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ABSTRACT

We analyze clustering measurements of BOSS galaxies using a simulation-based emulator of two-point statis-
tics. We focus on the monopole and quadrupole of the redshift-space correlation function, and the projected
correlation function, at scales of 0.1 ~ 60 h~'Mpc. Although our simulations are based on wCDM with gen-
eral relativity (GR), we include a scaling parameter of the halo velocity field, -y, defined as the amplitude of
the halo velocity field relative to the GR prediction. We divide the BOSS data into three redshift bins. After
marginalizing over other cosmological parameters, galaxy bias parameters, and the velocity scaling parameter,
we find fog(z=0.25) =0.404 £ 0.03, fog(z =0.4) = 0.444 +0.025 and fog(z=0.55) =0.385£0.019. Com-
pared with Planck observations using a flat ACDM model, our results are lower by 2.290, 1.30 and 4.58¢c
respectively. These results are consistent with other recent simulation-based results at non-linear scales, in-
cluding weak lensing measurements of BOSS LOWZ galaxies, two-point clustering of eBOSS LRGs, and an
independent clustering analysis of BOSS LOWZ. All these results are generally consistent with a combination
of 7}/ 208 ~0.75. We note, however, that the BOSS data is well fit assuming GR, i.e. 7y = 1. We cannot rule out
an unknown systematic error in the galaxy bias model at non-linear scales, but near-future data and modeling
will enhance our understanding of the galaxy—halo connection, and provide a strong test of new physics beyond

the standard model.

Keywords: large-scale structure of universe — methods: numerical — methods: statistical

1. INTRODUCTION

Clustering analysis of galaxies provides important infor-
mation for us to understand the spatial distribution and evo-
lution of the underlying dark matter. The relationship be-
tween luminous galaxies and dark matter can serve as a con-
straint on galaxy formation physics, which is necessary for
an unbiased determination of cosmological parameters. The
observations from large-scale cosmological surveys, e.g.,
the Sloan Digital Sky Survey (SDSS-I/II, York et al. 2000;
Abazajian et al. 2009), the Two Degree Field Galaxy Redshift
Survey (2dFGRS, Colless et al. 2001; Cole et al. 2005), Wig-
gleZ (Drinkwater et al. 2010), BOSS (Dawson et al. 2013),
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and eBOSS (Dawson et al. 2016) have provided spatial in-
formation for millions of galaxies and produced significant
results that inform our understanding of the universe. On-
going and future spectroscopic surveys such as the Dark En-
ergy Spectroscopic Instrument (DESI, DESI Collaboration
et al. 2016), 4MOST (de Jong et al. 2016), PFS (Takada
et al. 2014), Euclid (Laureijs et al. 2011, 2012), and NASA’s
Nancy Grace Roman Space Telescope (Roman, Green et al.
2012; Dressler et al. 2012; Spergel et al. 2015; Wang et al.
2021) will continue to map the structure of the Universe with
unprecendented volumes and precision. The compilation and
analysis of these current and future data will enhance our
ability to measure the structure and evolution of the universe
in the past billions of years. Using a method developed pre-
viously in this series, in this paper we analyze BOSS data
to extract cosmological information from clustering on small
scales and put constraints on cosmological parameters.
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Retrieval of cosmological information on small scales is
challenging due to the lack of an accurate and convenient
analytic model to describe the non-linear dynamics of dark
matter, as well as our incomplete understanding of the bary-
onic processes that impact the spatial distribution of galaxies.
In Zhai et al. (2019), we proposed an emulator approach for
galaxy clustering based on N-body simulations to investigate
this problem, targeting massive BOSS galaxies at z = 0.55.
The idea is to run a limited number of high-resolution cos-
mological simulations that can efficiently sample cosmolog-
ical parameter space. We then augment these dark matter
only (DMO) simulations with a galaxy bias model to com-
pute galaxy correlation functions. Our galaxy bias model is
based on the Halo Occupation Distribution (HOD; see Wech-
sler & Tinker 2018 and references therein). This theoretical
template is combined with Gaussian Processes (GP) to model
the dependence of galaxy statistics on both cosmology and
galaxy bias. The resultant product is able to make predictions
for an arbitrary set of parameters, both cosmological as well
as those controlling the galaxy—halo connection, in an accu-
rate and efficient manner. Therefore, it is possible to sample
this enlarged parameter space to achieve the posterior dis-
tribution of unknown cosmological parameters and correctly
marginalize over nuisance parameters. We demonstrate that
there is more constraining power at non-linear scales than
linear scales to constrain the growth rate of structure. In this
paper, we apply this method to BOSS galaxies distributed
within 0.18 < z < 0.62 to constrain various parameters of our
cosmological model and measure the growth rate of struc-
ture. Since the pioneering works of Heitmann et al. (2009,
2010), Lawrence et al. (2010), and Heitmann et al. (2014),
the emulator approach has been widely applied in literature
to model the statistics of galaxy and dark matter on non-
linear scales. Using the N-body simulation from the Aemu-
lus Project (DeRose et al. 2019), we have constructed emu-
lators for the halo mass function (McClintock et al. 2019a),
the halo bias function (McClintock et al. 2019b), the non-
linear power spectra of biased tracers (Kokron et al. 2021)
and for investigating galaxy assembly bias (McLaughlin et.
al. in preparation). This approach has also been used in stud-
ies such as the EuclidEmulator (Euclid Collaboration et al.
2019) to model the non-linear corrections to the dark mat-
ter power spectrum in preparation for the Euclid mission, the
DARK EMULATOR (Nishimichi et al. 2019; Kobayashi et al.
2020; Miyatake et al. 2020) for dark matter halo statistics
over a wide redshift range, extensions to ACDM cosmolo-
gies (Giblin et al. 2019; Ramachandra et al. 2020), baryonic
effects in the matter power spectrum (Arico et al. 2020), the
modeling of the Lyman-« forest flux power spectrum (Bird
et al. 2019; Rogers et al. 2019; Walther et al. 2020; Pedersen
et al. 2020), galaxy lensing and clustering for BOSS-LOWZ
galaxies (Wibking et al. 2017, 2020), weak lensing signal of
galaxy clusters (Salcedo et al. 2020), and so on.

Based on the Aemulus suite, Lange et al. (2021) mea-
sured the linear growth rate for the BOSS-LOWZ galaxies
using clustering measurement on small scales, while Chap-
man et al. (2021) applied the emulator method of Zhai et al.

(2019) and performed a cosmological analysis with eBOSS
LRG data using a similar range of scales. This work extends
the previous works in three different ways. First, we use a
different, and larger, redshift range. Second, we incorpo-
rate a model for the effects of galaxy assembly bias. Third,
through a scaling parameter, we decouple the velocity field
of dark matter halos from that predicted by general relativity
(GR), enabling us to constrain departures from GR.

This paper is a direct application of Zhai et al. (2019) to
data from BOSS DR12. The method to construct the emula-
tor for the galaxy correlation function remains the same but
with two main differences in the analysis: (1) galaxy selec-
tion from BOSS DR12 and (2) incorporating assembly bias in
the HOD model. Zhai et al. (2019) modeled BOSS-CMASS
galaxies at effective redshift z ~ 0.55 with the number den-
sity of n=4.2 x 1073 [h~'"Mpc] =, corresponding to the peak
value over the redshift range. However, the flux limit of the
selection can introduce incompleteness in terms of luminos-
ity or stellar mass. Thus, in this paper, we apply additional
selection criteria to the BOSS galaxies to reduce the effect
of sample incompleteness, although this effect is shown to
be minor for the clustering analysis (Tinker et al. 2017; Zhai
etal. 2017.

