift, we ask the emulator to predict
the P1D corresponding to the six emulator param-
eters computed above. The emulator prediction is
in comoving units, and we use H(zi) to translate
it to velocity units.
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• The emulator also returns an uncertainty associ-
ated to the prediction, that we add to the data
covariance (after translating the emulator covari-
ance to velocity units).

• We use these ingredients to compute a Gaussian
likelihood, and multiply it by the prior probability
described above.

We use emcee (Foreman-Mackey et al. 2013) to run
Monte Carlo Markov Chains, and we use GetDist

(Lewis 2019) to make contours plots with marginalised
posteriors.

3. COSMOLOGICAL INFORMATION IN THE Lyα
P1D

In this section we follow the methodology described in
Section 2 to fit cosmological parameters from a synthetic
measurement of P1D. We refer to these as direct fits.

In Figure 1 we show the marginal constraints on cos-

mological parameters when analysing mock data from
the Central simulation. In the standard analysis (blue),
we vary five cosmological parameters and eight nuisance
parameters describing the IGM that are not shown. For

comparison, the black lines show the constraints from
the priors described in Table 2.

It is clear that Lyα P1D alone cannot measure well

these five cosmological parameters, and that the results
strongly depend on the choice of priors (the impact of
the prior choice is discussed in Appendix A). For in-

stance, the constraints on As are affected by the max-
imum value allowed by the prior, and its lower bound
is a consequence of the prior on neutrino masses Σmν

being positive.

On the top right corner of Figure 1 we also show the
marginal posteriors for the two derived parameters de-
scribing the linear power spectrum at z = 3 (Equations 4

and 5). It is clear that adding P1D reduces dramatically
the area of the prior contours. In the next sections we
will refer to these as the compressed parameters, since
they are able to compress most of the cosmological in-
formation contained in the Lyα P1D.

3.1. Fixed template and fiducial cosmology

The red contours in Figure 1 show a simplified ver-
sion of the analysis where only the primordial power
parameters (As, ns) and the eight IGM parameters are
varied. In other words, we use a fixed template 10 for
the linear power PL(z, k) and rescale it with these two

10 This term is commonly used in redshift-space distortion (RSD)
analyses of galaxies to refer to analyses with fixed transfer func-
tions (Alam et al. 2021).

parameters. This analysis is significantly faster that the
standard analysis, since we only need to call CAMB a
single time to compute the transfer function for the fidu-
cial cosmology.

The template analysis can be seen as an analysis with
infinitely tight priors on the other cosmological par-
maters (ωc, H0, Σmν). While the constraints on the tra-
ditional cosmological parameters (As, ns) are strongly
affected by this change in the priors, the constraints on
the compressed parameters (∆2

?, n?, top right panel)
remain the same.

In this particular realisation of the analysis, we have
use used a template computed with the same cosmol-
ogy that was used to run the simulation. Even in the
standard analysis (blue contours in Figure 1) we had
to assume a value for the baryon density (ωb = 0.022).
We will use the term fiducial cosmology to refer to the
cosmological parameters that are being kept fixed in the
analysis. Obviously in a real analysis the true cosmology
is not known, and so we next test the effect of changing

this fiducial comsmology on our results.
In the top panels of Figure 2 we redo the template

analysis when using different fiducial cosmologies, with

the wrong CDM density (in red) or the wrong sum of the
neutrino masses (in blue). While there is a clear bias on
the primordial power parameters (left), the compressed

parameters are much less affected by the choice of fidu-
cial cosmology.

The bottom panels of the same figure show a template
analysis for the three test simulations described in Table

1. In all three analyses we use the Central cosmology
as our fiducial cosmology. As can be seen in the left
bottom panel, this results in biased posteriors for the

primordial power parameters in the Neutrino and Run-
ning simulations (stars identify the true values used in
each simulation). However, the marginal posteriors of
the compressed parameters are again recovered success-
fully (right bottom panel). These marginal posteriors in
the bottom right panel will be used in the next section.

