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ABSTRACT
Local primordial non-Gaussianity (PNG) is a promising observable of the underlying physics of inflation, characterised by 𝑓 loc

NL .
We present the methodology to measure 𝑓 loc

NL from the Dark Energy Survey (DES) data using the 2-point angular correlation
function (ACF) with scale-dependent bias. One of the focuses of the work is the integral constraint. This condition appears when
estimating the mean number density of galaxies from the data and is key in obtaining unbiased 𝑓 loc

NL constraints. The methods
are analysed for two types of simulations: ∼ 246 goliat-png N-body small area simulations with 𝑓NL equal to -100 and 100, and
1952 Gaussian ICE-COLA mocks with 𝑓NL = 0 that follow the DES angular and redshift distribution. We use the ensemble of
goliat-png mocks to show the importance of the integral constraint when measuring PNG, where we recover the fiducial values
of 𝑓NL within the 1𝜎 when including the integral constraint. In contrast, we found a bias of Δ 𝑓NL ∼ 100 when not including
it. For a DES-like scenario, we forecast a bias of Δ 𝑓NL ∼ 23, equivalent to 1.8𝜎, when not using the IC for a fiducial value
of 𝑓NL = 100. We use the ICE-COLA mocks to validate our analysis in a realistic DES-like setup finding it robust to different
analysis choices: best-fit estimator, the effect of IC, BAO damping, covariance, and scale choices. We forecast a measurement of
𝑓NL within 𝜎( 𝑓NL) = 31 when using the DES-Y3 BAO sample, with the ACF in the 1 deg < 𝜃 < 20 deg range.
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1 INTRODUCTION

Cosmic inflation predicts that the primordial seeds, encoded in the
initial gravitational potential of the Universe, are described by close
to Gaussian random fields, for which all the statistical information is
contained in the two-point correlation function. We can parametrise
deviations from Gaussianity by using a parameter denoted by 𝑓NL,
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which represents the amount of primordial non-Gaussianity en-
coded in the three-point correlation of the fields. Primordial non-
Gaussianity (PNG) is claimed to be a smoking gun to differentiate
among the vast collection of inflationary models. In particular, pri-
mordial non-Gaussianity of the local type, parametrised by 𝑓 loc

NL , can
distinguish between canonical single-field and non-vanilla scenarios,
such as multi-field inflation (Pajer et al. 2013; Byrnes & Choi 2010).

The primordial seeds affect the formation of structures at different
epochs in cosmic history, implying that signals of PNG could appear
in different cosmological probes. An example is the constraints of
PNG coming from the cosmic microwave background (CMB) tem-
perature bispectrum. The latest Planck results present the tightest
constraints for local PNG with 𝑓 loc

NL = −0.9± 5.1 (Planck Collabora-
tion et al. 2020), but since Planck reached its cosmic variance limit,
another way to improve this constraint is desirable.

Similar to how PNG affects the temperature fluctuations in the
CMB, the non-Gaussian initial perturbations can also affect the dis-
tribution of dark matter overdensities, which in turn affects the distri-
bution of biased tracers of dark matter (e.g., galaxies, quasars). This
implies that PNG could also be constrained using the bispectrum
of such tracers, as has been studied in Jeong & Komatsu (2009);
Tasinato et al. (2014); Moradinezhad Dizgah et al. (2021).

Given the complexity of modelling the bispectrum, dominated by
late non-Gaussianities induced by non-linear evolution1 and other
difficulties such as non-linear bias, redshift space distortions, and the
window function of the survey (Gil-Marín et al. 2017; Sugiyama et al.
2019), a different method to look for primordial non-Gaussianity us-
ing late-time objects is desired. Another effect of PNG is on the halo
formation mechanism. Local primordial non-Gaussianity induces a
scale dependence on the linear bias between galaxies and the under-
lying dark matter over-densities. The scale dependence in the bias
creates a characteristic signal in the two-point correlation at very
large scales, which can be constrained using different large-scale
structure (LSS) biased tracers. (Dalal et al. 2008; Slosar et al. 2008;
Matarrese & Verde 2008). Some studies show that PNG can also
be constrained using galaxies with zero linear bias in low-density
environments (Castorina et al. 2018), or even negative biased traces,
such as voids (Chan et al. 2019).

Measurements of cosmological parameters using two-point corre-
lation functions have been done multiple times because they are easy
to model and have a large signal-to-noise ratio. This makes the scale-
dependent bias in the two-point correlation the more robust method
to constrain PNG. Previous measurements of PNG using the scale-
dependent bias have been presented in Slosar et al. (2008); Ross et al.
(2013); Giannantonio et al. (2014); Ho et al. (2015); Leistedt et al.
(2014); Castorina et al. (2019); Mueller et al. (2021).

One noticeable trend is that most of the current constraints come
from spectroscopic surveys. It has been shown in de Putter & Doré
(2017) that imaging surveys with high volumes could overcome red-
shift uncertainties and had the potential of breaking the 𝜎( 𝑓 loc

NL ) ∼ 1
barrier. Hence, upcoming photometric data from the Legacy Survey
of Space and Time (LSST) in the Vera Rubin Observatory 2 (LSST
Science Collaboration et al. 2009) is a promising source to break
current bounds.

This work is a first step to measure PNG with existing data from

1 It is worth mentioning that besides these difficulties, recent work using the
EFT of LSS for the bispectrum has proven to be helpful when constraining
local PNG from eBOSS data (Cabass et al. 2022).
2 https://www.lsst.org/

the Dark Energy Survey (DES)3 (DES Collaboration 2021), which
represents the state of the art in photometric surveys. Currently, the
DES has surveyed over ∼ 388 million galaxies in ∼ 5000 deg2 and
presents an opportunity to put the tightest constrains from photomet-
ric surveys (as will see in this work).

DES has successfully probed the nature of dark energy using
different cosmological probes (DES Collaboration 2018a; DES Col-
laboration 2021a; Porredon et al. (2021); Rodríguez-Monroy et al.
(2022)). One of them is the study of clustering of galaxies for the
measurement of the Baryon Acoustic Oscillation (BAO) scale (DES
Collaboration 2018b; DES Collaboration 2022b) using galaxy data.
The BAO scale measurement suggests that we could also use clus-
tering of galaxies at large scales for measuring PNG within DES.

This work presents the starting point in this direction by describing
the methods to constrain the 𝑓 loc

NL parameter using DES simulations.
We use the angular correlation function (ACF) as a summary statistic
for the galaxy distribution and show the effect that primordial non-
Gaussianities have on the angular clustering of galaxies via the scale-
dependent bias.

One of the main focuses of the work is on the integral constraint
(IC) (Groth & Peebles 1977; Peacock & Nicholson 1991; Beutler
et al. 2014; Ross et al. 2013; de Mattia & Ruhlmann-Kleider 2019).
The integral constraint corrects the modelled correlation function by
adding a constant, which comes from imposing that its integral over
the whole survey volume needs to vanish. This correction is found
to be key to obtaining unbiased PNG measurements.

The integral constraint was not relevant in the previous DES non-
PNG clustering analysis for two main reasons: First, its effect be-
comes relevant at very large scales. Secondly, for the case of BAO
measurements, its template includes marginalisation over nuisance
parameters, one of them being a constant shift in the amplitude of the
ACF. This shift mimics the integral constraint correction, implying
that any effect from it has already been marginalised.

In this paper, we use the angular correlation function with PNG,
and the integral constraint, as a theoretical template to measure the
value of 𝑓 loc

NL from simulated galaxy catalogues. The measurement is
based on Bayesian parameter inference using MCMC (Markov chain
Monte Carlo) sampling of a Gaussian likelihood function. The meth-
ods are analysed for two kinds of simulations. First, we introduce
the goliat-png mocks (Avila & Adame 2023), a set of 246 N-Body
simulations that have non-Gaussian initial conditions. We use these
simulations to remark on the importance of the integral constraint
when measuring 𝑓 loc

NL . Second, we use 1952 ICE-COLA mocks (Fer-
rero et al. 2021) that follow the DES angular and redshift distribution
of the Y3 BAO galaxy sample (Carnero Rosell et al. 2022) to vali-
date the pipeline. We show that it is robust against different analysis
choices, such as covariance modelling, 𝑓NL estimator, and scale cuts.
Finally, we forecast a measurement of the accuracy of 𝑓 loc

NL when
using the DES Y3 BAO sample data.

This paper is organised as follows. The steps to model angular
correlation function with scale-dependent bias are presented in Sec-
tion 2. In Section 3, we derive the integral constraint and show its
importance when dealing with local PNG. In Section 4, we describe
the simulations that we will use to test and optimise the methods.
Section 5 presents the tools needed to extract the 𝑓NL parameter. In
Section 6, we test the pipeline against the goliat-png simulations and
show how the integral constraint is needed to obtain unbiased values
of 𝑓NL. Once the methods are tested over non-Gaussian simulations,
we validate the pipeline using ICE-COLA simulations in Section 7.

3 https://www.darkenergysurvey.org/
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2 THEORY

In this section, we describe the impact of PNG on the two-point statis-
tics of biased tracers. First, we describe how non-Gaussian initial
conditions modify the bias relation, introducing the scale-dependent
bias. After, we show the effect that it has on the power spectrum.
Finally, we focus on the angular correlation function and show how
it is affected by local Primordial non-Gaussianity.

2.1 Gaussian galaxy bias

The spatial distribution of matter is set by the initial conditions com-
ing from cosmic inflation, which predicts a nearly scale-invariant
power spectrum and a close to Gaussian distribution for the pri-
mordial gravitational fields. During the matter domination era, dark
matter collapsed due to these gravitational potentials generating ha-
los which, as the Universe evolves, will serve as the backbones for
the creation of large-scale structures.

We will focus our analysis on angular separations of galaxies
larger than 1 degree. This choice is customary for the BAO analysis
because such scales are within the linear regime of perturbation
theory, simplifying the theoretical modelling (Abbott et al. 2022b). In
this regime, galaxies follow the trace of the dark matter overdensities
by the linear relation,

𝛿g (x) = 𝑏 𝛿m (x), (1)

where 𝑏 is a parameter called galaxy bias, which is found to be
constant at large scales under the standard Gaussian initial conditions.

In the non-linear regime, non-linear effects also generate a scale-
dependent bias, which affects only small scales. We will ignore such
effects throughout this work and refer the reader to Desjacques et al.
(2018) for an intensive review on the scale dependence of the galaxy
bias and other related effects.