In Zhai et al. (2019), the connection between galaxies and
dark matter halos is modeled by populating halos in the
DMO simulations with a parameterized HOD. In particu-
lar, we assumed that the relationship can be simply modeled
by P(N|M), the probability distribution that a halo of mass
M contains N galaxies of a given class, combined with pa-
rameters for spatial and velocity bias of galaxies within ha-
los. This basic form assumes that the galaxy population, and
therefore the clustering, is determined by halo mass only.
However, result based on N-body simulations reveals that
the halo clustering may depend on properties other than halo
mass, which has been referred to variously as assembly bias
or secondary bias (Wechsler et al. 2002; Sheth & Tormen
2004; Gao et al. 2005; Harker et al. 2006; Wechsler et al.
2006; Wechsler & Tinker 2018). The investigation of this
assembly bias effect has been performed extensively with N-
body simulations and semi-analytical models for galaxy for-
mation and evolution. Depending on which secondary prop-
erty is studied, the clustering of dark matter halos may have
different levels of correlation. This effect can, theoretically,
propagate into the distributions of galaxies that live in these
halos and thus add additional complexity to the galaxy clus-
tering analysis. Current studies have shown small but non-
negligible correlation of galaxy and halo clustering with in-
ternal properties such as halo age, concentration, or spin, or
external properties such as large scale environment (see e.g.,
Mao et al. 2015; Hearin et al. 2016; Mao et al. 2018; Villar-
real et al. 2017; Lehmann et al. 2017; Shi & Sheth 2018;
Salcedo et al. 2018; Zentner et al. 2019; Contreras et al.
2020 and references therein). Although the precise details
and physical reasons for the assembly bias are not fully un-
derstood, it is now clear that it is necessary to incorporate
this effect into the standard HOD approach to create a robust
model for the analysis of BOSS galaxy clustering, and to cor-
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rectly marginalize over any such effect when obtaining con-
straints on cosmological parameters. Therefore, in this work,
we extend the basic HOD model by adding more parameters
to describe the clustering dependence on halo environment.

In addition to yielding unbiased cosmological constraints,
searching for the galaxy assembly bias itself is also an ac-
tive topic of research. However, recent attempts based on
SDSS and BOSS galaxies present contradictory results on the
significance of galaxy assembly bias (Vakili & Hahn 2019;
Walsh & Tinker 2019; Salcedo et al. 2020; Yuan et al. 2020).
Although the construction of the assembly bias models in
these studies are different, it implies that our understanding
of the galaxy assembly bias is not complete, necessitating a
general and flexible parameterization within the galaxy bias
model. Using the emulator approach and the extended HOD
model, we will investigate this problem and examine any bias
induced in the cosmological constraint in this paper.

The emulator approach applied in this paper enables con-
straints on fundamental cosmological parameters using small
scale galaxy clustering, with an emphasis on the growth
of the dark matter structure. Our pilot study (Zhai et al.
2019) demonstrated that small scale clustering has more con-
straining power than large scales using perturbation theory
to measure the parameter combination fog. The result of
this analysis can give accurate measurement over the entire
redshift range of BOSS galaxies. In addition, our modeling
of the dark matter halo velocity field also marginalizes over
the modification of underlying gravity. We employ a phe-
nomenological model by scaling the velocity field of dark
matter halos with a free parameter. This extra degree of free-
dom can mimic, in a simplified manner, the effect of modified
gravity. Therefore, clustering analyses in redshift space are
able to probe deviations from GR. The result can help us bet-
ter understand the families of cosmological models proposed
to explain the cosmic acceleration.

Our paper is organized as follows: In Section 2, we intro-
duce the BOSS galaxies and the sample selection. Section
3 describes the simulation suites used in the analysis. Sec-
tion 4 lays out the galaxy—halo connection model. Section 5
introduces galaxy statistics for the clustering measurement.
Section 6 describes the construction of the covariance matrix
and prior for the likelihood analysis. Section 7 presents our
cosmological measurements and systematics analysis. We
discuss and list our conclusions in Section 8.

2. OBSERVATIONAL DATA

In this paper, the analysis uses the large-scale structure
catalog created from the BOSS observations as described in
Reid et al. (2016), including the survey footprint, veto masks
and observational systematics. We use both the galaxy and
random catalogs created for clustering measurements. BOSS
targets galaxies with two selection algorithms: the LOWZ
sample at z ~ 0.3 and the CMASS sample at z ~ 0.55. We
follow the strategy of Alam et al. (2017) to use a com-
bined LOWZ+CMASS sample covering the entire redshift
range of 0.2 < z < 0.7. We note that the color cuts and
flux limits used in target selection introduce incompleteness

Table 1. Number of galaxies used in our analysis.

Redshift ~ Type NGC SGC
0.18<z<0.32 DRI12 115187 54399
Selected 82103 34249
032<z<048 DRI12 230093 103861
Selected 158610 66509
048 <z<0.62 DRI12 342844 143024
Selected 209697 89950

in the BOSS galaxies, i.e., the BOSS galaxy sample is not
a volume-limited sample. A typical halo occupation analy-
sis assumes that the galaxy sample being modeled is volume
limited. Although the incompleteness of BOSS galaxies has
been quantified in Leauthaud et al. (2016) and Tinker et al.
(2017), and the results show that the incompleteness does
not have a significant impact on the clustering measurement
or HOD analysis of the data (Zhai et al. 2017), this incom-
pleteness should be minimized in order to construct galaxy
samples that are best suited for HOD analysis. Therefore we
prepare the galaxy selection as follows.

We first compute the galaxy number density, n(z), of the
BOSS sample assuming a spatially flat ACDM with €, =
0.31 as a fiducial model to compute the cosmic volume.
The result is shown in Figure 1 for the North Galactic Cap
(NGC) and South Galactic Cap (SGC) respectively. The lo-
cal minimum at z ~ 0.4 represents the transition between
CMASS and LOWZ. We then split the galaxy sample into
three redshift slices: 0.18 < z < 0.32 (low-z), 0.32 < 7 < 0.48
(med-z) and 0.48 < z < 0.62 (high-z) and analyze the clus-
tering measurements separately for each redshift slice. For
each subsample, we apply a thin redshift binning with e.g.,
Az =0.005. In each of these fine slices, we convert the
i—band apparent magnitude of the galaxies to absolute mag-
nitude and rank-order by the luminosity. Then we select the
bright end of this galaxy subsample to have a number density
that is constant across the redshift slice. For low-z, we use
2.5 x 107*[A'"Mpc]. For both med-z and high-z, we use
2.0 x 107*[A~'"Mpc]=. This results a galaxy sample with a
constant number density across each of the redshift range of
interest, as shown in the solid lines in Figure 1. We apply this
selection separately for NGC and SGC and ensure they have
the same number density by definition. Table 1 summarizes
the number of galaxies in the resultant samples. In Figure 2,
we display the distribution of i—band absolute magnitude for
each galaxy sample in NGC and SGC respectively. Although
the luminosity threshold varies some across each bin in order
to preserve the number density, this is significantly closer to
a volume-limited sample than the original flux-limited target
selection. Thus, these new galaxy samples are more appro-
priate for halo occupation analysis.

3. SIMULATIONS
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Figure 1. The comoving number density of the BOSS DR12 galax-
ies as a function of redshift. The sample used in our analysis is
defined by the galaxy brightness such that both NGC and SGC can
reach a constant number density, as indicated by the horizontal lines.
The grey vertical lines split the galaxies into low-z, med-z and high-
z subsamples that will be analyzed individually.

The non-linear dynamics of dark matter can be well cap-
tured by N-body simulations (see, e.g., Klypin et al. 2011,
2016). This also provides the theoretical framework for us to
extract cosmological information from the BOSS galaxies.
In this section we introduce the simulation suites employed
in our work, as well as examinations of systematics. Table
2 summarizes the key information of these simulation suites
and their functions in our analysis. Briefly, we use three dif-
ferent types of simulations: (1) The AEMULUS simulation
suite (DeRose et al. 2019), which is used to build the emula-
tor, (2) high-resolution simulations that resolve substructure,
which are used to test the emulator, and (3) lower-resolution
PM simulations run with the GLAM code (Klypin & Prada
2018) to construct a covariance matrix for the BOSS cluster-
ing measurements.