4. JOINT ANALYSIS WITH CMB

In the previous sections we discussed cosmological fits
from the Lyα P1D alone, with only weak priors on cos-
mological parameters. We showed that we can measure
very well the amplitude (∆2

?) and slope (n?) of the linear
power spectrum around z? = 3 and kp = 0.009s km−1,
and that the constraints on these compressed parame-
ters were unbiased, and do not depend on our choice of

priors or fiducial cosmology.
In this section we discuss joint cosmological analysis

with anisotropies in the Cosmic Microwave Background
(CMB). CMB and P1D measurements are very comple-
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Figure 1. Direct fits to cosmological parameters from a mock P1D measurement from the Central simulation. We show
the marginal posteriors on the five cosmological parameters that are being sampled. The top-right panel shows the marginal
posteriors on the two derived parameters that will be used to compress the likelihood. Black lines correspond to running the
analysis with only the prior, and dotted gray lines show the true values used to generate the mock. The blue contours show
constraints from the P1D with all five cosmology parameters free. In the red contours, we show results where we use a template
cosmology, and fix all cosmology parameters to the values in the Central simulation, except As and ns which are kept free. We
investigate the dependence of our posteriors on this choice of template in Figure 2. For concision, we omit contours for the IGM
parameters.

mentary, since together they cover a very wide range of
scales and redshifts. This has made these joint analy-
ses very popular in the past (Phillips et al. 2001; Verde
et al. 2003; Spergel et al. 2003; Seljak et al. 2005, 2006;
Palanque-Delabrouille et al. 2015a,b, 2020), and they
are forecasted to provide some of the tightest constraints
on the sum of the neutrino masses and on the running

of the spectral index from future surveys (Font-Ribera
et al. 2014).

Instead of using an actual CMB likelihood, for simplic-
ity we use a Gaussian likelihood on the relevant cosmo-
logical parameters. The Gaussian likelihood uses a co-
variance matrix obtained from the official Planck chains

11. The centre of the Gaussian has been set to the values
used in the different test simulations described in Sec-
tion 2. The approximated CMB likelihood can be seen
in solid black contours in Figures 3 (free neutrino mass)
and 4 (free running).

The results in Figure 3 are from a joint analysis of
the CMB and our mock P1D from the Neutrino simula-
tion, when varying 6 cosmological parameters (As, ns,
ωb = Ωbh

2, ωc = Ωch
2, Σmνand θMC), with the priors

described in Table 2. Even though we sample θMC, we
plot the contours for H0, computed as a derived param-
eter.

11 For chains with massive neutrinos, we have computed the co-
variance around its best-fit value (Σmν = 0) and not around its
mean.
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Figure 2. Top panels show marginal constraints on the primordial power parameters (left) and on the compressed parameters
(right), when analysing the Central simulation with different fiducial cosmologies. The fiducial cosmology in the default analysis
is the same one that was used to run the Central, and stars mark the true value used in the simulation. When using a different
fiducial cosmology, with an incorrect value of the CDM density (red) or neutrino masses (blue) we get biased constraints on
primordial power parameters. On the other hand, the constraints on the compressed parameters are much less affected by the
choice of fiducial cosmology. The bottom panels show equivalent constraints for the three test simulations, when analysed with
the Central cosmology as fiducial. Note that the Central (black) and Running (blue) simulations have the same values for the
compressed parameters, but very different values for the primordial power spectrum (including different value of the running
αs).

The blue contours show a joint fit using the direct
P1D likelihood, i.e., we have varied at the same time the
cosmological parameters and the 8 nuisance parameters
that were also used in Section 3 to describe the uncer-
tainties in the physics of the IGM.

The red contours, on the other hand, use the marginal
posterior on the linear power parameters (∆2

?, n?) ob-
tained from the Lyα P1D alone. In more detail, to obtain
the red contours we:

• Run a template fit to the Lyα P1D alone, varying
8 IGM parameters and 2 cosmological parameters
(As, ns), as described in Section 3.

• Use a Kernel Density Estimator (KDE, from
SciPy (Virtanen et al. 2020)) to model the
marginal posteriors on the two compressed param-
eters (∆2

?, n?), shown in the bottom right panel of
Figure 2.