The statistical distribution of dark matter overdensities is well de-
scribed by the matter power spectrum 𝑃m (𝑘), which depends on the
primordial power spectrum, coming from inflation, and the transfer
function 𝑇 (𝑘), which describes its evolution throughout cosmic his-
tory. Due to Equation 1, the biased relation between galaxies and
dark matter also appears in the galaxy power spectrum, as follows,

𝑃g (𝑘) = 𝑏2𝑃m (𝑘). (2)

As we will see in the following section, the linear relation be-
tween galaxies and dark matter will change when dealing with non-
Gaussian initial conditions.

2.2 PNG via scale-dependent bias

Deviations from Gaussianity in the initial conditions, coming from
inflation, is an active area of research due to the potential of unveiling
the nature of the primordial fields. In particular, we focus on PNG of
the local type (Komatsu & Spergel 2001),

ΦNG (x) = 𝜙G (x) + 𝑓 loc
NL (𝜙

2
G (x) − 〈𝜙2

G〉), (3)

where ΦNG (x) is the non-Gaussian Newtonian potential and 𝜙𝐺 (x)
is the Gaussian potential. Under this approximation, 𝑓 loc

NL is a con-
stant that parametrises deviations from Gaussian initial conditions.
Throughout this work, we will focus on local PNG; hence, from here
on, we will drop the superscript ’loc’ for simplicity.

Dalal et al. (2008) and Slosar et al. (2008) showed that PNG,
parametrised as Eq.(3), would change the way dark matter collapses
into halos, subsequently affecting galaxy formation. In the presence

of local PNG, the long wavelength modes of the primordial gravita-
tional potential couple with the smaller modes, responsible for the
local amplitude of matter fluctuations, producing a modulation in the
local number density of halos. The change in the local number den-
sity will add an extra contribution to the galaxy bias, which depends
on the scale. We can write the scale-dependent bias due to local PNG
as follows,

𝑏(𝑘) = 𝑏 + 𝑓NL𝛼(𝑘, 𝑧)
𝜕 ln 𝑛
𝜕 ln𝜎8

, (4)

where 𝑏 is the constant linear bias and 𝛿𝑐 = 1.686 is the critical
value of collapse for halo formation in an Einstein-de Sitter universe
(Fillmore & Goldreich 1984). Also,

𝛼(𝑧, 𝑘) = 3Ω𝑚

2𝐷 (𝑧)
𝐻2

0
𝑐2

𝑔(0)
𝑔(𝑧rad)

1
𝑘2𝑇 (𝑘)

, (5)

where 𝐻0 is the Hubble factor today 4, 𝑐 the light speed and Ω𝑚 the
matter density today. In addition, 𝑇 (𝑘) is the linear transfer function,
and 𝐷 (𝑧) is the linear growth factor, both normalised to 1 at 𝑘 = 0 and
𝑧 = 0, respectively. The factor 𝑔 (0)

𝑔 (𝑧rad) , with 𝑔(𝑧) = (1+𝑧)𝐷 (𝑧), arises
because 𝐷 (𝑧) is normalised to unity and can be omitted if normalised
to the scale factor during the matter-dominated era (Mueller et al.
2019). Its value is shown to be 𝑔 (0)

𝑔 (𝑧rad) ' 1.35.
One particularity of this scale-dependent bias is its 1/𝑘2 depen-

dence, implying that primordial non-Gaussianity affects the distri-
bution of galaxies only at very large scales. Throughout this work,
we will refer to scale-dependent bias as the one produced due to
primordial non-Gaussianity.

It has been shown in Slosar et al. (2008) that,

𝜕 ln 𝑛
𝜕 ln𝜎8

= 2𝛿𝑐 (𝑏 − 𝑝) (6)

where the parameter 𝑝 was introduced to show deviations from the
original model of Dalal et al. (2008) to take into account different
tracers. We refer the reader to Barreira (2020) for an analysis of
the impact of the parameter 𝑝 and other assumptions on the non-
Gaussian bias. For the case of ICE-COLA mocks, we will fix 𝑝 = 1,
which is customary in many analyses and is considered the prediction
for a mass-selected galaxy/halo sample. Finally, the scale-dependent
bias we will use in this work can be written as follows,

𝑏(𝑘) = 𝑏 + 2(𝑏 − 𝑝) 𝑓NL𝛼(𝑘, 𝑧)𝛿𝑐 . (7)

As an example of the effect of the scale-dependent bias, in Figure 1,
we compute the linear matter power spectrum from CAMB6 (Lewis
et al. 2000; Howlett et al. 2012) and apply a scale-dependent bias as
given in Eq.(7) to show the galaxy power spectrum for different values
of 𝑓NL. The power spectrum is computed using the cosmological
parameters from the ICE-COLA simulation presented in subsection
4.2.

Since the scale-dependent bias is squared in the galaxy power
spectrum, we will have contributions with different dependence on

4 If one uses k in units of ℎMpc−1, then 𝐻0 = 100ℎ [Mpc−1km s−1 ] with
ℎ = 0.7
5 This value is slightly cosmology dependent. When comparing against the
ICE-COLA mocks, we will consider it as 1.3 since we do not expect that it
affects the constraints if we plan to recover 𝑓NL = 0. On the other side, for
the non-Gaussian goliat-png simulations, it was shown to be 1.316 for the
fiducial cosmology of the simulations.
6 https://camb.readthedocs.io

MNRAS 000, 1–17 (2022)
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Figure 1. Theoretical linear galaxy power spectrum with scale-dependent bias
for 𝑓NL = 0 (blue line), 𝑓NL = 100 (orange line) and 𝑓NL = −100 (green line).
The power spectrum is computed using the fiducial cosmological parameters
of the goliat-png simulations described in Table 1.

𝑓NL. This dependence can be seen as follows,

𝑏(𝑘)2 ∝ 𝑏2 + 𝐴 𝑏
𝑓NL
𝑘2 + 𝐵

𝑓 2
NL
𝑘4 , (8)

where 𝐴 and 𝐵 are prefactors that do not depend on the scale (since
𝑇 (𝑘) becomes constant at very large scales). The previous equation
tells us that we have quadratic and linear terms in 𝑓NL and a term that
does not depend on 𝑓NL. Figure 1 shows how the scale-dependent bias
generates an enhancement of the power spectrum at large scales for
𝑓NL = 100. The situation is more interesting for 𝑓NL = −100, where
the linear term in 𝑓NL generates a reduction in the power spectrum
until a given scale, then the quadratic term overcomes, explaining
the sharp feature around at 𝑘 = 0.005ℎMpc−1.

2.3 BAO-damped galaxy power spectrum

We may need to use precise theoretical modelling to obtain an opti-
mal measurement of 𝑓NL. For this, we follow the methodology used
in DES Collaboration 2022b for the DES Y3 BAO template, based on
extensions of the linear power spectrum using IR resummation meth-
ods optimised for an accurate description of the damping in the BAO
peak (Blas et al. 2016; Ivanov & Sibiryakov 2018). The particularity
of this method relies on a derivation of the BAO damping based on
first principles, in contrast with other models where the damping is
obtained from fits over simulations. In subsection 7.3, we will com-
pare the impact of using the BAO-damped galaxy power spectrum
versus linear theory without damping on the 𝑓NL measurement.

The BAO-damped galaxy power spectrum is given by:

𝑃(𝑘, 𝜇, 𝑧) = (𝑏(𝑘) + 𝑓 (𝑧)𝜇2)2 [(𝑃lin (𝑘) − 𝑃nw (𝑘))𝐷BAO + 𝑃nw (𝑘)] ,
(9)

where 𝑃lin (𝑘) is the linear matter power spectrum. 𝑃nw (𝑘) is the
smooth "no-wiggle" power spectrum. We refer the reader to DES
Collaboration 2022b for further details on how to compute it. The
function 𝑓 (𝑧) is the growth rate of structures, defined under the
following approximation (Linder 2005),

𝑓 (𝑧) ≈ Ω𝑚 (𝑧)𝛾 , (10)

with 𝛾 = 0.55. The parameter 𝜇 is defined as the cosine of the angle
between the line of sight and wave vector k.

In Equation 9, 𝐷BAO (𝑧) is a Gaussian damping defined by:

𝐷BAO (𝑧) = exp{−𝑘2 (𝜇2Σ2
‖ + (1 − 𝜇2)Σ2

⊥ + 𝑓 (𝑧)𝜇2 (𝜇2 − 1)𝛿Σ2), }
(11)

where Σ‖ (𝑧) = (1 + 𝑓 (𝑧)Σ⊥). The parameters Σ⊥ and 𝛿Σ can be
computed directly for a fixed cosmology. In the case of ICE-COLA
cosmology, at 𝑧 = 0, Σ⊥ = 5.8Mpc/ℎ and 𝛿Σ = 3.18Mpc/ℎ and
they are scaled by the growth factor to any other redshift (DES
Collaboration 2022b).

When comparing against the ICE-COLA simulations, we will in-
clude the BAO damping in the power spectrum, as presented in this
subsection, since we will be using these simulations to validate the
methods and improve the accuracy for 𝑓NL, implying the need for a
more precise theory modelling. When comparing against goliat-png
simulations, we will not consider BAO damping because we use those
simulations to recover higher 𝑓NL values, and we do not expect the
damping to be a determinant factor in their accuracy. We will come
back to this discussion on subsection 7.3, where we will assess the
impact of the BAO damping on the 𝑓NL measurement. Also, notice
that the scale-dependent bias described in the previous subsection
is already added in Eq.(9), adding extra contributions to the galaxy
power spectrum.

With the previously computed power spectrum, we can use a mul-
tipole expansion in Legendre polynomials of 𝜇,

𝑃ℓ (𝑘, 𝑧) ≡
(2ℓ + 1)

2

∫ 1

−1
d𝜇𝑃(𝑘, 𝜇, 𝑧)𝐿ℓ (𝜇), (12)

to take into account the anisotropies caused by redshift space distor-
tions to the line of sight. Notice that the power spectrum is computed
at 𝑧 = 0 and does not include the growth factor 𝐷 (𝑧) since this will
be added when calculating the angular correlation function in the
next section.