3.1. The Aemulus suite

We use the AEMULUS simulation presented in DeRose
et al. (2019) to build and test the emulator for galaxy clus-
tering. The AEMULUS suite comprises 75 boxes of dark-
matter-only N-body simulations, with 40 simulations at dif-
ferent cosmologies for training the emulator, and 35 addi-
tional simulations at 7 cosmologies for testing. The test set
has 5 realizations at each cosmology for better statistics. The
cosmologies of the training set are chosen based on wCDM
model in an optimized Latin hyper-cube designed parame-
ter space (Heitmann et al. 2009). The cosmological param-
eters for the AEMULUS suite are the matter density €2,,, the
baryon energy density (2, the amplitude of matter fluctua-
tions og, the dimensionless Hubble parameter &, the spectral
index of the primordial power spectrum g, the equation of

state of dark energy w and the number of relativistic species
N.g. All the simulations have a volume of 1.054~!Gpc with
1400° dark matter particles, yielding a mass resolution ap-
propriate for resolving halos that host massive galaxy pop-
ulations like the BOSS samples. For 2, = 0.3, the particle
mass is ~ 3.5 x 10'°42""M,. We use the training set to build
the emulator for the different galaxy clustering statistics, and
we use the test set to evaluate the emulator performance and
quantify the uncertainty, as done in Zhai et al. (2019). In Ta-
ble 3, the first section summarizes the cosmological param-
eters and the range relevant for the emulator construction in
the following sections. We refer the readers to DeRose et al.
(2019) for more details on the AEMULUS simulations.

3.2. Uchuu and UNIT

We use the Uchuu (Ishiyama et al. 2020) and UNIT
(Chuang et al. 2019) simulations to build galaxy mocks and
do recovery tests of our emulator. The galaxy—halo con-
nection in our emulator is based on an HOD in which the
parameters of the mean occupation function vary with halo
environment, thus mimicking the effect of galaxy assembly
bias. In order to validate the robustness of this approach in
modeling the galaxy clustering at non-linear scale and the
inferred cosmological measurement, we test this approach
against mock galaxy catalogs produced via the SubHalo
Abundance Matching method (SHAM; i.e., Kravtsov et al.
2004; Vale & Ostriker 2004; Conroy et al. 2006; see Wech-
sler & Tinker 2018 for areview). This model assigns galaxies
to dark matter halos based on the assumption that the stellar
mass or luminosity of a galaxy is correlated with the prop-
erties of dark matter halo or subhalo hosting this galaxy.
The SHAM model has far fewer parameters than HOD but
it can well match observed galaxy statistics (e.g., Lehmann
et al. 2017). The standard mapping process between galaxies
and dark matter halos in the SHAM approach yields some
amount of galaxy assembly bias. Therefore testing our HOD-
based model with this SHAM model is able to tell us whether
different models of assembly bias can bias the cosmological
constraints.

We use two simulation suites to create SHAM mocks:
Uchuu and UNIT; both adopt the Planck 2016 cosmology
(Planck Collaboration et al. 2015). The Uchuu simulation
has 2.1 trillion dark matter particles in a 8[4~'Gpc]® box with
a particle mass of 3.27 x 108h7'M,. This volume is ~ 8
times larger than the test boxes from AEMULUS, enabling a
more precise measurement of clustering statistics. For the
UNIT simulations, we use the 147'Gpc boxes with a par-
ticle number of 4096°. This simulation adopts the inverse
phase technique (Angulo & Pontzen 2016) to reduce cosmic
variance. We use all the 4 boxes (2 pairs) in our analysis
for galaxy clustering, implying that the effective volume is
higher than 4[A'Gpc]®. For both simulations, we use the
method of Lehmann et al. (2017) to assign galaxies to dark
matter halos and subhalos. In this method, the property used
to rank halos is a combination of the maximum circular ve-
locity within the halo, vy, and the virial velocity, vy;,. This
combination allows the user to vary the amount of assembly
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Figure 2. Distribution of the i—band absolute magnitude of the BOSS galaxies. Our sample corresponds to the brighter end with a nearly hard
cut at —23. This redshift-dependent selection can provide a galaxy sample with constant number density across redshift, which is close to a

volume-limited sample.

Simulation Cosmology Box size Number of simulations What it is used for Reference

Aemulus multiple 1.05h'Gpe 75 Building the emulator ~ DeRose et al. (2019)
GLAM Planck-like 1.0n7'Gpc 986 Covariance matrix Klypin & Prada (2018)
Uchuu Planck 2.0h'Gpe 1 External test of SHAM  Ishiyama et al. (2020)
UNIT Planck 1.0h'Gpe 2 pairs External test of SHAM  Chuang et al. (2019)

Table 2. Simulations used for the analysis in this paper.

bias the galaxies exhibit. More details on the parameters used
and the results of the tests are in Appendix E.

3.3. GLAM simulations

We use the GLAM simulations to construct the covariance
matrix for the likelihood analysis. The GLAM simulations
are run with the new Parallel Particle-Mesh (PM) N-body
code (PPM-GLAM) with a box size of 14~'Gpc and 20003
particles. The high speed of this code has enabled nearly
1000 independent realizations at the Planck cosmology, a set
of simulations large enough to construct a robust covariance
matrix for all our clustering measurements. In our work, we
use 986 boxes with redshift outputs equal to the mean red-
shifts of our BOSS samples, to estimate the covariance ma-
trix for our BOSS correlation function measurements. The
details of the GLAM simulation can be found in Klypin &
Prada (2018).

4. GALAXY-HALO CONNECTION MODEL

In this paper, we adopt the HOD approach to model the
galaxy-halo connection. The HOD describes the galaxy pop-

ulation within dark matter halos in a statistical manner. We
start with the model of Zhai et al. (2019) to define the mean
occupation function for central and satellite galaxies, which
is in turn based on the Zheng et al. (2005) HOD model.
Our implementation includes three additional parameters that
control the concentration of the radial distribution of satel-
lite galaxies and velocity biases of both centrals and satel-
lites. The parameters are summarized in the second section
of Table 3. Note that the ranges of certain parameters are en-
larged compared to Zhai et al. (2019) to better fit the BOSS
measurements. This is due to the fact that the galaxy num-
ber density in this paper is lower than that of the Zhai et al.
(2019) emulator, thus we are modeling the clustering of an
intrinsically brighter galaxy population with a higher clus-
tering amplitude. For reference, in Appendix A, we show
the clustering measurements for the BOSS galaxies with and
without our selection based on luminosity. Due to the cor-
relation between galaxy luminosity and their host halo mass,
these galaxies are likely living in more massive halos and are
thus more clustered.



Compared with the previous model in Zhai et al. (2019),
the critical change in this analysis is the addition of a galaxy
assembly bias model, in which galaxy occupation depends on
halo properties other than mass. With the lack of consensus
on observational constraints on galaxy assembly bias, there
is flexibility to choose secondary halo properties to investi-
gate the assembly bias, including both internal and external
properties. In this work, we focus on the bias introduced by
the environment, i.e., an external property. In particular, we
define the halo environment as the dark matter overdensity of
dark matter halo. We measure the relative density ¢ of dark
matter halos using a top-hat window function with radius of
10h~'Mpc. Then we modify the HOD model by scaling the
parameter My, through

Mmin=Mmin |:1+fenverf((S 5enV):| . (1)
Oenv

This functional form modulates the dependence of M, as a
function of local density and its value can be determined by
other HOD parameters when galaxy number density is fixed
(Zhai et al. 2019). The amplitude parameter fe,, controls
the overall strength of the dependence and the resultant level
of assembly bias, the position parameter d.,, determines the
threshold to split halos living in over- and under-dense re-
gions, and the width parameter o, controls the smoothness
of the transition from under-density to over-density. This as-
sembly bias model allows the minimum mass scale for dark
matter halos to host a central galaxy to depend on halo en-
vironment, which has a direct impact on the occupancy of
centrals and satellites and therefore can change the cluster-
ing signal compared with basic HOD model, see e.g., Figure
4 of Walsh & Tinker (2019). The degrees of freedom intro-
duced through this parameterization can also enable the in-
vestigation of galaxy formation physics by looking at galax-
ies formed in halos of same mass but different environment.
For the following analysis, setting feny = 0 can simply turn
off the modeling of assembly bias and returns the basic HOD
model. The parameterization chosen allows for significant
flexibility in assembly bias; the impact on clustering can be
negligible or very large. The change induced by the assem-
bly bias can be to either increase or decrease the clustering
amplitude, and the effect can occur at any density.