• Run a joint analysis of CMB and the marginal Lyα
P1D posterior, varying 6 cosmological parameters
(As, ns, ωb, ωc, Σmν and θMC). It is important

to note that in this last step one does not need
to use an emulator, or worry about the nuisance
parameters describing the IGM; these have already
been marginalised over in the previous steps.
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Figure 3. Cosmological constraints from CMB + Lyα P1D, for mock data from the Neutrino simulation. Blue contours use a
direct P1D likelihood, while red contours use the marginal posterior on linear power parameters (∆2

?,n?). Black contours show
the CMB-only results, with the grey dashed lines representing the values in the mock simulation. The primordial power is
assumed to have no running in this analysis.

It is remarkable that in both cases we recover the true

value for the sum of the neutrino masses, even though
our emulator was constructed from simulations that as-
sume massless neutrinos. It is also remarkable how

similar are the joint constraints when using the direct
(blue) and compressed (red) likelihoods. This implies
that there is negliglble loss of cosmological information
when compressing the P1D into marginal constraints on
the linear power spectrum.

In Figure 4 we present a similar analysis for the Run-
ning simulation, where we have assumed that neutrinos
are massless but we have explored models with running
of the spectral index αs. Here again we recover the right
cosmology, and both approaches give very consistent re-
sults.

5. DISCUSSION

In Section 3 we have shown that the Lyα P1D can ro-
bustly measure two parameters describing the amplitude
and slope of the linear power spectrum at a central red-
shift z? = 3, and around a pivot point k? = 0.009 s km−1

defined in velocity units. We have shown that we recover
unbiased results independent of the fiducial cosmology

assumed in the fits, even when analysing models that

were not included in the training of our LaCE emulator.
In Section 4 we have shown that, in the context of joint

analyses with CMB data, the cosmological information

in the Lyα P1D can be captured with the marginalised
posteriors of these two parameters. We have explicitly
shown that this is the case for the two single-parameter
extensions to the ΛCDM model where the P1D is fore-

casted to contribute the most (Font-Ribera et al. 2014):
models with massive neutrinos (Figure 3) and models
with running of the spectral index of primordial fluctu-
ations (Figure 4).

Exotic cosmological models might require more com-
plex implementations of the emulation and compression
schemes discussed in this work. For instance, models
with either warm or fuzzy dark matter predict that
the linear power spectrum could be strongly suppressed
on sub-megaparsec scales, and the Lyα forest has pro-

vided some of the tightest constraints on these mod-
els (Viel et al. 2013; Iršič et al. 2017b,a; Murgia et al.
2018; Palanque-Delabrouille et al. 2020; Rogers & Peiris
2021b). In order to use the LaCE emulator in these stud-
ies, one would need to add extra emulator parameters
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Figure 4. Same as Figure 3, except now using the mock data from the Running simulation. Neutrino masses are fixed to 0 in
this analysis.

describing the suppression of the linear power, and run
extra simulations exploring them. Equivalently to ∆2

?

and n?, one would need to define other compressed pa-

rameters to capture the relevant information present in
the P1D likelihood. Since the P1D measurements are
naturally carried out in velocity units, these extra pa-
rameters would also need to be defined in velocity units,

otherwise the cutoff scale would depend on the assumed
model of the expansion rate H(z).

In the next few years, the Dark Energy Spectroscopic
Instrument (DESI) will measure with unprecedented ac-
curacy the Lyα P1D, enabling very precise constraints on
the linear power spectrum of matter fluctuations around
z = 3. We expect that the compression scheme discussed
here will significantly increase the impact of these mea-
surements, and it will simplify joint analyses with exter-
nal datasets.
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Figure 5. Marginalised 1D and 2D posterior distributions on compressed parameters, corresponding to analyses of the Central
mock data. In blue we show the constraints from a direct P1D analysis using the loose Gaussian priors, and in red we show the
constraints from an equivalent template fit (fixed values for ωc, H0 and Σmν); these 2D contours were already presented in the
top right panel of Figure 1. The black (green) dotted contours show the constraints from a direct (template) fit when not using
any Gaussian prior, and demonstrate that the role of the Gaussian prior on the compressed constraints is very minor.