2.4 Angular correlation function with PNG

Using the previously described power spectrum, we can compute its
configuration space counterpart, the two-point correlation function
(2PCF), using the multipole expansion of Eq.(12),

𝜉 (𝑟, r̂ · l̂) =
∑︁

ℓ=0,2,4
𝜉ℓ (𝑟)𝐿ℓ (r̂ · l̂), (13)

𝜉ℓ (𝑟) =
𝑖ℓ

2𝜋2

∫ ∞

0
d𝑘 𝑘2 𝑗ℓ (𝑘𝑟)𝑃ℓ (𝑘, 𝑧), (14)

where 𝑟 is the separation distance between galaxies and 𝑗ℓ is the
spherical Bessel function. Notice that the previously computed power
spectrum is evaluated at the mean redshift of the photo-z distribution,
𝑧. The correlation function is also a function of the angle between
the line of sight direction l̂ and the direction of the separation vector
r̂, given by

r̂ · l̂ = 𝜒(𝑧2) − 𝜒(𝑧1)
𝑟

cos
𝜃

2
, (15)

where 𝜒(𝑧) is the comoving distance, and 𝜃 is the angular separation
between two galaxies.

It is important to remember that because of primordial non-
Gaussianity, we now have a scale-dependent bias 𝑏(𝑘) that will be a
part of each 𝑃ℓ (𝑘, 𝑧) and needs to be considered for the computation
of the 2PCF.

We can compute the angular correlation function (ACF) (Crocce
et al. 2011a; Chan et al. 2018) as the 2-dimensional projection of the
2PCF following the galaxy photo-z distribution, 𝑁 (𝑧), normalised

MNRAS 000, 1–17 (2022)
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such that its integral over redshift is equal to 1. With this, the ACF is
given by:

𝑤(𝜃) =
∫

d𝑧1

∫
d𝑧2𝜙(𝑧1)𝜙(𝑧2)𝜉 (𝑟 (𝑧1, 𝑧2, 𝜃), r̂ · l̂), (16)

which is a function of the angular separation defined through the
relation,

𝑟 (𝑧1, 𝑧2, 𝜃) =
(
𝜒(𝑧1)2 + 𝜒(𝑧2)2 − 2𝜒(𝑧1)𝜒(𝑧2) cos 𝜃

)1/2
. (17)

where 𝜙(𝑧) = 𝑁 (𝑧)𝐷 (𝑧). The previously obtained power spectrum
was computed at 𝑧 = 0, so 𝜙(𝑧) incorporates its evolution to a
different redshift.

As mentioned before, the theoretical ACF with PNG shares simi-
larities with the BAO template, but adding extra terms proportional
to 𝑓NL, to clarify this, we can consider that our PNG template is
composed of a BAO-part and a 𝑓NL-part, as follows,

𝑤(𝜃) = 𝑤BAO (𝜃) + 𝑤(𝜃, 𝑓NL), (18)

where 𝑤BAO (𝜃) is the BAO template used in DES Collaboration
2022b, schematically given by,

𝑤BAO (𝜃) ∼ 𝑏2𝑤𝑏 (𝜃) + 𝑏 𝑓 𝑤𝑏 𝑓 (𝜃) + 𝑓 2𝑤 𝑓 (𝜃), (19)

where 𝑤𝑏,𝑏 𝑓 , 𝑓 (𝜃) correspond to different ACF contributions ar-
ranged by their prefactors. On the other hand, the 𝑓NL-part involves
the extra terms proportional to 𝑓NL, in accordance with Eq.(8), as
follows,

𝑤(𝜃, 𝑓NL) ∼ 𝑏 𝑓NL𝑤A (𝜃) + 𝑓 2
NL𝑤B (𝜃) (20)

where𝑤A,B (𝜃) involve the scale-dependent contributions of the ACF.
As a reminder of this discussion, we will extend the notation of our
theoretical modelling to

𝑤(𝜃) → 𝑤th (𝜃, 𝑓NL), (21)

highlighting its dependence on 𝑓NL.
The behaviour of the angular correlation with PNG can be seen in

Figure 2, where we compute the ACF using the BAO damped power
spectrum, with linear bias and 𝑁 (𝑧) from the first redshift bin of
the ICE-COLA mocks. As expected, we show that primordial non-
Gaussianity induces a large-scale enhancement of clustering in the
angular correlation function of galaxies due to the scale-dependent
bias. It can be noticed that the sharp feature in the power spectrum for
𝑓NL = −100, produced due to the linear term in 𝑓NL (Eq.8), has now
translated into a small overall rising at scales around ∼ 10 degrees
(solid green line in Figure 2). This rising is due to the integration
of the Fourier transform to compute the 2PCF. As a preview of the
upcoming section, we also show the integral constraint’s effect on
the theoretical model. The main discussion of the upcoming section
will be on how to compute the integral constraint correction and the
effect on the ACF.

3 INTEGRAL CONSTRAINT AND 𝑓NL

In this section, we comment on how the excess of clustering at
large scales, due to scale-dependent bias, on the theoretical angular
correlation is suppressed by imposing that its integral over the survey
volume needs to vanish. This condition is known as the integral
constraint.

We discuss how the integral constraint arises from an observational
point of view. We also remark on its dependence on 𝑓NL and show
how to correct the theoretical template to incorporate its effect.

0 2 4 6 8 10
 [deg.]

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

w
(

)×

fNL = 0
fNL = 100
fNL = 100

Figure 2. Theoretical angular correlation function with the scale-dependent
bias for 𝑓NL = 0 (blue line), 𝑓NL = 100 (orange line), and 𝑓NL = −100 (green
line) for the first redshift bin using the ICE-COLA configuration as presented
in Table 1. The solid lines are without integral constraint. The dashed lines are
with the integral constraint correction, as discussed in Section 3, computed
using Eq.39 with the ICE-COLA angular footprint.

3.1 Observational integral constraint

3.1.1 Integral constraint from the observed 2PCF

Let us start with the statistical definition of the two-point correlation
function for galaxies 𝜉obs (𝑟),

d𝑃 = �̄�(1 + 𝜉obs (𝑟))d𝑉, (22)

where 𝑃 is the probability of finding two objects within the volume
𝑉 separated by a distance 𝑟 (Peebles 1980) and �̄� is the mean number
density of galaxies in the Universe. If we integrate Eq.(22) over the
volume of a survey, we find out that

𝑁𝑔 = �̄�

∫
d𝑉𝑠 + �̄�

∫
𝜉obs (𝑟)d𝑉𝑠 , (23)

where 𝑁𝑔 is the expected number of galaxies within the survey region
and 𝑉𝑠 is the total volume of the survey. Since the expected number
of galaxies within the survey volume is chosen to be obtained from
the survey mean number density, we have the following,

𝑁𝑔 = �̄�

∫
d𝑉𝑠 . (24)

The previous equation implies a condition that needs to hold for the
observed two-point correlation function of galaxies within the survey
volume,∫

𝜉obs (𝑟)d𝑉𝑠 = 0. (25)

This is the integral constraint condition. We can re-write the integral
constraint condition as follows,∫

𝜉obs (r)d𝑉𝑠 =
∫

d3r
∫

d3r1𝑊 (r1)𝑊 (r1 − r)𝜉 (r) = 0, (26)

where𝑊 (r) is the selection function for a volume-limited survey and
r = r1 − r2.

The previous expression can be computed directly for a given
survey selection function. The problem is that defining the volume
of a survey is a difficult task. Instead, it is most common to construct
a random catalogue of galaxies following the shape of the survey
mask to model the survey volume as pair counts between the random
catalogues.
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As previously mentioned, the number count of galaxies within a
homogeneous region can be computed as a volume integral of the
selection function,

𝑁𝑔 = �̄�

∫
d3r𝑊 (r). (27)

Therefore, the number of random-random pair correlations, 𝑅𝑅(r),
can be computed as the correlation of the number of random objects
within the limited region (see, e.g. Breton & de la Torre (2021), and
references therein),

𝑅𝑅(r) = 〈𝑁1𝑁2〉 = �̄�2
∫

d3r1𝑊 (r1)𝑊 (r1 − r), (28)

with r = r1 − r2. Using the previous equation, we can compute the
volume integral over a window function, and inserting Eq.(28) into
Eq.(26), we obtain the following,∫

𝜉obs (r)d𝑉𝑠 =
1
�̄�2

∑︁
all pairs

𝑅𝑅(r)𝜉 (r), (29)

where now we sum over all the possible separations between galaxies
within a limited survey size. This implies that the integral constraint
condition, Eq.(25), can be written in terms of the 𝑅𝑅(r) pairs, as
follows,∑︁
all pairs

𝑅𝑅(r)𝜉 (r) = 0 (30)

where, for simplicity, the random-random pairs correlations can be
obtained from random catalogues that follow the survey mask instead
of using the analytic expression.

3.1.2 Integral constraint in the observed ACF

The previous procedure can be extended to the angular correlation
function. The starting point is now the probability of finding two
galaxies in a 2-dimensional projection of the sky separated by an
angular separation 𝜃, as follows,

d𝑃 = �̄�(1 + 𝑤obs (𝜃))dΩ, (31)

where 𝑤obs (𝜃) is the observed angular correlation function.
This implies that the integral constraint can be extended to the

angular correlation function in the same way as Eq.(29),∫
dΩ1

∫
dΩ2𝑊 (r̂1)𝑊 (r̂2)𝑤obs (𝜃) = 0, (32)

where 𝑊 (r̂) is the angular selection function, and 𝜃 is the angle
subtended by r1 and r2.

The calculation of the volume integral in the previous subsection
can be extended to the sum of random-random angular pairs. This
implies that we can compute the integral constraint for the angular
correlation as follows,∑︁
Ω

𝑅𝑅(𝜃)𝑤obs (𝜃) = 0, (33)

where now the sum is over all the possible angular separations al-
lowed by the survey mask. Also, as before, the random-random pairs
correlation is obtained from the random catalogues. In practice, since
we have a 𝑤(𝜃) for each redshift bin, this condition is applied to each
of them individually.

3.2 Theoretical integral constraint

Up to this point, we have only presented a condition that the cor-
relation function needs to accomplish in limited surveys, and they
certainly do for the usual observed correlation functions. A problem
arises when we compare the theory with PNG to observational data.

3.2.1 Gaussian case

Let us start from a theoretical point of view without considering
PNG. The matter power spectrum at large scales exhibits behaviour
that goes as

𝑃m (𝑘) ∝ 𝑘𝑛𝑠 , (34)

where 𝑛𝑠 is close to 1. This implies that the matter power spectrum
vanishes when 𝑘 → 0, and since the power spectrum is related to
the variance of the over-densities, this is an insight that the matter
fluctuations of our Universe reach homogeneity at very large scales.