The addition of these new parameters makes our previous
HOD model more flexible. The construction of the emulator
in this extended parameter space for galaxy correlation func-
tion follows the method developed in Zhai et al. (2019). More
details, and the performance of the emulator, are described in
Appendix C. We note that the choice of the assembly bias
model in this paper is not the only option. It is possible to
incorporate galaxy assembly bias that depends on other prop-
erties of dark matter halos. However, recent studies based on
hydrodynamic simulation and semi-analytic model show that
the local environment of the halo at the present day is an ex-
cellent predictor of assembly bias (Yuan et al. 2020; Xu et al.
2020), as well as results from N-Body simulation (Yuan et al.
2021). Therefore we apply this particular model of assem-
bly bias throughout this work, but extensions to other model

are also possible. In addition, this assembly bias model only
applies to the host halos and not to subhalos. Correlations
caused by satellites, for example introduced by relationships
with concentration, halo formation time etc can be modeled
using a more flexible method; but we do not address those
here. We note that there are alternatives to extend the ba-
sic HOD model with assembly bias, e.g. the decorated HOD
algorithm (Hearin et al. 2016; see also McLaughlin et. al.
(in preparation). This model redistributes galaxies within the
same halo mass bin by secondary halo property, while pre-
serving the original HOD after marginalization. Our imple-
mentation is less physically motivated, but has more flexi-
bility to describe the types of galaxy assembly bias signals
induced by various forms the assembly bias may take.

5. MEASURING GALAXY CLUSTERING
5.1. Two-point Correlation Function (2PCF)

We quantify the clustering for both BOSS and simulated
data sets using the two-point correlation function £(r), which
measures the excess probability of finding two galaxies sep-
arated by a vector distance r, relative to a random distribu-
tion, for all |r| = r. In practical applications, the distance
to galaxies is determined by redshift, which can be distorted
by peculiar velocities, also known as the redshift-space dis-
tortion (RSD) effect. Therefore the measured galaxy distri-
bution in redshift space is different than in real space, but
these differences are driven by the amplitude of the peculiar
velocity field and thus contain information about the growth
rate of large-scale structure. We measure {z(7,,7) on a two-
dimensional grid of separations perpendicular r, and parallel
() to the line of sight through

-1
7T=S|T|, r,,=s~s—7r2, 2)

with1=(s; +s;)/2 (Davis & Peebles 1983; Fisher et al. 1994),
the subscript "Z" denotes redshift space. In order to reduce
the effect of redshift-space distortions and extract informa-
tion in real space (with subscript "R" in the following equa-

tion), we compute the projected correlation function (Davis
& Peebles 1983)

Wp(’p):z/ooodﬂ§z(rp77f)=2/oood7rf1e(r= r12,+7r2).
3)

This integral needs to be truncated at some scale in the mea-
surement from the observational sample or mock catalog. We
choose Tmax = 80 A~'Mpc, which is large enough to give sta-
ble results. To encapsulate the clustering in redshift space,
we measure the multipoles of the correlation function. With
w=r,/s, we use the standard decomposition with Legendre
polynomial to obtain

20+1 [!
£e<s>=7+ / Lo(u)&z(s, wydp, 4)
-1

where L, is the Legendre polynomial of order /. Most of the
information in redshift space is contained in the first few even
multipoles and in this work we use &y and &,.
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Parameter

Meaning Range

Cosmology Qu

The matter energy density

[0.255, 0.353]

Qp The baryon energy density [0.039, 0.062]
o3 The amplitude of matter fluctuations on 8 4~ Mpc scales. [0.575, 0.964]
h The dimensionless Hubble constant [0.612, 0.748]
ng The spectral index of the primordial power spectrum [0.928, 0.997]
w The dark energy equation of state [-1.40, -0.57]
Netr The number of relativistic species [2.62, 4.28]
Yf The amplitude of halo velocity field relative to wCDM+GR [0.5, 1.5]
HOD log My The typical mass scale for halos to host one satellite [14.0, 15.5]
o The power-law index for the mass dependence of the number of satellites [0.2,2.0]
log Myt The mass cut-off scale for the satellite occupation function [10.0, 13.7]
OlogM The scatter of halo mass at fixed galaxy luminosity [0.05, 0.6]
TNeon The concentration of satellites relative the dark matter halo [0.2,2.0]
Mve The velocity bias for central galaxies [0.0, 0.7]
Nvs The velocity bias for satellite galaxies [0.2,2.0]
Assembly Bias  fen Amplitude parameter for assembly bias [-0.3,0.3]
Oenv Position parameter for assembly bias [0.5,2.0]
Oenv Width parameter for assembly bias [0.1, 1.0]

Table 3. Parameters used in our emulator, their physical meaning, and the parameter space range for each parameter. For the HOD parameters,

assembly bias parameters, and for 7, the range is used as a flat prior in analysis. For the cosmological parameters, we use a prior defined by

the training cosmologies themselves. See text for further details.

5.2. Measurement from BOSS

Using the galaxy samples defined in Section 2, we measure
the 2PCF through the estimator (Landy & Szalay 1993)

DD—-2DR+RR

f(rp,w): RR )

&)
where DD, DR, and RR are suitably normalized numbers
of (weighted) data—data, data—random, and random-random
pairs in each separation bin. The positions of the BOSS
galaxies are converted from RA, DEC and redshift to Carte-
sian coordinates assuming a Planck 2016 ACDM model with
€Q,, =0.307. The choice of cosmology for this transformation
has a negligible impact on the final result (Chapman et al.
2021; Lange et al. 2021).

In BOSS clustering measurements, there is an important
systematic due to “fiber collisions”. The spectroscopic red-
shift of BOSS galaxies is obtained by fibers, which have a
physical scale of 62 arcsec on a given tile; any two fibers can
not be placed closer than this scale. This leads to a fraction
of galaxies without redshift determination. The loss of these
galaxies has an impact on the clustering measurement at all
scales, and is more significant on small scales. This fiber col-
lision effect has been corrected using multiple methods in the
clustering measurements, such as nearest neighbor or angular
up-weighting methods. In our analysis, we adopt the method
developed in Guo et al. (2012), which is based on the fact that
the fiber collision can be resolved in areas that are observed
within more than one tile. This method can recover the pro-
jected and redshift space two-point correlation function on

scales below and above the collision scale. Our final mea-
surements of the BOSS galaxies are shown in Figure 3 for all
three redshift bins. For w,, and &, we choose logarithmically-
spaced bins for r, or s from 0.1 to 60.2 A~'Mpc, resulting in
9 data points for each statistic. For &, p is binned linearly
with 40 bins from O to 1. Both the measurement from BOSS
galaxies and from the mocks use the same binning scheme.