APPENDIX

A. IMPACT OF PRIOR CHOICE

The results presented in the main text used a Gaussian prior described in Table 2. In Figure 5 we demonstrate that
the marginalised posteriors for the compressed parameters are not affected by this prior.

We start by showing the results from a direct analysis (blue contours) and a template analysis (red contours) that

include the Gaussian prior; these are the contours already presented in the top right panel of Figure 1. These can be
compared respectively to the black and green dotted contours, where we have not included the Gaussian prior.

B. IMPACT OF COSMIC VARIANCE IN THE EMULATOR PREDICTIONS

In the main text we have analysed simulations that had initial conditions generated with the same random phases
than the simulations used to train the LaCE emulator. In order to study the impact of cosmic variance in the emulator
predictions, in 6 we show the results when analysing a test simulation diff seed (red contours) that has the same
physics than the Central simulation (blue contours), but has different random phases in the initial conditions.

In the same figure we also compare the results when using two different implementations of the LaCE emulator: the
polyfit framework (solid lines), used in the main text, emulates the value of the coefficients of polynomial fits describing
the Lyα P1D(Equation 1); the k bin framework (dotted lines), used in Pedersen et al. (2021), directly emulates the
value of Lyα P1D on a fine grid of wavenumbers.

It is clear that the k bin emulator gives biased results, probably because it is trying to fit different noise spikes than
the ones used in the training sample. On the other hand, the polyfit emulator is able to give unbiased results even
when analysing mock data with different cosmic variance.

C. EXTENDED COMPRESSION SCHEMES

In Section 3 we have proposed to compress the cosmological information in P1D into two parameters describing the

amplitude (∆2
?) and slope (n?) of the linear power spectrum at z? = 3, around a pivot point k? = 0.009 s km−1.

We have shown in Section 4 that this compression is lossless in the context of joint analyses with the CMB with free
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Figure 6. Marginalised 1D and 2D posterior distributions on compressed parameters, corresponding to template fits to the
Central mock data (in blue) discussed in Figure 1, and fits to mock data with different random phases (diff seed, in red). In
solid lines show the constraints when using the polyfit framework used in the main text, where we emulate the coefficients of
polynomial fits to P1D. The dotted lines, on the other hand, use the k bin framework that was used in Pedersen et al. (2021),
where we emulate the value of P1D on a grid of wavenumbers. While both frameworks give consistent results when analysing
the Central simulation, it is clear that the k bin emulator gives biased results when analysing simulations with different random
phases (dotted red contours).

neutrino masses (Σmν), or free running of the primordial power spectrum (αs). In Section 5 we mentioned that one
might need to add extra parameters describing the shape of the linear power at z?. For instance, a third parameter
describing the curvature around the pivot point (McDonald et al. 2005), or a cut-off to describe the small-scales
suppression in non-cold dark matter models. In this appendix, instead, we discuss possible extensions to capture other

cosmological information beyond the shape of the linear power at z?.
Measurements of the Lyα P1D typically cover a wide range of redshifts. For instance, Chabanier et al. (2019b)

measured P1D from z = 2.2 to z = 4.6. It might seem surprising that we can capture all the cosmological information

when parameterising the linear power spectrum at a single redshift z? = 3. Moreover, while the shape of the linear
power spectrum is constant when described in comoving units, the same is not true when described in velocity units.
Our pivot scale k? correspond to different comoving separations at different redshifts, and one could imagine measuring

H(z)/(1 + z) from the redshift evolution of the shape of the linear power in velocity units.
In order to capture information from these two effects, we introduce two extra parameters. We parameterise the

growth of structure around z? with the logarithmic growth rate f? = f(z?), defined as usual:

f(z) =
∂ lnD(z)

∂ ln a(z)
, (C1)

with f? = 1 in an Einstein-de Sitter (EdS) universe.
Similarly, we parameterise the evolution of the expansion rate around z? in terms of g? = g(z?), defined as:

g(z) =
∂ lnH(z)

∂ ln(1 + z)3/2
, (C2)

such that g? = 1 corresponds again to an EdS universe.