The vanishing of the matter power spectrum at large scales implies
a condition to its configuration space counterpart, the 2PCF, which
can be seen as follows,

𝑃𝑚 (𝑘 = 0) =
∫

𝜉 (r)d3r = 4𝜋
∫ ∞

0
𝜉 (𝑟)𝑟2d𝑟 = 0. (35)

This is the integral constraint condition presented in Eq.(26) but now
coming from a purely theoretical perspective.

Without the effect of 𝑓NL, this same condition is expected to hold
for the linear galaxy power spectrum since a linear bias relates both
power spectra, and there is no change in the shape of the power
spectrum. Hence, in the case of an ideal homogeneous infinite sur-
vey, the theoretical model already satisfies the observational integral
constraint. When the effect of the window function becomes more
pronounced (due to either strong inhomogeneities in the randoms or
small explored volumes), we will need to adjust the theory to fulfil
the IC condition (see subsection 3.3).

3.2.2 Integral constraint in the presence of PNG

The situation now changes in the presence of PNG. The scale-
dependent bias between the galaxies and matter overdensities will
modify the shape of the galaxy power spectrum introducing a 1/𝑘2

correction to the matter power spectrum that depends on 𝑓NL, as
described in Eq.( 5). The scale-dependent bias will generate an en-
hancement of the galaxy power spectrum at large scales (𝑘 � 𝑘eq)
with the following divergent behaviour,

𝑃𝑔 (𝑘 → 0, 𝑓NL) ∼
(
𝑓NL

𝑏 − 1
𝑘2

)2

· 𝑘𝑛𝑠 → ∞ (36)

where 𝑃𝑔 (𝑘) is the galaxy power spectrum. This divergence that the
volume integral over the 2PCF (Eq.(35)) will diverge for this case.
As a side note, since for our modelling, we integrate numerically,
the previously mentioned divergence will turn into a large (but finite)
number that could depend on the integration method or resolution.
Since the ACF is an integral of the 3D 2PCF (Eq.(16)), 𝑤(𝜃) will
have a divergence proportional to 𝑓 2

NL.
The discussion of this section tells us that, even if we have an infi-

nite homogeneous survey with a negligible window function effect,
the integral constraint condition will not be fulfilled for the case of
𝑓NL ≠ 0. Additionally, the theoretical model will contain an arbitrary
additive constant that depends on 𝑓 2

NL. This dependence will bias any
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results when using this model to constrain 𝑓NL. This remarks the im-
portance of the integral constraint condition when dealing with PNG,
implying that we need correct our modelling to consider this issue.

As a verification of the issue, in appendix A, we show an analytical
example that illustrates how the integral constraint condition looks for
a simplified theoretical 2-point correlation function in the presence
of PNG. We show explicitly that the integral of the 2PCF diverges at
large scales and is proportional to 𝑓 2

NL, implying that imposing the
observational integral constraint condition is very important when
dealing with PNG analysis.

3.3 Integral constraint correction

To surpass the problem described in the previous subsection, we
define an integral constraint-corrected theoretical angular correlation
function,

𝑤IC (𝜃, 𝑓NL) = 𝑤th (𝜃, 𝑓NL) − 𝐼 ( 𝑓NL), (37)

where 𝐼 ( 𝑓NL) parametrize deviations from the observed integral con-
straint condition (Eq.33) as follows,∑︁
Ω

𝑅𝑅(𝜃)𝑤IC (𝜃, 𝑓NL) = 0. (38)

This implies that the integral constraint correction, 𝐼 ( 𝑓NL), is given
by:

𝐼 ( 𝑓NL) =
∑𝜃lim 𝑅𝑅(𝜃)𝑤th (𝜃, 𝑓NL)∑𝜃lim 𝑅𝑅(𝜃)

. (39)

where 𝜃lim is the maximum limit angular separation allowed for the
survey angular window. The effect of the integral constraint in the
context of PNG has been previously addressed in Ross et al. (2013);
Mueller et al. (2021) for the power spectrum and in Ross et al. (2013)
for the 2PCF. The novelty of this work is to present a detailed analysis
of its effect on the ACF and show its importance when dealing with
PNG simulations, as we will show in Section 6.

4 SIMULATIONS

In this section, we present the simulations that we used for testing the
theoretical modelling and the validation of the 𝑓NL measurements.

4.1 GOLIAT-PNG

In order to test our analysis pipeline, we first consider the use of sim-
ulations with Primordial non-Gaussianity included. Whereas many
tests can be done with Gaussian initial conditions (see Section 7),
there are validation steps that require PNG mocks to show the va-
lidity of the pipeline. In particular, in this work, only when fitting
PNG mocks can we realise the paramount importance of including
the integral constraint.

The GOLIAT-PNG suite (Avila & Adame 2023) consists of a
series of 𝑁-body simulations with ΛCDM + local PNG cosmology
with Ω𝑚 = 0.27, Ω𝑏 = 0.044, ℎ = 0.7, 𝑛𝑠 = 0.96, 𝜎8 = 0.8,
and three values for PNG: 𝑓NL = −100, 0, +100. A summary of the
cosmological parameters and fiducial values used is presented in the
first part of Table 1. The simulations have a box size of 𝐿 = 1Gpc/ℎ.
The initial conditions are set at 𝑧 = 32 with second-order Lagrangian
perturbation theory using the public code 2LPTic 7 and evolved

7 cosmo.nyu.edu/roman/2LPT (Crocce et al. 2006; Scoccimarro et al.
2012)

to 𝑧 = 1 with Gadget2 8. Subsequently, the 𝑧 = 1 dark matter
snapshots are run through the Amiga Halo Finder 9 to construct
the halo catalogues with a minimum of 10 particles, which yield
𝑀ℎ ∼ 5 · 1012𝑀� as the halo mass resolution.

Also, for the goliat-png simulations, it was found that 𝑝 = 0.90
for 𝑓NL = 100 (Avila & Adame 2023), and 𝑝 = 0.92 for 𝑓NL = −100,
when measuring their real space power spectra, and we will consider
this when measuring 𝑓NL from these mocks.

Another particularity of these simulations is that the initial con-
ditions are run with the Fixed & Paired initial conditions (Angulo
& Pontzen 2016) aimed at reducing the sample variance of the en-
semble average of the 2-point functions measured from these simu-
lations. In the context of PNG, this technique is validated in Avila &
Adame (2023), and we refer the reader there for further details of the
GOLIAT-PNG suite. We use 41 pairs of simulations for each value
of 𝑓NL.

Finally, we transform those mocks from the cubic box into observ-
able coordinates {ra,dec,𝑧} by setting an observer 1556Mpc/ℎ away
from the centre of one of the faces of the box. This transformation
allows us to have a mock survey with a circular semi-aperture of
11.2 deg, covering an area of roughly 396 deg2, and a redshift range
of 0.6 < 𝑧 < 1.1, the shape and size of the mask can be seen in
Figure 4. We further split the mocks into five redshift bins between
0.6 and 1.1 with Δ𝑧 = 0.1. This, together with a constant number
density of halos, give the redshift distribution 𝑁 (𝑧) shown in Figure
3. However, we note that we do not introduce any redshift space
distortions, redshift error, HOD model, or even temporal evolution.
We built everything from the halo catalogue at the comoving output
at a redshift of 𝑧 = 1 and a fixed halo mass threshold. This implies
that we fix 𝐷 (𝑧 = 1) in Eq.16 when using the goliat-png mocks.
We also consider three different rotations (one per Cartesian axis) for
constructing the mocks, eventually resulting in a total of 246 mocks
for each value of 𝑓NL.

4.2 ICE-COLA

The ICE-COLA mocks (Ferrero et al. 2021) are the second set of
simulations we count on for analysing and validating our methods.
This set of 1952 mock galaxy catalogues is designed to mimic the
DES Year 3 BAO sample (Carnero Rosell et al. 2022) over its full
photometric redshift range 0.6 < 𝑧 < 1.1, which we split again into
five redshift bins. We refer the interested reader to Ferrero et al.
(2021) for further details and highlight here only the basic features
of the ICE-COLA mocks.

A total number of 488 fast 𝑁-body simulations of full-sky light
cones generated by following the ICE-COLA code Izard et al. (2016)
are used. This code is based on the COmoving Lagrangian Acceler-
ation (COLA) method, which solves for the evolution of the matter
density field using second-order Lagrangian Perturbation Theory
(2LPT) combined with a Particle-Mesh (PM). The simulations use
20483 particles in a box of the size of 1536 Mpc h−1 and assume a
cosmology consistent with the best-fit of WMAP five-year data (Ko-
matsu et al. 2009). This means compatible with a flat ΛCDM model
with Ω𝑚 = 0.25, ΩΛ = 0.75, Ω𝑏 = 0.044, 𝑛𝑠 = 0.95, 𝜎8 = 0.8,
ℎ = 0.7, and 𝑓NL = 0. A summary of the cosmological parameters
and fiducial values used is presented in the second part of Table 1.

A hybrid halo occupation distribution - halo abundance matching

8 https://wwwmpa.mpa-garching.mpg.de/gadget/ (Springel 2005)
9 http://popia.ft.uam.es/AHF/ (Knollmann & Knebe 2009)
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Figure 3. 𝑁 (𝑧) distribution as a function of redshift for each redshift bin for
the ICE-COLA mocks (top) and for the GOLIAT-PNG mocks (bottom). We
remark that the goliat-png simulations do not have photo-z errors included,
implying that they do not represent a realistic 𝑁 (𝑧) distribution, in contrast
to the ICE-COLA mocks.

model is used to populate halos with galaxies. Also, automatic cali-
bration is run to match the basic characteristics of the DES Y3 BAO
sample: the observed abundance of galaxies as a function of pho-
tometric redshift (Figure 3), the distribution of photometric redshift
errors, and the clustering amplitude on scales smaller than those used
for BAO measurements.

Finally, four footprint masks corresponding to the DES Y3 BAO
sample are placed on each full-sky light cone simulation to reach
the final set of 1952 ICE-COLA mocks. In Figure 4, we can see the
shape of the mask followed by one footprint.

5 ANALYSIS TOOLS

This section presents the statistical tools used to measure the 𝑓NL
parameter using the theoretical template presented in Section 2.