6. LIKELIHOOD ANALYSIS
6.1. Covariance matrix

The covariance matrix is of critical importance in the like-
lihood analysis. Here we pursue several methods of quan-
tifying the covariance matrix of the BOSS clustering mea-
surements in order to determine the sensitivity of our re-
sults to the details of the matrix construction. It can be es-
timated using a large number of simulations, or through the
data themselves, and the matrix can employ a combination
of these two approached. Based on the observational data,
we first measure the covariance matrix through jackknife re-
sampling with 400 roughly equal sub-areas of the BOSS an-
gular footprint. We note that this method may lead to a noise-
dominated covariance matrix due to limited size of subsam-
ples. Simulation-based methods have significantly less noise,
but have inherent assumptions when constructing the mock
galaxies used. To construct these mocks, we use the emula-
tor of the 2PCF as constructed in the previous section to find
an HOD model that can give consistent clustering measure-
ments with the data. In particular, we fix the cosmological
parameters to be those of the GLAM cosmology, and we also
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Figure 3. The two-point correlation function of BOSS galaxies, including w,(left), £ (middle), and & (right) for all three redshift bins. The

lines are the prediction of the best-fit model with varying cosmology, HOD and assembly bias parameter, assuming the fiducial model for
covariance matrix (see more details in Section 6.1). The best-fit model uses data from w), + &y +&,. The results for low-z and high-z are shifted

slightly for plotting purpose.

assume no assembly bias (i.e., feny = 0). The resulting HOD
model is then used to populate the halos within the GLAM
simulations to produce 986 galaxy mocks. We repeat this
process for all three redshifts. The correlation matrix of these
two approaches give quite consistent behavior of the galaxy
2PCF, with the fact that the mock-based method is substan-
tially smoother and thus reduces the effect of noise in the
calculation of the likelihood.

With these two methods, we construct the following four
covariance matrices:

e Jackknife: Full covariance matrix from Jackknife re-
sampling.

e GLAM: Full covariance matrix from the GLAM
mocks.

* Fiducial: Diagonal elements from jackknife re-
sampling combined with the correlation matrix from
GLAM mocks.

* Modified Fiducial: Same as the fiducial, but using a
different HOD model for the galaxy mocks.

As listed above, our fiducial matrix uses the data to set the
amplitude of the errors, but we use the simulations for the
shape of the covariance matrix. The off-diagonal elements
are scaled by the corresponding diagonal elements. In the
modified fiducial matrix, we choose a different HOD model
from one of the training sets that is close to the 2PCF mea-
surement from BOSS and use this HOD model to regenerate
986 GLAM mocks. This tests any sensitivity to the details of
the galaxy bias model. We apply this test to the high redshift
7=0.55 subsample. We find minimal dependence on the de-
tails of the HOD model. Further details on this test and the
construction of the various covariance matrices can be found
in Appendices B and G.

The covariance matrices described above correspond to the
contribution from sample variance in the data Cs,,. When we
perform the actual analysis, we also need to take into account
the uncertainties from the emulator itself. Thus the final co-
variance matrix is

C= Csam + Cemm (6)

where Cepy, is the intrinsic error from the emulator prediction.
To compute this, we adopt the same method as in Zhai et al.
(2019). Simply put, the raw emulator performance show as
the shaded area in Figure 15 has two contributions: intrinsic
error of emulator and sample variance of the testing simula-
tions. We assume these two terms are independent and there-
fore the intrinsic error of the emulator is the total error with
the sample variance subtracted off in quadrature. In addition,
we also assume the emulator error is independent among dif-
ferent r,, and s bins, thus Cep, is diagonal only. This differs
from Zhai et al. (2019), in which we assumed Cpp,, had the
same correlation matrix as Cs,m, but our tests show this has a
minor impact on the final constraints. A followup analysis is
left for a future work (Storey-Fisher et al, in preparation).

6.2. Sampling algorithm and priors

We perform the our analysis using the likelihood function

1
InL =—§<£emu—5obs)C*‘<£emu—5obs>, (7)

where &y and Eqps are the correlation function from the em-
ulator and observational data respectively and C is the co-
variance matrix as defined above. Depending on tests, &qps iS
from either BOSS measurements or galaxy mocks.

The likelihood analysis is done through Bayesian statistics.
In particular, we explore the parameter space using the nested
sampling algorithm (Skilling 2004) implemented in MULTI-
NEST (Feroz et al. 2009; Buchner et al. 2014) package. This
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method can compute the Bayes Evidence through the integral

Z= / L(p)p(p)dp, ®)

where p(p) is the prior given parameter vector p. The Bayes
Evidence has been widely used to evaluate the model selec-
tion in different scientific fields. The output from MULTI-
NEST also gives posterior distributions of the parameters in
the model. Compared with traditional methods to obtain
the posterior, such as Markov Chain Monte Carlo MCMC)-
like method as we used in Zhai et al. (2019), the nested
sampling needs fewer evaluations to reach convergence. In
our analysis, we choose 1000 live-point to sample the high-
dimensional parameter space. A typical run for likelihood
analysis using emulators of all three statistics w, +&o + &
takes roughly five thousand CPU hours to get converged re-
sults.

Another critical ingredient is the prior p(p). For our HOD
parameters, we choose a flat and un-informative prior defined
by the range of the parameters (Table 3). However, the cos-
mological parameter space in our analysis is restricted by the
sampling of the training cosmologies, see for instance Fig-
ure 3 of DeRose et al. (2019). This means the that emulator
is only guaranteed to produce reliable prediction of the 2PCF
within this CMB+BAO+SNIa defined area. Therefore we de-
fine a prior space for the cosmological parameters based on
the training cosmologies. In particular, this prior is defined
by an ellipsoid in seven-dimensional space and we restrict
the nested sampling to be within this prior range. We present
more details of the training area in Appendix D.

6.3. Recovery tests

Before we apply this likelihood analysis to the BOSS
galaxies, we first perform a recovery test using the SHAM
galaxy mocks. The details and results are shown in Ap-
pendix E. It shows that with different details for the SHAM
mock construction, our HOD-based emulator is able to re-
cover the input cosmology successfully with the parameters
constrained within 1o level, and thus validate the emulator
construction. In Appendix G, we present the constraints us-
ing different setups for the covariance matrix. The consis-
tency between different covariance matrices shows that the
effect on the final cosmological measurement is not signifi-
cant. Compared with the smoother correlation matrix from
GLAM mock, the noise in the jackknife resampling method
does not bias the cosmological constraints.

7. RESULTS FROM BOSS GALAXIES

In this section, we present constraints using BOSS galax-
ies. We begin with a presentation of our results when im-
plementing myriad priors and assumptions on the analysis.
We then focus on the impact that galaxy assembly bias has
on our results. Our results are summed up in our constraints
on the growth rate of structure, both when assuming GR or
when allowing ~yy, the scaling parameter of the velocity field,
to be a free parameter. Last, we compare our results to others

in the field that use simulation-based approaches to extract
cosmological information from small scales.

7.1. Constraints on key cosmological parameters

The fiducial covariance matrix is constructed using the
jackknife resampling for the uncertainty and GLAM mocks
for the off-diagonal elements of the correlation matrix as ex-
plained in the previous section. All results in this section will
use this covariance mtarix. The observational data for galaxy
statistics are wy, +&p+&,. In order to have a comprehensive
investigation, we perform several tests as follows:

* Fiducial: Varying cosmological parameters + HOD pa-
rameters + assembly bias parameters.

* Planck Prior: Gaussian prior on a subset of the cos-
mological parameters (£2,,,€2,, s, i, n;) using the lat-
est Planck 2020 measurements. In particular we use
the result from the chain p1ikHM_TTTEEE_lowl_-—
lowE_lensing. We use this particular chain as
Planck 2020 measurements throughout the paper, un-
less it is described explicitly. The other cosmological
parameters w, Neg and 7, have the same prior as the
fiducial case.

Fixing ¢ = 1.0: This forces the analysis to use General
Relativity to describe gravity.

No assembly bias: We set fe,y = 0 to turn off the as-
sembly bias modeling.