C.1. Template fits with f? and g?

Instead of looking at posteriors of f? and g? computed as derived parameters in fits for a particular model, we would
like to directly sample these without assuming any cosmological model. For instance, in a ΛCDM universe, without
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Figure 7. Marginalised 1D and 2D posterior distributions on compressed parameters when analysing the mock dataset from
the Neutrino simulation. In the red contours we fix f? and g? to the fiducial values described in the text. The dashed lines
show the true values in the mock simulation, and the shaded areas of the 1D posteriors show the 68% credible region.

curvature or massive neutrinos, both f? and g? would be just a function of Ωm. However, more exotic models could
decouple the linear growth from the expansion of the universe, making these parameters independent.

Therefore, in this appendix we directly sample the four compressed parameters (∆2
?, n?, f?, g?) and the same

eight nuisance parameters used in the main text to model the IGM. We use a uniform prior range of [0.24, 0.47],
[−2.352,−2.25], [0.9, 1.0], [0.9, 1.0] for each parameter respectively. The details of how we do this are detailed later in

Section C.2.
In figure 7 we show constraints on compressed parameters, after marginalising over the IGM. We use as a mock

dataset the Neutrino simulation, and show two sets of constraints. In red, we have fixed f? and g? to the values of
the fiducial cosmology (f? = 0.981, g? = 0.968), whereas in blue they are left as free parameters. The dashed lines
show the true values in the mock simulation (f? = 0.989, g? = 0.969). We note that f? is very poorly constrained,
implying that the P1D alone is not highly sensitive to the redshift evolution of the linear power spectrum. This result
is consistent with the findings of McDonald et al. (2005), although we confirm that this is still the case when using

high precision datasets. The posterior for g? is slightly better constrained, although it can only rule out very low
values of g? < 0.9. Additionally there is very little effect on the posteriors for ∆2

? and n? when marginalising over f?
and g? when compared to fixing them.

Note that the red contours were constructed assuming the wrong background cosmology (wrong values of f? and
g?), but that the constraints on ∆2

? and n? are nevertheless unbiased.

C.2. Reconstructing the linear power spectrum

Here we describe the procedure for mapping from a set of values for the compressed parameters (∆2
?, n?, f?, g?)

to the 11 pairs of emulator parameters (∆2
p, np) values required to generate theoretical predictions for the P1D from

the emulator, one at each redshift. This is done using a fiducial cosmology, as outlined below. We will use k to refer
to the (modulus of the) 3D wavenumbers in comoving coordinates, i.e., in Mpc. We will use q to refer to the same
wavenumber in velocity units. They are related by:

k =
H(z)

1 + z
q = M(z) q . (C3)
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M(z) will play an important role in this discussion.
We will use P (k) to refer to (3D) power spectra in comoving units, i.e., with units of Mpc3. We will use Q(q) to

refer to (3D) power spectra in velocity units, i.e., with units of (kms−1)3. They are related by:

Q(z, q) = M3(z) P (z, k = M(z)q) . (C4)

In our code we will use a fiducial cosmology as a reference, and parameterise our models as deviations from that
cosmology. We will use either subscripts 0 or superscripts 0 to identify functions for the fiducial cosmology. We address
changes to the shape of the power spectrum, as described by ∆2

?, n? (and α?) first, and then later address changes to
the redshift evolution using f? and g?. We can now define the ratio of the linear power between any model and the
fiducial one, at the central redshift z?, and in velocity units:

B(q) =
Q?(q)

Q0
?(q)

. (C5)

This will be another important function, tightly related to the linear power parameters that we will end up using.
We fit a second order polynomial to the logarithm of the linear power spectrum at z?, in velocity units, around a

pivot point q?. By default we use z? = 3 and q? = 0.009 s/km, and we fit the polynomial in a range of wavenumbers

defined as q?/2 < q < 2q?
12.

Q?(q) ≈ A

(
q

q?

)n?+α?/2 ln(q/q?)