5.1 Angular correlation function measurements

The angular correlations are measured using CUTE (Alonso 2012),
which computes the ACF following the Landay-Szalay estimator

Figure 4. Comparison of the footprint of the used simulations. In purple, we
show the mask for one map of the ICE-COLA simulations. In green, we show
the mask for the goliat-png simulation.

(Landy & Szalay (1993)),

𝑤obs (𝜃) =
𝐷𝐷 (𝜃) − 2𝐷𝑅(𝜃) + 𝑅𝑅(𝜃)

𝑅𝑅(𝜃) , (40)

where 𝐷𝐷 (𝜃), 𝐷𝑅(𝜃) and 𝑅𝑅(𝜃) are the number counts of pairs of
galaxies for the data-data, data-random, and random-random cata-
logues, respectively. To obtain the random-random pairs, we create
random catalogues with 20 times more objects than the simulation
sample that follow the angular mask of the simulations for goliat-
png and ICE-COLA mocks. The random-random pairs are obtained
as an output from CUTE.

As mentioned in subsection 3.3, one of the key elements in the in-
tegral constraint correction is the random-random pairs that account
for the survey volume. Because of this, we need to compute at least
one 𝑅𝑅(𝜃) correlation for both goliat-png and ICE-COLA going up
to the maximum angular separation allowed for each survey mask.
That is 22 degrees for the goliat-png simulations and 88 degrees for
ICE-COLA simulations.

5.2 Covariance

Our default setup for the covariance matrix uses the Cosmolike code
(Krause & Eifler 2017; Fang et al. 2020a,b) to estimate the covariance
analytically. Following Crocce et al. (2011b), the real space covari-
ance of the angular correlation function 𝑤(𝜃) at angles 𝜃𝑖 and 𝜃 𝑗 is
related to the covariance of the angular power spectrum 𝐶 (𝐶ℓ , 𝐶ℓ′)
by

𝐶 (𝜃𝑖 , 𝜃 𝑗 ) =
∑︁
ℓ, ℓ′

(2ℓ + 1) (2ℓ′ + 1)
(4𝜋)2

𝑃ℓ (𝜃𝑖)𝑃ℓ′ (𝜃 𝑗 )𝐶 (𝐶ℓ , 𝐶ℓ′), (41)

where 𝑃ℓ (𝜃) are the Legendre polynomials averaged over each angu-
lar bin and 𝐶 (𝐶ℓ , 𝐶ℓ′), under the Gaussian approximation, is given
by (Crocce et al. 2011b; Krause & Eifler 2017)

𝐶 (𝐶ℓ , 𝐶ℓ′) =
2𝛿ℓℓ′

𝑓sky (2ℓ + 1)

(
𝐶ℓ′ +

1
𝑛𝑔

)2
, (42)

where 𝛿 is the Kronecker delta function, 𝑛𝑔 is the number density of
galaxies per steradian, and 𝑓sky is the observed sky fraction used to
account for partial-sky surveys. We include redshift space distortions
through the𝐶ℓ ’s of the expression above (42), except when analysing
the goliat-png mocks, as they do not include that. In addition, fol-
lowing Troxel et al. (2018), we correct the shot-noise contribution
to the covariance (the term ∝ 1/𝑛𝑔) by considering the effect of the
survey geometry on the number of galaxies in each angular bin. We
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ignore non-Gaussian terms in the covariance estimation for simplic-
ity, following DES Collaboration 2022b, where it was tested that
including those terms did not impact the results. See DES Collab-
oration 2022b and Ferrero et al. (2021) for the validation of this
analytical covariance matrix (with 𝜃max = 5 deg) against two sets
of simulations: ICE-COLA and FLASK lognormal mocks (Xavier
et al. 2016).

Notice that we do not include 𝑓NL in our covariance since it is
customary in this kind of analysis to fix the cosmology and then
look for deviations. In the case of detection, we should modify the
covariance and include the 𝑓NL parameter.

We also consider using the ICE-COLA covariance constructed
from the mocks, given by:

𝐶 (𝜃𝑖 , 𝜃 𝑗 ) =
1

Nm − 1

Nm∑︁
𝑛=1

(
𝑤𝑛 (𝜃𝑖) − �̄�(𝜃𝑖)

) (
𝑤𝑛 (𝜃 𝑗 ) − �̄�(𝜃 𝑗 )

)
(43)

where Nm is the number of mocks, 𝑤𝑛 (𝜃) is the ACF for the n-
mock, and �̄�(𝜃) is the mean ACF from the mocks. However, it
was shown in Ferrero et al. (2021) that, due to a large number of
simulated boxes used to equal the volume of the DES Y3 BAO
sample, a replication of halos were produced, introducing a spurious
correlation among the measured ACF. This induced a high degree of
correlation of non-adjacent redshift bins in the covariance. For this
reason, the default setup of using Cosmolike covariance was preferred
(DES Collaboration 2022b). As a double check, in subsection 7.4,
we compare the impact of changing the covariance when measuring
𝑓NL.

5.3 Parameter inference

In order to measure the parameters, we perform a Bayesian parameter
inference based on the log-likelihood analysis assuming a Gaussian
likelihood, as follows,

log(L(p)) ∝ − 𝜒2 (p)
2

(44)

where the 𝜒2 is given by,

𝜒2 (p) = (𝑀 (p) − 𝐷)𝑇𝐶−1 (𝑀 (p) − 𝐷) (45)

where p represents the free parameters from our theory we want to
estimate, 𝐶−1 is the inverse of the covariance matrix presented in
subsection 5.2, and 𝑀 and 𝐷 are the theoretical model and the data
vector, respectively.

Since the galaxy sample for the simulations is divided into five
redshift bins, we perform a joint sampling of the likelihood to con-
sider covariance between bins. The joint data vector D is given by,

D = [𝑤1
obs (𝜃), 𝑤

2
obs (𝜃), 𝑤

3
obs (𝜃), 𝑤

4
obs (𝜃), 𝑤

5
obs (𝜃)], (46)

where the superscript represents the redshift bin from which the ACF
is obtained. We repeat the same procedure for the theoretical model,
where M(p) is the theory vector as a function of the free parameters
for each redshift bin, as follows,

M(p) = [𝑤1
th (𝜃, p), 𝑤

2
th (𝜃, p), 𝑤

3
th (𝜃, p), 𝑤

4
th (𝜃, p), 𝑤

5
th (𝜃, p)] . (47)

We perform an MCMC sampling of the likelihood function using
COBAYA (Torrado & Lewis 2021) to estimate the posterior distri-
butions of the free parameters in our pipeline.

Table 1 presents the free parameters considered for our analysis and
their respective fiducial values and priors. Depending on the analysis,

Table 1. Summary of the fixed cosmological parameters and the free measured
parameters with the priors considered. The squared brackets represent flat
priors.

GOLIAT-PNG

Parameter Fiducial Prior

Ω𝑚 0.27 –
ΩΛ 0.73 –
Ω𝑏 0.044 –
𝑛𝑠 0.96 –
𝜎8 0.8 –
ℎ 0.7 –
𝑓NL −100, 100 [−700, 700]
Linear bias 𝑏 2.35 [1, 3]
Integral constraint 𝐼𝑖 - [−0.1, 0.1]
Footprint area (deg2) 396.06
𝑧mean 1 –

ICE-COLA

Parameter Fiducial Prior

Ω𝑚 0.25 –
ΩΛ 0.75 –
Ω𝑏 0.044 –
𝑛𝑠 0.95 –
𝜎8 0.8 –
ℎ 0.7 –
𝑓NL 0 [−500, 500]
Linear bias 𝑏𝑖 1.60, 1.60, 1.68, 1.82, 2.02 [1, 3]
Integral constraint 𝐼𝑖 - [−0.1, 0.1]
Footprint area (deg2) 4108.47
𝑧mean 0.65, 0.74, 0.84, 0.94, 1.02 –

the integral constraint could be considered as a free parameter (IC-
MARG) or fixed to its theoretical value (IC-FIXED) given by Eq.(39).
This will be stated for each test considered. Notice that we are not
including other free cosmological parameters in the likelihood, which
is customary for this kind of analysis, since adding other cosmological
parameters will lose the constraints on 𝑓NL.

6 TESTS WITH NON-GAUSSIAN MOCKS

This section tests the pipeline over the goliat-png simulations with
non-Gaussian initial conditions. For these simulations, the theoretical
template is obtained from a linear power spectrum without consider-
ing BAO damping and without RSD modelling since the simulations
do not include RSD. The goal of this section is twofold: First, we
want to recover the fiducial value of 𝑓NL for the non-Gaussian simu-
lations. Second, we want to highlight the importance of the integral
constraint.

6.1 Effect of the Integral constraint on goliat-png mocks

In Section 3, we presented the integral constraint as one of the key el-
ements that need to be included in the theory. In this section, we show
its effect in the simulations with non-Gaussian initial conditions.

In Figure 5, we compute the integral constraint, as presented in
Eq.(39), for the goliat-png simulations but changing the limit an-
gular separation, 𝜃lim, truncating the sum. We use this to test the
need to consider the full volume of the survey when computing the
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Figure 5. Integral constraint as a function of the upper limit angular sep-
aration, 𝜃lim, for the goliat-png simulations. The blue line is the integral
constraint using the theoretical ACF with 𝑓NL = 0. The same is repeated for
the orange and green lines but for the cases of 𝑓NL = 100 and 𝑓NL = −100,
respectively. The grey dotted line is the limit angular aperture of the angular
mask of the simulations.

integral constraint. As described in subsection 4.1, the maximum cir-
cular semi-aperture of the goliat-png simulation mask is about 11.2
degrees, implying that the maximum allowed angular separation is
about 𝜃lim ∼ 22 degrees (vertical grey dotted line in Figure 5).

As expected, given the discussion in Section 3, the integral con-
straint reaches its value when it is summed up to the maximum
angular separation allowed for the simulation mask to consider the
whole survey volume. In other words, even though we can compare
the theory and the data up to some maximum angular separation 𝜃max,
we still need the random-random correlation up to the limit scale of
the simulation (𝜃lim ∼ 22 deg). We see that the integral constraint’s
value does not converge earlier than that. We repeat this conclusion
for the ICE-COLA simulations, where the measurements are made
up to 𝜃max = 20 degrees, but the integral constraint is obtained from
random-random pairs measured up to 𝜃lim ∼ 88 degrees.

From the previous figure, we can also notice the explicit depen-
dence of the integral constraint on 𝑓NL. For 𝑓NL = 0, it has a smaller
value in comparison with 𝑓NL = 100 or 𝑓NL = −100. This supports
the previous discussion from subsection 3.2 about the importance of
the integral constraint when looking for 𝑓NL.