In Figure 4, we present the constraints on the key pa-
rameters of interest (£2,,,0%,7,) for the three redshift bins
respectively. The constraints on the model parameters are
also summarized in Table 4. Using our fiducial priors, all
three redshift bins yield similar constraints on these param-
eters that influence the growth of structure. As expected,
there is a degeneracy between og and 7y, with higher val-
ues of og yielding lower values of . The amplitude of
this degeneracy curve lies below the Planck+GR value of
(03,7r) = (0.82,1.0). This implies that that the peculiar ve-
locity field of BOSS galaxies is roughly 15% lower than the
Planck+GR prediction. Although we focus on the cosmo-
logical parameters that control the growth of structure, the
constraints on all cosmological parameters, for each redshift
bin, are shown in Figure 5 and presented in Appendix F.

Although the MULTINEST algorithm adopted in our likeli-
hood analysis is not designed for goodness-of-fit analysis, the
posterior produced from the computation allows the search of
a minimum for 2 that is close to the result from a minimiza-
tion algorithm. In our fiducial analysis, the free parameters
include 7 cosmological parameters, 1 parameter for dark mat-
ter halo velocity field 7, and 11 total HOD parameters. The
data vector has 9 points for each of w), § and &. Therefore
the number of degrees of freedom is 9. We find x> = 8.99
for the low-z subsample, X2 = 9.02 for the med-z subsam-
ple, and x? = 24.06 for the high-z subsample. We note that
the high-z subsample gives a large x? relative to the degrees
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of freedom. However this result is dominated by the fit to
&o at the smallest radial bin. We recompute the x> by ex-
cluding this single data point using the best-fit model. The
resulting value is x> = 13.81, indicating a more reasonable
result. Although these results imply a statistically good fit
to the data, we note that x> per degree of freedom is only a
rough indicator. The data points are correlated, reducing the
number of degrees of freedom. However, for the clustering
analysis in this paper and our particular attention to the mea-
surement of growth rate of structure, most of the constraining
power is only from a subset of parameters, implying that the
“effective” number of degrees of freedom is actually higher
than the 9 listed above (i.e., see the discussion in Lange et al.
2021).

In addition to our fiducial constraints on the key cosmolog-
ical parameters, Figure 4 also shows the results when adopt-
ing a Planck prior for all cosmological parameters. This then
yields the value of the halo velocity field relative to GR, ~/,
that is required to match the data. As expected from the fidu-
cial results, when enforcing this prior, the best-fit values of
¢ are all below unity, with values of 0.85, 0.94, 0.81, all
with errors of ~ 0.05. More notable, however, is that the
x? values of the best-fit models are significantly higher than
in the fiducial analysis, with Ax? =8, 14, and 4, for low-z,
med-z, and high-z respectively, indicating the difficulty of the
Planck cosmology to fit the data, even with the added free-
dom of scaling the halo velocity field and an 11-parameter
halo occupation model that includes assembly bias.

For comparison, these three figures also show results for
an analysis in which the cosmological parameters adopt the
fiducial prior, but with v, = 1. This analysis is thus a fully
ACDM+GR fit to the data. These results are indicated with
the black contours in the {2,,—og panel. In all three redshift
slices, the results are consistent with the fiducial analysis,
and yield minimal changes to the best-fit x* values, with
Ax? =0, 2, and 1 from low-z to high-z, respectively. The
constraints on €),, are consistent with the Planck results, but
the constraints on oy are significantly lower, with best-fit val-
ues of ~ 0.75. This analysis demonstrates that a ACDM+GR
model is sufficient to describe the data, but there is tension
with the amplitude of clustering inferred from the CMB.

To visually demonstrate the impact of these prior assump-
tions on the fits to the data, in Figure 6 we present the best-fit
emulator predictions for the galaxy correlation functions in
all redshift bins, with residuals of the fits relative to the data.
For w,(r,), the fits are relatively consistent regardless of as-
sumption. However, the adoption of the Planck prior impacts
the amplitude of the monopole, especially for the low-z and
high-z redshift slices. It is this change that drives the Ax?
values.

7.2. Halo occupation parameter constraints

We note again that we include two parameters that encap-
sulate velocity bias between galaxies and dark matter. First,
the orbits of satellite galaxies within their host halos may
move faster or slower than expected from the virial velocity
dispersion (7,5). Second, central galaxies may have non-zero,

random, velocities with respect to their host halos (7,.). The
velocity bias for BOSS central galaxies shows deviation from
zero with significance of a few o, and the deviation increases
as we go to higher redshift. This indicates that centrals are
not at rest with respect to their host halos, consistent with
earlier findings in Guo et al. (2015), Yuan et al. (2020), and
Lange et al. (2021). Note that we use a slightly different def-
inition of the velocity bias for centrals than these works, but
the results are consistent.

The velocity bias for satellites is consistent with unity, in-
dicating the velocity distribution of the satellites is well de-
scribed by the virial dispersion of the dark matter halos. This
is in agreement with Lange et al. (2021), who perform a sim-
ilar clustering analysis using BOSS galaxies at z = 0.25 and
0.4, as well as with the higher-redshift eBOSS LRG anal-
ysis of Chapman et al. (2021). This is in tension at some
level with the result in Guo et al. (2015) where the authors
report a 20 constraint of a; < 1 using BOSS DR11 galax-
ies, but we note their analysis is at fixed cosmology. Using
CMASS galaxies, Yuan et al. (2020) finds that satellite galax-
ies slightly prefer higher velocity than the dark matter parti-
cles but this result is still consistent with ours. However, their
result has a large variation depending on the details of the fit.
This implies the necessity of more detailed investigation of
the velocity field traced by satellites.

In our model, satellite galaxies follow an NFW density
profile, with a concentration parameter that is proportional to
that of the dark matter (7)¢,,). For the med-z and high-z bins,
the satellite concentration parameter is roughly half that of
the dark matter. For the low-z bin, the best-fit value of 7., is
higher, but the overall constraints on satellite concentrations
are weak. Our constraints in the low-z bin are consistent with
those of Lange et al. (2021) at the same redshift. It is im-
portant to note that 7., is not degenerate with any of our
cosmological parameters.

In all three redshift bins, the data prefer positive values
of the assembly bias parameter f.,y, the parameter that gov-
erns the amplitude and sign of the bias. Positive fe,, im-
plies that the HOD halo mass scale increases at high densi-
ties by approximately 10%, lowering the number of galaxies
at high densities and reducing the overall amplitude of clus-
tering. For reference, this value of f.,, lowers the large-scale
galaxy bias by ~ 5% when all other HOD parameters are
fixed. However, we note that the statistical significance of
the result is < 1o in each redshift bin. This is in agreement
with some earlier attempts, such as Walsh & Tinker (2019),
Salcedo et al. (2020), and Lange et al. (2021), but in contrast
to analyses by Zentner et al. (2019) and Yuan et al. (2020).
We note that these works employ different models for assem-
bly bias with different data sets and simulations, thus a direct
comparison of each result is not straightforward. Galaxy as-
sembly bias may depend on multiple halo properties, such
as concentration, age, and environment. Although the local
density is an excellent indicator, it is possible that assembly
bias due to other halo properties or their combinations is not
fully accounted for. A detailed comparison of the assembly
bias models and an evaluation of their impacts on the cluster-
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Figure 4. Constraint on some of the key parameters of the low-z (left), med-z (middle), and high-z (right) subsamples, using w), +&o +&.

The contours show 1- and 2-0 confidence levels. The result shows a comparison of three different tests: (1) Fiducial test (blue): varying

cosmology+HOD+assembly bias parameters with an uninformative prior; (2) adopting a Gaussian prior on a subset of the cosmological pa-
rameters (2, 2, 03, 1, 1) using Planck 2020 observation (red); and (3) fixing s = 1 with no deviation from GR (black). The dashed lines for
cosmological parameters indicate the best-fit model of Planck with v =1 and feny = 0.
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Figure 5. Constraints on cosmological parameters from our analy-
sis. The dashed lines correspond to the best-fit measurement from
Planck using the baseline ACDM model.

ing analysis is necessary but beyond the scope of this paper.
In McLaughlin et. al. (in preperation), we apply the simi-
lar emulator approach to model projected galaxy correlation

function and galaxy lensing signal, and explicitly investigate
the impact of assembly bias on the cosmological inference.