, (C6)

or equivalently

lnQ?(q) ≈ lnA+ [n? + α?/2 ln(q/q?)] ln(q/q?) . (C7)

n? is the first log-derivative around q?, and α? is the second log-derivative around the same point. Note that the poly-
nomial fit, however, returns (lnA, n?, α?/2). Finally, we define a dimensionless parameter describing the amplitude,
∆2
? = A q3?/(2π

2). When reconstructing the linear power spectrum using a fiducial cosmology, we use differences in
the shape parameters with respect to the fiducial ones:

lnB(q) = lnQ?(q) − lnQ0
?(q)

≈
(
∆2
? − ∆2

? 0

)
+

[(
n? − n0?

)
+
α? − α0

?

2
ln(q/q?)

]
ln(q/q?) . (C8)

We are also concerned with reconstructing the linear power spectrum at redshifts other than z?. We ignore neutrinos

for now, and work with just the CDM+baryon power spectrum. In this case we can use the linear growth factor D(z),
defined as

P (z, k) =

[
D(z)

D?

]2
P?(k) , (C9)

12 We do the fit using numpy.polyfit
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where in general functions y? = y(z?). We can write the power spectrum at an arbitrary redshift as a function of the
fiducial one:

Q(z, q) = M3(z) P (z, k = M(z)q)

= M3(z)

[
D(z)

D?

]2
P?(k = M(z)q)

=

[
M(z)

M?

]3 [
D(z)

D?

]2
Q?(q

′ = M(z)/M?q)

=

[
M(z)

M?

]3 [
D(z)

D?

]2
B(q′ = M(z)/M?q) Q

0
?(q
′ = M(z)/M?q)

=

[
M(z)

M?

]3 [
D(z)

D?

]2
B(q′ = M(z)/M?q)

[
M0
?

]3
P 0
? (k = M0

?M(z)/M?q)

=

[
M(z)

M?

]3 [
D(z)

D?

]2
B(q′ = M(z)/M?q)

[
M0
?

]3 [ D0
?

D0(z)

]2
P 0(z, k = M0

?M(z)/M?q)

=

[
M(z)

M?

]3 [
D(z)

D?

]2
B(q′ = M(z)/M?q)

[
M0
?

M0(z)

]3 [
D0
?

D0(z)

]2
Q0(z, q′ = (M0

?M(z))/(M?M0(z))q)

= [m(z)]
3

[d(z)]
2
B(q′ = m(z)M0(z)/M0

? q) Q
0(z, q′ = m(z)q) ,

where for convenience we have defined two functions,

m(z) =
M(z)

M?

M0
?

M0(z)
(C10)

and

d(z) =
D(z)

D?

D0
?

D0(z)
, (C11)

that describe differences in expansion rate and in linear growth respectively.

Using the definition of g? in Equation C2, we approximate m(z) using the difference of g? between the input and
the fiducial cosmology as:

lnm(z) ≈ 3

2

(
g? − g0?

)
ln

(
1 + z

1 + z?

)
, (C12)

or equivalently

m(z) ≈
(

1 + z

1 + z?

)3/2(g?−g0?)

. (C13)

Similarly, we approximate d(z) using the difference of f? between the input and the fiducial cosmology as:

ln d(z) ≈ −
(
f? − f0?

)
ln

(
1 + z

1 + z?

)
, (C14)

or equivalently

d(z) ≈
(

1 + z

1 + z?

)−(f?−f0
? )

. (C15)

With these equations, for a given set of (∆2
?, n?, α?, f?, g?), Q(z, q) can be estimated. We then use the approximation

of m(z) to convert the velocity unit power spectrum to a comoving power spectrum, and fit a polynomial over the
range kp/2 < k < 2k to obtain values for ∆2

p and np. Note that the emulator returns a P1D in comoving units. The
final step is to convert this into velocity units, once again using the above approximation of m(z). This reconstruction

process and the composite approximations have been compared against the true values generated in CAMB, and we
verified that they are accurate to within the percent level across all redshifts and extended model spaces considered
in this paper.
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Palanque-Delabrouille, N., Yèche, C., Baur, J., et al. 2015b,

JCAP, 2015, 011, doi: 10.1088/1475-7516/2015/11/011

Pedersen, C., Font-Ribera, A., Kitching, T. D., et al. 2020,

JCAP, 2020, 025, doi: 10.1088/1475-7516/2020/04/025

Pedersen, C., Font-Ribera, A., Rogers, K. K., et al. 2021,

JCAP, 2021, 033, doi: 10.1088/1475-7516/2021/05/033

Phillips, J., Weinberg, D. H., Croft, R. A. C., et al. 2001,

ApJ, 560, 15, doi: 10.1086/322369

Planck Collaboration, Aghanim, N., Akrami, Y., et al.