The previously computed integral constraint can be included in the
theory as in Eq.(37). This is shown in Figure 6, where we compare
the theoretical ACF with and without the integral constraint against
the mean of the goliat-png mocks. The ACF is shown for the first
redshift bin with the errors obtained from the standard deviations of
the mocks. Figure 6 serves as a visual guide of the integral constraint’s
effect in the theoretical modelling. The integral constraint correction
appears to have an effect that could help avoid biased values for 𝑓NL.
The actual impact of this on the measurement of 𝑓NL is the main
topic of the following subsection.

6.2 Results for goliat-png mocks

We use the parameter inference method, described in subsection 5.3,
to put constraints on both the linear bias and 𝑓NL. We construct the
data vector for each mock by combining the ACF of each redshift
bin for the 𝑓NL = −100 and 𝑓NL = 100 simulations. We use the scale
configuration given in the first section of Table 4. The scale choice
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Theory fNL = 100 with IC
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Figure 6. Comparison of the theoretical ACF against the mean goliat-png
mocks for the first redshift bin (0.6 < 𝑧 < 0.7) and different 𝑓NL values. The
blue line is the mean of the mocks, and the shaded area is given by its standard
deviation. The orange line is the theoretical ACF with the integral constraint.
The green line is the theoretical ACF without the integral constraint.

will be justified in the next section when we test the robustness of
the pipeline.

Since each mock is independent of the other, we can compute a
joint posterior distribution by multiplying the posteriors of 𝑓NL and
𝑏 of each goliat-png mock. The advantage of this method is that
the joint posterior gives us a good estimate of how biased the best-fit
values of 𝑓NL are with respect to the fiducial. We compare fixing
the IC, as computed using Eq.(39), against not using it and against
leaving it as a nuisance parameter. The priors for the parameters used
in the measurement are in Table 1. For the case of 𝑓NL = 100 sim-
ulations, four mocks were discarded due to incompatibilities in the
measurements of 𝑓NL, giving highly biased values and complicating
the computation of the joint posterior.

We present one of the main results of this work in Figure 7,
showing the contours obtained from the joint posterior of all goliat-
png simulation with 𝑓NL = 100 and 𝑓NL = −100. We show that
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Figure 7. Marginalized one and two-sigma contours for 𝑓NL and the linear bias 𝑏 obtained from the joint posterior of the 246 goliat-png simulations (of
∼ 400deg2 each). Note that the error is expected to be ∼ 16 times larger for a single realisation. The left panel is for the 𝑓NL = −100 simulation and the right
panel is for the 𝑓NL = 100 simulation. The purple contours are with the integral constraint fixed to its theoretical value given by Eq.(39). The green contours are
without considering any integral constraint correction. The orange contours consider the IC as a nuisance parameter and marginalising it. The vertical dashed
line represents the fiducial value of 𝑓NL for each set of simulations.

Table 2. Summary of the results of measuring 𝑓NL from both goliat-png
simulations (of ∼ 400deg2 each). The best-fit values are obtained from the
maximum of the joint posterior of the 246 mocks, and the errors are at 1𝜎.
Note that the error is expected to be ∼ 16 times larger for a single realisation.

goliat-png

Joint posterior

𝑓NL = 100

NO-IC −2.8 ± 1.0
IC-FIXED 97.4 ± 3.5
IC-MARG 92.2 ± 4.6

𝑓NL = −100

NO-IC −10.3 ± 1.5
IC-FIXED −95.2 ± 5.4
IC-MARG −101.5 ± 6.5

by fixing the integral constraint to the value given by Eq.(39), we
can recover the fiducial values of 𝑓NL within 1𝜎. We also notice
that for the case of not using the integral constraint, we obtain very
biased values for 𝑓NL, closer to 𝑓NL = 0. The figure also shows that
when considering the integral constraint as a nuisance parameter and
marginalising it, we also recover the correct values for 𝑓NL. With the
previous results, we prove the importance of the integral constraint.

The summary of contours is presented in Table 2, where we show
the measured values of 𝑓NL for the two kinds of goliat-png simula-
tions. The best-fit values of 𝑓NL are obtained from the maximum of
the joint posterior distribution of all mocks, with the errors obtained
from the 68% confidence region. We clarify that the uncertainty
presented in Table 2 corresponds to the combination of all mocks.
This implies that the uncertainty would be ∼ 16 times larger for a
survey with the properties of the goliat-png mocks, making the un-
certainty and the offset very similar Δ 𝑓NL ∼ 𝜎 ∼ 100. We also note
that the relatively small footprint of goliat-png (∼ 400deg2) makes
the effect of the IC stronger. We will reexamine this for a DES-like
scenario in Section 7.1.

A natural question appears when we see the results for the case

Table 3. Comparison between theoretical integral constraint versus
marginalised values for goliat-png simulations. IC theory is computed using
the theoretical value given by Eq.(39). IC marginalised are obtained as the
mean of the marginalised posterior. The errors are at 1𝜎 on the ensemble
average of 246 mocks.

goliat-png

Redshift bin IC theory IC marginalized

0.6 < 𝑧 < 0.7 0.00220 0.00247 ± 0.00013
0.7 < 𝑧 < 0.8 0.00202 0.00208 ± 0.00012
0.8 < 𝑧 < 0.9 0.00188 0.00212 ± 0.00012
0.9 < 𝑧 < 1.0 0.00178 0.00203 ± 0.00011
1.0 < 𝑧 < 1.1 0.00171 0.00184 ± 0.00011

of IC-MARG. Can the marginalised IC case recover the theoretical
values given by Eq.(39)? In Table 3, we compare the IC values
for both theoretical and marginalised, along with the 1𝜎 errors for
the marginalised case measured over the mean of the mocks. From
these results, we can notice two things. First, we found reasonable
compatible values for the integral constraint within ∼ 2𝜎. Secondly,
we show that the methods can detect the integral constraint at high
significance.

In Figure 8, we compare the mean of the goliat-png 𝑓NL = 100
mocks versus the theoretical ACF (for IC-FIXED) using the best-fit
results with and without the integral constraint for each redshift bin.
The figure shows how the integral constraint improves the agreement
of the theoretical template and the observed ACF for each redshift
bin. Nevertheless, we found no considerable difference in 𝜒2 of the
measurement over the individual mocks when considering or not the
integral constraint in the theoretical template. The showed errors, in
this case, are obtained from the Cosmolike covariance, described in
subsection 5.2, but divided by the number of mocks, in contrast with
the errors presented in Figure 6.

For the case of NO-IC, we notice that for both simulations, we
obtain biased small negative values of 𝑓NL. As mentioned by the end
of Section 2.4, for large negative values of 𝑓NL (without considering
IC), there is a positive correlation function at large scales (see, for
example, middle panel of Fig. 6). Since the measured angular corre-
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Table 4. Fiducial configuration of the ACF for both the goliat-png and
ICE-COLA mocks.

𝜃min 𝜃max Δ𝜃 𝑓NL estimator

goliat-png 1.0 deg. 20 deg. 0.15 deg. Max. of marg. posterior

ICE-COLA 1.0 deg. 20 deg. 0.4 deg. Max. of marg. posterior

lation function shows a negative correlation at large scales (due to the
observational integral constraint), the model prefers small negative
𝑓NL values to compensate for the lack of IC in the theoretical model
(see, e.g. Fig. 8)

As mentioned in subsection 3.2, the effect of the integral constraint
is stronger for non-Gaussian simulations due to its dependence on
𝑓NL. Nevertheless, in the next section, we will show that it can also
help avoid slightly biased values of 𝑓NL even for simulations with
𝑓NL = 0, such as the ICE-COLA mocks.

7 DES VALIDATION USING ICE-COLA MOCKS

As mentioned in Section 4, the ICE-COLA mocks are designed to
match the DES Y3 BAO sample angular mask and redshift distribu-
tion 𝑁 (𝑧). In this Section, we present tests made over the ICE-COLA
mocks, assessing their impact on the measurement of the 𝑓NL pa-
rameter.

We perform four different tests over the ICE-COLA simulations
that we briefly summarise as follows:

• Effect of the Integral constraint: Similarly to Section 6, this
test double-check the importance of the integral constraint.

• Best-fit estimator comparison: This test will tell us how the
value of 𝑓NL changes when we consider a different definition for the
estimator of the best-fit from the posterior distribution.

• BAO damping versus Linear theory: We will show the im-
pact of considering BAO damping in the theoretical modelling by
comparing it with the linear power spectrum.

• Covariance comparison: For robustness, we consider different
covariances and study their impact on the measurement of 𝑓NL.

• Scale configuration: We compare the effect that different scale
cuts and theta binning have when estimating 𝑓NL.

The fiducial scale configuration for the tests and forecast, along
with the optimal 𝑓NL best-fit estimator, are summarised in Table
4. The parameters to analyse are presented in detail in the second
section of Table 1. In summary, we consider the linear bias for each
redshift bin, the integral constraint as a possible nuisance parameter,
and the non-Gaussianity parameter 𝑓NL.

For the analysis, we compare two cases: We perform the MCMC
sampling for each mock separately and the mean of the mocks. A
summary of the results of this Section is presented in Table 5. The
first column presents the mean of the best-fit value of 𝑓NL, 〈 𝑓NL〉,
for the ICE-COLA mocks, obtained from the mean of the best-fit
estimator of each mock, 𝑓NL. The second column presents the overall
standard deviation in 𝑓NL, obtained from the standard deviation of
𝑓NL coming from each mock. The third column is the mean of the
1𝜎 error obtained from the 𝑓NL posterior of each mock. The fourth
column is the value of 𝑓NL obtained from fitting the theory over the
mean of the mocks. The errors over the mean mocks are from the
68% confidence level of the marginalised posterior distribution. It is

Table 5. Summary of measuring 𝑓NL from the ICE-COLA mocks. The first
column is the overall best fit of 𝑓NL obtained as the mean of 𝑓NL from each
mock. The second column is the error in 𝑓NL from the standard deviation
of every histogram. The third column is the mean of 1𝜎 error from the 𝑓NL
posterior of each mock. The fourth column is the value of 𝑓NL when fitting
over the mean of the mocks. The errors are obtained at the 68% confidence
level of the posterior. In bold, we highlight the fiducial configuration that will
be used for the forecast.