For reference, we present the full 1D and 2D constraints
on all cosmological and halo occupation parameters in our
analysis in Appendix F.

7.3. Effect of assembly bias

Incorporation of assembly bias in our emulator enables the
investigation of its impact on the cosmological inference. Us-
ing our BOSS clustering data, we repeat the analysis by turn-
ing off the assembly bias, i.e., assuming a prior of f,, =0 in
the likelihood analysis. The constraints on og and , for three
redshift bins are shown in Figure 7. Restricting the analysis
in this way has a minimal impact on the key cosmological
constraints. The largest shift on the contour plot is seen in
the high-z subsample, but it is still well within 1o level. This
result is consistent with expectation from the fiducial analy-
sis that the constraint on fe,, shows only statistically weak
deviations from 0. For comparison, the predictions of the
emulator using the best-fit model without assembly bias is
shown as the green dot—dashed curves in Figure 6.

Although this analysis demonstrates that the inclusion of
galaxy assembly bias is not required to achieve unbiased cos-
mological constraints from the BOSS sample, we still must
note potential caveats. Although our model is designed with
flexibility in mind, it may not mimic all potential impacts of
galaxy assembly bias. The assembly bias can be a combina-
tion of multiple secondary properties and the choice of the
model in a particular analysis can be arbitrary. Our current
model only applies to the host halos within the HOD formal-
ism, and not to satellite galaxies separately. This requires
a complicated model for the assembly bias (see e.g., Xu
et al. 2020). However, bringing in complementary observ-
ables can increase our ability to constrain more sophisticated
models. With more statistics, such as higher order moments
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Table 4. Constraints on the cosmological parameters, HOD param-
eters and assembly bias parameters using clustering measurement

of BOSS galaxies.

Parameter 0.18 <z<0.32 0.32<z<048 048<z<0.62
Q. 0.31440.021 0.304+0.019 0.29+0.018
Q, 0.051£0.0035 0.051+0.0037 0.046 4 0.0045
os  0.731£0.056 0.7194+0.046 0.8354+0.068
h  0.662+0.023 0.669 £ 0.023 0.698 +0.028
ns  0.961+£0.016 0.959+0.017 0.962+0.017
Ner 3.697+0.383 3.686 +£0.367 3.418£0.394
w —-0.883+0.105 -0.876+0.12 —-1.063+£0.165
vr  0.984+£0.109 1.098 +-0.101 0.799 £+ 0.092
log My 14.334+0.10 14.56 +0.17 14.87+0.22
@ 1.16 +£0.212 0.73+0.22 0.702 +0.227
log Mcu 11.474+0.92 11.954+0.90 12.26 £1.01
owgm 0.489+0.083 0.524 +0.063 0.5554+0.039
Mve  0.1861+0.096 0.171 £0.089 0.331 +£0.068
s 1.024+0.082 1.122 £0.089 1.016 £0.11
Teon 1.19+£0.345 0.6174+0.152 0.4424+0.104
fev  0.074£0.11 0.102£0.09 0.104 £0.073
denv  0.9761+0.44 0.956 +0.392 1.112£0.465
Oenv  0.605+0.257 0.553 +0.259 0.602 +0.24

of the redshift space correlation function, void statistics, and
galaxy lensing, we can take a greater leap in constraining
both galaxy assembly bias and cosmological parameters. By
constructing multiple GP-based emulators for galaxy corre-
lation function and excess surface density of galaxy—galaxy
lensing, McLaughlin et. al. (in preparation) explicitly inves-
tigate the impact on cosmological inference from galaxy as-
sembly bias. Similar to the method used here, the local den-
sity of dark matter halo is used as the secondary halo property
within the HOD framework. However that work extends the
modeling to both centrals and satellites. The result based on
CMASS and LOWZ-like mocks shows that the incorporation
of assembly in the model can help reduce the bias for cosmo-
logical inference, and can become more important at small
scales below 1 2! Mpc.

7.4. Measurement of structure growth rate

One of the main goals of measuring galaxy clustering at
non-linear scale is to precisely measure the growth rate of
structure, quantified by the parameter combination fog. In
our model, the parameters that impact this quantity are (2,,,,
og, and 7. Based on the fiducial analysis, our constraints
on (2, are uncorrelated with other parameters and they are
generally in agreement with the Planck results, regardless of
prior assumptions. There is a clear degeneracy betwewn og
and 7y, seen in the previous figures, which we focus on in
Figure 8 by plotting the results from all three redshift slices

together. The degeneracy curve traced out by these results is
approximately s ~ og>. We note that the results approach
the lower limit of og in the cosmological prior, which likely
influences the exact shape of this degeneracy curve. The
Planck ACDM+GR value lies just outside the 20 constraints
in this plane. The right panel shows the posterior probabil-
ity of the parameter combination aé'yf for all three redshift
bins, with the Planck value indicated with the vertical lines.
Expressed using this parameter combination, the results from
the three different redshift bins are in good agreement with
one another, and in tension with the Planck value.

The growth of structure parameter, f, is determined by
both the matter density and the amplitude of the halo veloc-
ity field. Thus, we one can think of our constraint on fog
as WQ?,,'SS (2)03(z). In detail, we use the CAMB software to
compute the exact value of f given the redshift and cosmol-
ogy. After marginalizing all the cosmological, HOD, and as-
sembly bias parameters, are constraints are:

fos(z=0.25)=0.403+£0.03 )
fog(z=0.4)=0.444 4 0.025 (10)
fog(z=0.55)=0.385+0.019 (11)

They correspond to fractional errors of 7.4%, 5.6% and
5.1%, respectively, matching the precision expected from
Zhai et al. (2019). The corresponding constraints from
Planck 2020 are 0.473 £ 0.006, 0.478 £ 0.005, and 0.474 £
0.004. Considering the uncertainties of both measurements,
we find our measurements are lower than Planck by 2.29¢0,
1.30 and 4.58¢ for the three redshifts. We will discuss these
differences in the following section.

In Figure 9, we display our measurements of fog for each
of our three redshift bins, and we compare these values with
other results in literature, as well as the prediction from a flat
ACDM model using Planck 2020 results. The measurements
are collected from clustering analyses of galaxies from sur-
veys including 6dFGS (Beutler et al. 2012), GAMA (Blake
et al. 2013), SDSS-I/II main galaxy sample (Howlett et al.
2015, MGS), WiggleZ (Blake et al. 2012), VIPERS (de la
Torre et al. 2013) and eBOSS-LRG (Bautista et al. 2021).
Note that all these analyses assume GR as the underlying
gravity. We also include measurements using BOSS galax-
ies, using either large-scale or small-scale clustering data. On
large scales, Alam et al. (2017) gives the consensus con-
straints on fog and BAO distance scales over the redshift
range of CMASS+LOWZ using RSD multipoles. Their mea-
surement and uncertainty of fog shows a clear dependence
on redshift. We linearly interpolate their results to our red-
shift and compare the constraints. At z=0.4 and 0.55, our
fiducial result is consistent within 1.0 and 1.60, respec-
tively, indicating the internal consistency of the BOSS anal-
ysis.!

! We note that the BOSS measurements are correlated due to overlapping
redshift bins, thus the fact that our results are lower than the Alam et al.
(2017) cosntraints at both redshifts is not necessarily indicative of a system-
atic bias.
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Figure 8. Left: Constraint on parameters og and 7, for all three BOSS subsamples in the fiducial case. Right: One-dimensional distribution

of the parameter combinations o37;. The vertical red line shows the measurement from Planck 2020 observation with y; = 1.

On small scales, there are a number of other studies. Lange
et al. (2021) perform the measurements using cosmological
evidence modelling approach for BOSS galaxies at z =0.25
and 0.4, marginalized over AEMULUS cosmological mod-
els. Chapman et al. (2021) applies the emulator approach
to model the eBOSS LRG at z=0.7 and extract the mea-
surement of linear growth rate that is close to our method.
Reid et al. (2014) present a 2.5% measurement of fog for the
CMASS galaxies, but we note that this analysis is at fixed
cosmology and thus the error is likely underestimated (see
the discussion in Zhai et al. 2019).