2020, A&A, 641, A6, doi: 10.1051/0004-6361/201833910

Rogers, K. K., & Peiris, H. V. 2021a, Phys. Rev. D , 103,

043526, doi: 10.1103/PhysRevD.103.043526

—. 2021b, PhRvL, 126, 071302,

doi: 10.1103/PhysRevLett.126.071302

Rogers, K. K., Peiris, H. V., Pontzen, A., et al. 2019,

JCAP, 2019, 031, doi: 10.1088/1475-7516/2019/02/031

Seljak, U., Slosar, A., & McDonald, P. 2006, JCAP, 2006,

014, doi: 10.1088/1475-7516/2006/10/014

Seljak, U., Makarov, A., McDonald, P., et al. 2005, Phys.

Rev. D , 71, 103515, doi: 10.1103/PhysRevD.71.103515

http://doi.org/10.3847/1538-4357/aaf576
http://doi.org/10.1093/mnrasl/slw098
http://ascl.net/1710.012
http://doi.org/10.1111/j.1365-2966.2011.18245.x
http://doi.org/10.1088/1475-7516/2019/02/050
http://doi.org/10.1088/1475-7516/2014/07/005
http://doi.org/10.1088/1475-7516/2021/12/054
http://doi.org/10.1093/mnras/stz2310
http://doi.org/10.1088/1475-7516/2019/07/017
http://doi.org/10.1086/344099
http://doi.org/10.1086/305289
http://doi.org/10.1088/1475-7516/2020/05/005
http://doi.org/10.1088/0004-6256/145/1/10
http://doi.org/10.3847/0004-6256/151/2/44
https://arxiv.org/abs/1611.00036
http://doi.org/10.3847/1538-4357/abb085
http://doi.org/10.5281/zenodo.1451799
http://doi.org/10.1088/1475-7516/2014/05/023
http://doi.org/10.1086/670067
http://doi.org/10.1046/j.1365-8711.2002.05490.x
http://github.com/SheffieldML/GPy
http://doi.org/10.1088/1475-7516/2010/07/022
http://doi.org/10.1103/PhysRevLett.119.031302
http://doi.org/10.1103/PhysRevD.96.023522
http://doi.org/10.1088/1475-7516/2020/05/042
http://doi.org/10.1016/j.physrep.2006.04.001
https://arxiv.org/abs/1910.13970
http://doi.org/10.1086/309179
http://doi.org/10.1086/317079
http://doi.org/10.1086/497563
http://doi.org/10.1146/annurev-astro-082214-122355
http://doi.org/10.1103/PhysRevD.98.083540
http://doi.org/10.1088/1475-7516/2020/04/038
http://doi.org/10.1088/1475-7516/2015/02/045
http://doi.org/10.1088/1475-7516/2015/11/011
http://doi.org/10.1088/1475-7516/2020/04/025
http://doi.org/10.1088/1475-7516/2021/05/033
http://doi.org/10.1086/322369
http://doi.org/10.1051/0004-6361/201833910
http://doi.org/10.1103/PhysRevD.103.043526
http://doi.org/10.1103/PhysRevLett.126.071302
http://doi.org/10.1088/1475-7516/2019/02/031
http://doi.org/10.1088/1475-7516/2006/10/014
http://doi.org/10.1103/PhysRevD.71.103515


17

Spergel, D. N., Verde, L., Peiris, H. V., et al. 2003, ApJS,

148, 175, doi: 10.1086/377226

Springel, V. 2005, MNRAS, 364, 1105,

doi: 10.1111/j.1365-2966.2005.09655.x
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