ICE-COLA

〈 𝑓NL 〉 std( 𝑓NL) 〈𝜎 ( 𝑓NL) 〉 mean of mocks

NO-IC −7.4 26.6 22.1 −12 ± 22
IC-FIXED 0.1 31 24.8 −4.5 ± 24
IC-MARG 4.2 35 29 −3 ± 27

Mean posterior −6.6 30.9 – –
Max posterior 0.1 31 – –
Min 𝜒2 0.06 31.1 – –

Damping 0.1 31 24.8 −4.5 ± 24
Linear 2.4 30.5 24.6 −2.2 ± 23

Cosmolike cov. 0.1 31 24.8 −4.5 ± 24
ICE-COLA cov. −0.3 29.6 25.4 −9 ± 28

𝑤 (𝜃) [Δ𝜃 = 0.1] −2.2 32.2 25.4 −7.5 ± 24
𝑤 (𝜃) [Δ𝜃 = 0.2] −1.7 32.4 25.5 −6.5 ± 24
𝑤 (𝜃) [Δ𝜃 = 0.3] −0.9 31.8 25.1 −5.5 ± 24
𝒘 (𝜽)[𝚫𝜽 = 0.4] 0.1 31 24.8 −4.5 ± 24

𝑤 (𝜃) [𝜃max = 5] 3.6 35.1 30 −1.7 ± 27
𝑤 (𝜃) [𝜃max = 10] 0.6 33.4 26.7 −3.7 ± 26
𝑤 (𝜃) [𝜃max = 15] −0.08 32.4 25.4 −6.2 ± 24
𝒘 (𝜽)[𝜽max = 20] 0.1 31 24.8 −4.5 ± 24

worth remembering that the ICE-COLA mocks have 𝑓NL = 0 as an
initial condition.

The results from this section are presented in Figure 9, where for
each test, we show the histogram of the best-fit values, 𝑓NL, from
each mock. We also show the mean of the histogram, 〈 𝑓NL〉, for each
test.

After the tests, we forecast the accuracy in the measurement of the
local primordial non-Gaussianity parameter 𝑓NL using the angular
correlation function with integral constraint over DES Y3 data. We
would be able to obtain an error of 𝜎( 𝑓NL) = 31 if the measurement
is performed over the DES Y3 BAO sample, as we will see by the
end of the section.

7.1 Effect of the Integral constraint on ICE-COLA mocks

Here we show the effect of the IC over the ICE-COLA simulations.
We compare the effect of the integral constraint for three different
cases:

• Without using any integral constraint correction (no IC).
• Fixing the integral constraint to the value obtained using

Eq.(39), following the discussion from subsection 6.1 (fixed IC).
• Considering the integral constraint as a nuisance parameter and

marginalising over it (marg IC).

The results are presented in the top panel of Figure 9 and sum-
marised in the first part of Table 5. From the first column of the
table, we notice that not using the integral constraint gives a biased
value of 𝑓NL, with a deviation of Δ 𝑓NL ∼ 7 from the fiducial value
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Figure 8. Comparison between the theoretical angular correlation versus the mean ACF of the goliat-png mocks with 𝑓NL = 100, for each redshift bin. The
solid-coloured lines are the mean of the ACF from the mocks. The shaded areas are obtained from the diagonal of the reduced theoretical covariance. The solid
black lines are theoretical ACF with integral constraint, where 𝑓NL and 𝑏𝑔 are obtained from the mean of the joint posterior distribution presented in purple in
Figure 7. The dashed black lines are the theoretical ACF without integral constraint and 𝑓NL and 𝑏𝑔 obtained from the mean of the joint posterior distribution
presented in the green lines of Figure 7.

of the simulation. We also notice that leaving the integral constraint
as a free nuisance parameter gives slightly larger errors for 𝑓NL. Fi-
nally, we show that fixing the integral constraint to the value given by
Eq.(39) gives almost no bias in 𝑓NL, recovering the fiducial value of
𝑓NL = 0 with high accuracy. Similar to the conclusion from Section
6, the integral constraint helps us to avoid biased values of 𝑓NL. Al-
though this effect was stronger for non-Gaussian mocks, for the case
of 𝑓NL = 0, we can still notice a difference when measuring 𝑓NL.

The mild deviation on 𝑓NL due to not including the integral con-
straint on ICE-COLA mocks (Δ 𝑓NL ∼ 7) opposes the significant
bias coming from non-Gaussian mocks (Δ 𝑓NL ∼ 100). Part of this
difference is expected to come from a stronger IC effect on smaller
mocks (goliat-png ), but another important effect comes from the
IC being stronger mocks with PNG, as we discussed in much detail
in Section 3. In order to separate those effects, we now run our fit
on a theory-data vector generated for 𝑓NL = 100 in a DES-like sce-
nario, including the integral constraint and based on the ICE-COLA
cosmology.

From the posterior distribution of Figure 10, we found, as expected,
that we recover the fiducial value, 𝑓NL = 99±16, for the case of fixed-
IC. Whereas for the case of ignoring the integral constraint, we found
𝑓NL = 76 ± 13. The deviation of Δ 𝑓NL ∼ 23 corresponds to a 1.8𝜎
bias in the value of 𝑓NL in a non-Gaussian (DES-Y3-like) scenario.
The bias also translates into a mild deviation of Δ𝜒2 ∼ 2 in favour of
using the IC in the theoretical model. Even though the bias on 𝑓NL is
not as strong as for the goliat-png simulations, we still see a more
biased value than the case of 𝑓NL = 0 simulations. The same test
can be repeated for a theory-data vector with 𝑓NL = −100 where we
found 𝑓NL = −95 ± 28 for the fixed-IC case and 𝑓NL = −80 ± 23 for
the no-IC case. In this case, the bias is less significant: Δ 𝑓NL ∼ 20,
approximately 1𝜎. Hence, even for a large DES-like area, the bias
on 𝑓NL when ignoring the IC becomes significant if the data we
are fitting contains PNG. Similar to the conclusion from Section 6,

the results highlight the importance of the integral constraint when
dealing with primordial non-Gaussianity.

7.2 Best-fit estimator comparison

We compare different ways to extract the best-fit estimator 𝑓NL from
the marginalised 𝑓NL posterior distribution, that is, using different
central tendency estimators. We show the differences between us-
ing the mean of the marginalised posterior, the maximum of the
marginalised posterior (MP), or the minimum of the 𝜒2.

The comparison of the histograms is presented in the second panel
of Figure 9. The summary of the results from this test is also presented
in Table 5. From the table, we can see that we found no considerable
differences in using the maximum of the posterior distribution and
the minimum of the 𝜒2. Furthermore, we notice an improvement
when we use the maximum of the posterior, against the mean of
the posterior, as an estimator of the central value for 𝑓NL, where we
found almost no bias. In the end, the maximum of the posterior was
preferred.

7.3 Linear theory versus BAO damping

As mentioned in the theoretical modelling, we focused on the damp-
ing model because of its improvement when fitting the BAO peak.
One open question is whether we need to consider such precision in
the template when measuring 𝑓NL.

To address the previous question, we compare the 𝑓NL measure-
ment from an ACF with a BAO damping model against using the
ACF from a linear power spectrum. Both ACFs are computed using
the fiducial configuration.

We summarise the results in Table 5. We found that using a linear
power spectrum introduces a small bias compared to including the
BAO damping in the power spectrum.
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Figure 9. Histograms of the 𝑓NL measurement over the 1952 ICE-COLA
mocks comparing the different tests. The vertical dotted lines represent the
mean of the histograms. Top panel: Effect of the integral constraint. The blue
is with fixing the integral constraint as in Eq.(37) (fixed IC), the yellow is
without using the integral constraint (no IC), and the green is the integral con-
straint as a nuisance parameter (marg IC). The vertical dotted lines represent
the mean of the histograms. Middle panel: Best-fit estimator comparison.
The blue is the mean of the posterior as the best-fit, the yellow uses the
maximum of the posterior (MAP), and the green uses the minimum of the
𝜒2. Bottom panel: Raw linear theory versus BAO damping comparison. The
blue includes BAO damping in the template, and the orange uses the linear
theory.
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Figure 10. Marginalised 𝑓NL posteriors resulting from fitting our model to a
theory-data vector with 𝑓NL = 100 with integral constraint (IC) and a DES-
like setup (∼ 4100deg2, see Table 1). We use both a model with IC (black
line) and without IC (red line), finding consistency for the former and a 1.8𝜎
bias for the latter. The shaded areas represent the 𝑓NL marginalized errors at
68% c.l.

7.4 Covariance comparison

In subsection 5.2, we mentioned that the default covariance matrix
used is Cosmolike since the ICE-COLA presented a spurious cor-
relation between non-adjacent redshift bins. In this subsection, we
compare the effect of different covariance in the 𝑓NL measurements.
We compare the Cosmolike covariance versus the covariance ob-
tained from the ICE-COLA mocks.

The results are presented in Table 5, where we show that the
measurement of 𝑓NL is robust against changes in the covariance.

7.5 Scale configuration

In this subsection, we discuss the impact of different scale configu-
rations on the measurement of 𝑓NL. We compute the theory and the
data vector from each ICE-COLA mock considering a combination
of the following scales:

• 𝜃max = [5, 10, 15, 20] deg.
• Δ𝜃 = [0.1, 0.2, 0.3, 0.4] deg.

We summarise the extracted information in the last two sections of
Table 5. For this study, we limited ourselves to a maximum angular
separation of 20 degrees because we consider that controlling the LSS
systematics up to these scales will already be very challenging. Note
that the fiducial maximum angular scale for the BAO measurement
was 5 degrees (DES Collaboration 2022b).

From the results, we can notice two effects. First, the measurements
of 𝑓NL seem to be robust against the change in Δ𝜃, introducing small
changes in both the mean and its error. The second effect appears
when we go to larger values of 𝜃max, where there is an ∼ 11%
improvement in the constraints when going up to 𝜃max = 20. This
improvement is expected since most of the 𝑓NL effect comes from
large scales.

From the results of this section, we have three main conclusions:
First, we can improve the accuracy of 𝑓NL by using the integral
constraint. Not including it is the main source of bias in our measure-
ment, introducing deviations of Δ 𝑓NL ∼ 7 to the fiducial value. In
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Figure 11. Comparison between the theoretical ACF versus the mean ACF of the ICE-COLA mocks for each redshift bin. The solid black lines are theoretical
ACF computed for 〈 𝑓NL 〉 and 𝑏𝑔 obtained using the optimal fiducial configuration and fixing the integral constraint. The black dashed lines are the theoretical
ACF without integral constraint. The solid-coloured lines are the mean of the ACF from the mocks. The shaded areas are errors obtained from the COSMOLIKE
covariance.

the second place, we can improve the precision on 𝑓NL constraints by
∼ 11% when going to angular scales of 𝜃max = 20. Thirdly, our anal-
ysis is robust against changes in the type of covariance, the inclusion
of BAO damping, and changes in the scale binning, where we found
almost no deviations in the precision and accuracy of 𝑓NL. These
conclusions allow us to define the fiducial configuration highlighted
in Table 4.

Using the fiducial configuration, in Figure 11, we show the angular
correlation function for the best-fit values compared against the mean
of the ICE-COLA mocks for each redshift bin with and without the
integral constraint, fixed to the value given by Eq.(39). From Figure
11, we can notice the importance of the integral constraint when
comparing the model with the simulations improving its matching,
especially at large scales, and therefore, improving the accuracy of
𝑓NL.

After the tests from this section, we conclude that a reliable forecast
is 𝜎( 𝑓NL) = 31 for the DES Y3 BAO sample after marginalising the
linear bias and fixing the other cosmological parameters. The forecast
is also done using the fiducial configuration from Table 4.

8 CONCLUSIONS

We have presented a methodology to constrain 𝑓NL using the 2-point
angular correlation function with scale-dependent bias. Primordial
non-Gaussianity modifies the linear bias relation between dark mat-
ter overdensities and galaxies by including a scale dependence that
depends on the 𝑓NL parameter. The scale dependency is later intro-
duced in the power spectrum and transferred to the ACF. It is worth
noticing that there are differences in the effect of the scale-dependent
bias; for the power spectrum, the effect is more localised, whereas for
the (angular) correlation function, it is more extended over a range
of scales.

We remarked on the importance of the integral constraint con-
dition, an observational constraint that appears due to the limited

volume observed by surveys and the fact that we estimated the mean
number density from them. This condition is essential because of the
𝑓NL effect in the 2-point correlation at large scales and the divergent
behaviour of the power spectrum at 𝑘 → 0 (see Eq.8). We impose
the integral constraint condition on our theoretical model and show
that it can be corrected by a constant.

We tested the model with the integral constraint correction against
the goliat-png simulations with non-Gaussian initial conditions. We
showed how the integral constraint is a crucial element in avoiding
biased 𝑓NL values. We showed that ignoring the integral constraint
gives very biased PNG constraints, 𝑓NL = −2.8±1.0 ( 𝑓NL = −10.3±
1.5), whereas we recover the fiducial value 𝑓NL = 100 ( 𝑓NL = −100),
within 1𝜎, when correcting for the integral constraint: 𝑓NL = 97.4±
3.5 ( 𝑓NL = −95.2±5.4). We confirmed the importance of the integral
constraint for simulations with 𝑓NL = 100 and 𝑓NL = −100.

We used the ICE-COLA mocks to validate and test the robustness
of the pipeline against different analysis choices when measuring
𝑓NL. We showed that fixing the integral constraint (Eq.(39)) improves
the accuracy in the value of 𝑓NL, correcting for a Δ 𝑓NL ∼ 7 deviation
with respect to the fiducial value when not including it. Furthermore,
we showed that going to large angular scales of 𝜃max = 20 improves
the 𝑓NL precision by ∼ 11%. In addition, we showed that not includ-
ing the BAO damping can introduce a slight bias of Δ 𝑓NL ∼ 2. Also,
our results prove to be robust against changes in the choice of covari-
ance matrices and the choice of angular binning. Using a theory-data
vector with 𝑓NL = 100 ( 𝑓NL = −100) with IC based on ICE-COLA
cosmology, area, and n(z), we also checked the importance of the
integral constraint when having the realistic case of a DES-Y3-like
survey. We found a Δ 𝑓NL ∼ 23 (Δ 𝑓NL ∼ 15) deviation when not
using the integral constraint in our theoretical modelling.

One of the main conclusions of this paper is that when ignoring
the integral constraint in a PNG analysis, we always find a bias on
the recovered 𝑓NL. This bias is strongest for a small survey and a
true Universe with PNG (goliat-png : Δ 𝑓NL ∼ 100 ∼ 𝜎). For a
large survey like DES, we still find a significant bias on 𝑓NL for a
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true Universe with PNG (Δ 𝑓NL ∼ 20 ∼ 1 − 2𝜎, for 𝑓 true
NL = 100).

Whereas the bias on 𝑓NL is mild for a large survey (∼ 4100deg2) and
a Gaussian true Universe (Δ 𝑓NL ∼ 7 ∼ 0.3𝜎).

We expect our analysis to be the first step into constraining 𝑓NL
with the Dark Energy Survey photometric data, where we forecast a
measurement of 𝑓NL within 𝜎( 𝑓NL) = 31 when measured against the
DES Y3 BAO sample. This prospect is comparable with the current
constraints coming from spectroscopic surveys, being 𝜎( 𝑓NL) ∼ 21
(Mueller et al. 2021) the latest one to date.

Future plans include mitigation of LSS systematics following up
on Carnero Rosell et al. (2022); Rodríguez-Monroy et al. (2022) with
a particular focus on very large scales (see, e.g. Rezaie et al. 2021),
which is crucial as systematic errors due to survey properties can
lead to spurious PNG signal (Ross et al. 2013; Mueller et al. 2021).
Given this, we plan to conduct a full battery of robustness tests while
blinded to the 𝑓NL value, following the standard DES policy (DES
Collaboration 2022b, e.g.). Additionally, performing PNG analysis
can also be understood as a strong validation exercise of the galaxy
clustering systematics, given the sensitivity of this probe to them.
Note also that future photometric surveys are expected to break the
barrier of𝜎( 𝑓NL) = 1 (de Putter & Doré 2017), key to the inflationary
models, and this work is a necessary step toward that goal.
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APPENDIX A: THE ANALYTIC CORRELATION
FUNCTION, THE IC AND 𝑓NL

In order to gain some insight about divergent behavior mentioned
in subsection 3.2 due to the theoretical integral constraint with 𝑓NL,
in this appendix, we compute the explicit dependence on the large
scales of the integral constraint condition for the 2-point correlation
function.

Let us start by considering the primordial power spectrum𝑃Φ (𝑘) =
𝐴 𝑘𝑛𝑠 , which can be used to define the linear matter power spectrum
by considering a simplified transfer function (Peacock 1999),

𝑃𝑚 (𝑘) = 𝑃Φ (𝑘) 𝑇2 (𝑘) = 𝐴 𝑘𝑛𝑠

(1 + 𝑘2/𝑘2
eq)2

, (A1)

where 𝑘eq is the wavenumber at matter-radiation equality. As pre-
viously seen in Section 2, from the matter power spectrum, we can
compute the multipole expansion of the two-point correlation func-
tion using Eq.(13).

For simplicity, we focus on the monopole. It is possible to compute
the 2PCF for 𝑛 = 1 and 𝑘eq = 1 as

𝜉0 (𝑟) =
1

4𝜋2𝑟

(
𝑔(𝑟) + 𝑟 𝑔′(𝑟)

)
, (A2)

𝑔(𝑟) = cosh 𝑟 shi 𝑟 − sinh 𝑟 chi 𝑟 , (A3)

where shi() and chi() are the Sinh- and Cosh-Integral functions. This
shows that the 2PCF can be computed analytically for this power
spectrum.

The next step is to show analytically how the 2PCF changes if
we include a scale-dependent bias and use the simplified matter
power spectrum. Let us start by recalling the expression of the power
spectrum with scale-dependent bias,

𝑃𝑔 (𝑘) = 𝑏(𝑘)2𝑃𝑚 (𝑘), (A4)

𝑏(𝑘) = 𝑏𝑔 + Δ𝑏(𝑘, 𝑧). (A5)

We find terms that are independent, linear, and quadratic in 𝑓NL. This
implies that the computation of the 2PCF involves three integrals over
the wavenumbers. The term independent of 𝑓NL just gives something
proportional to 𝑏2

𝑔 𝜉0 (𝑟).
The linear term in 𝑓NL is more interesting. This component of

2PCF is proportional to,∫ ∞

0
d𝑘𝑘2 𝑃𝑚 (𝑘)

𝑘2 𝑇 (𝑘)
𝑗0 (𝑘𝑟) =

𝑔(𝑟)
𝑟

, (A6)

which is finite for large values of 𝑟 .
The quadratic term in 𝑓NL logarithmically diverges as 𝑘min → 0,

this can be seen as follows,∫ ∞

𝑘min

𝑘2 𝑃𝑚 (𝑘)
𝑘4 𝑇 (𝑘)2

𝑗0 (𝑘 𝑟)d𝑘 = 𝑗0 (𝑘min𝑟) − ci(𝑘min𝑟) (A7)

→ 1 − 𝛾 − ln(𝑘min𝑟) +
1
12

𝑘2
min𝑟

2, (A8)

where ci is the Cosine Integral function.
Now that we have computed the 2PCF for the simplified power

spectrum with scale-dependent bias, we can analyze how the the-
oretical integral constraint condition, given by Eq.(35), behaves at
large scales.

From the previous computation can be seen that the integral con-
straint condition explicitly vanishes for the term independent of 𝑓NL,∫ ∞

0
d𝑟𝑟2𝜉0 (𝑟) = 0. (A9)

The linear term, given by Eq.(A6) is linearly divergent for a given
large scale 𝑟𝑚𝑎𝑥 . This can be seen as follows,∫ 𝑟max

0
d𝑟𝑟2 𝑔(𝑟)

𝑟
= 𝑟max (1 + 𝑔′(𝑟max)) − 𝑔(𝑟max) → 𝑟max , (A10)

This implies that there will be a linear term in 𝑓NL proportional to
𝑓NL𝑟max.
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Now if we compute the integral constraint for the quadratic term in
𝑓NL, given by Eq.(A7), we find that is proportional to 𝑓 2

NL𝑘
3
eq/𝑘3

min.
Therefore, from this calculation, we conclude that the integral

constraint has a term linear in 𝑓NL, which diverges with 𝑟max, and a
quadratic term in 𝑓 2

NL which is proportional to 𝑘−3
min. This implies that,

even for infinite volume surveys, we need to correct the two-point
correlation function with PNG with the integral constraint, because
it can bias the 𝑓NL results.
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