We also extract constraints on structure growth assuming
v =1, which is consistent with most of the other analyses
using GR as underlying gravity model. The results are

fos(z=0.25) =0.407 £0.02 (12)
fos(z=0.4)=0.421+£0.02 (13)
fos(z=0.55)=0.397+0.016 (14)

corresponding to a fractional error of 4.8%, 4.7% and 4.0%
respectively. This result has similar accuracy as Lange et al.
(2021) where the authors claim a five percent measurement
of fog at z=0.25 and 0.4. Our constraints for the samples at
z=0.25 and z = 0.4 are somewhat tighter because we include
the projected correlation function, w,, in the analysis to an-

chor the galaxy bias in real space. Although w), has limited
cosmological sensitivity, it can strengthen the constraints on
the HOD parameters themselves, which can yield tighter cos-
mological parameters by breaking degenercies between cos-
mology and bias that exist in the RSD data. The tension of
our measurements with Planck is 3.16¢, 2.73¢0 and 4.67¢ for
three redshifts. In general, the v, = 1 prior raises the values
of fog, closer to the Planck values. However, the reduced
uncertainties make the tension more significant.

7.5. Scale Dependence

In addition, we investigate the impact of scales considered
in the clustering analysis. Figure 10 compares the posterior
probabilities of fog for our fiducial analysis, which has a
minimum scale of 0.1 /~'Mpc, to two other analyses that in-
crease the minimum scale used. Here we choose minimum
scales of 0.4 7~'Mpc and 3.5 h~'Mpc. The former choice is
motivated by the scale of the fiber collision effect; the lat-
ter choice is motivated by the transition between the one-
halo and two-halo terms in the galaxy clustering signal. The
results for a minimum scale of 0.4 4~'Mpc are consistent
with those of the fiducial scale, both in terms of the values
of fog and their uncertainties. However, the results for 3.5
h~'Mpc are substaintially different. Although the new poste-
riors overlap with the fiducial, the best-fit values increase and
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Figure 9. Measurement of the growth rate of structure from our analysis using BOSS DR12 galaxies, as well as a compilation of the results in
literature. The black line with shaded area is the prediction from the Planck 2020 release assuming a flat ACDM cosmology. The data include
6dFGS (Beutler et al. 2012), GAMA (Blake et al. 2013), SDSS-I/II main galaxy sample (Howlett et al. 2015, MGS), WiggleZ (Blake et al.
2012), Vipers (de la Torre et al. 2013) and eBOSS-LRG (Bautista et al. 2021). In addition, we also display measurements using BOSS galaxies
similar to our work: DR12 final consensus results (Alam et al. 2017), BOSS CMASS RSD analysis (Reid et al. 2014) and BOSS LOWZ small
scale analysis (Lange et al. 2021). Note that our results of fog is quoted from measurement of fogyy. We omit -y in the y-axis to be in line
with the measurements used for cosmological implications. In other words, except our analysis (including Chapman et al. 2021) and Reid
et al. (2014), all the other studies implicitly assume «; = 1, i.e., the gravitational interaction is described by GR. The symbols are split into two
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the errors, as expected, widen. The tension with the Planck
results is substantially alleviated, although the high-z result
is still low by ~ 2.50. These results agree with similar tests
in Chapman et al. (2021), which imply that the lower values
of fos, and the tension with Planck, is driven by the fully
non-linear regime.

7.6. Comparison with other studies using small-scale
clustering

As shown in Figure 9, the small-scale, BOSS LOWZ an-
laysis of Lange et al. (2021) is in good agreement with our
constraints on fog at z= 0.4, but it is significantly higher
than ours at z = 0.25. Even though these analysis use the
same set of galaxies at this redshift, there are a number of
differences in both the modeling and in the data that may
drive this difference. Lange et al. (2021) employs a novel sta-
tistical method using the AEMULUS simulations without ex-
plicitly constructing an emulator. Rather, they use the likeli-
hood at each AEMULUS cosmology to fit the likelihood func-
tion of fog. On the data side, the galaxy statistics used in-
clude anisotropic clustering in redshift space of moments up
to hexadecapole, but not w,. As shown in Chapman et al.
(2021), including w), reduces fog relative to the mutipoles
alone. In addition, their analysis is restricted to scales above
0.4h~"Mpc, which roughly corresponds to the fiber collision
scale of BOSS LOWZ galaxies. Last, on the data side, is that
Lange et al. (2021) only uses the NGC, whereas our anal-
ysis uses both NGC and SGC data. On the modeling side,
there are significant differences as well. Lange et al. 2021
assumes vy = 1 (GR only), which we find also marginally
raises the value of fog. They include an additional param-
eter in the mean halo occupation function, fi.x, which con-
trols the maximum number of central galaxies (i.e., allowing
this maximum to be less than unity). In our analysis, there
is a transition region at low halo mass where not all halos
have central galaxies, but our HOD asymptotes to unity at
high halo mass. This can also marginally increase the value
of fog by < lo (see the tests of this parameter presented in
Appendix H and in Chapman et al. 2021). Although one sin-
gle explanation does not seem able to explain the difference
in these two analyses at z = 0.25, the cumulative effect of all
the differences can explain a significant amount.

As a direct application of the emulator approach, Chapman
et al. (2021) measure small-scale galaxy clustering of e BOSS
LRGs at z=0.7 to constrain the growth rate of structure. This
analysis is closest in spirit to our work, with the exception of
our incorporation of assembly bias. They use the emulator
of Zhai et al. (2019), updated to match the redshift and num-
ber density of eBOSS, and include the fi,,x parameter dis-
cussed above. Chapman et al. (2021) present two constraints
on fog: one using clustering data down to 0.1 4~ 'Mpc, and
another restricted to scales about 7 h~'Mpc. The full-scale
anlaysis yields a value of fog that, like our BOSS measure-
ments, is significantly below the Planck value. The larger-
scale analysis lies in between, with errors such that it is con-
sistent with both the small-scale result and the Planck value.
Chapman et al. (2021) also perform a number of notable tests

that help to validate the emulator approach taken in this pa-
per. Since measurements of the galaxy correlation function
assume a cosmology in order to convert redshift to distance,
this choice may lead to the so-called Alcock—Paczynski (AP,
Alcock & Paczynski 1979) effect. Chapman et al. (2021) ex-
amine this effect for small-scale clustering, finding that the
impact on parameter constraints is negligible. Therefore we
do not explicitly model this effect in our analysis. In addi-
tion, the eBOSS galaxies at higher redshift can experience
significant errors in the galaxy redshifts, leading to a biased
measurement of fog of up to 0.50. Since BOSS galaxies are
at lower redshift, the amplitude of redshift errors are signifi-
cantly smaller. However, to be certain that there is no impact
on our results, in Appendix I, we examine this by running
parameter recovery tests using test data that incorporate red-
shift uncertainty. Our results show that the impact of redshift
uncertainty is negligible for the BOSS galaxies.

Clustering Analyses
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Figure 11. Top: measurement of 7?'503 from our BOSS galaxy
analysis (blue square), compared with other works using similar
galaxy statistics at both linear and non-linear scales. Bottom: latest
measurements of Sg = os3+/{2,/0.3 using galaxy lensing statistics.
The vertical lines in both panels correspond to the Planck measure-
ments (Planck Collaboration et al. 2020).

In Figure 11, we project our measurement of 7?'508 and
compare with other analysis in literature, including the afore-
mentioned works in Lange et al. (2021), Chapman et al.
(2021), Ivanov (2021) and Chen et al. (2022) using redshift-
space distortion, and galaxy lensing analyses from Singh
et al. (2020), Wibking et al. (2020), Krolewski et al. (2021),
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White et al. (2022), Asgari et al. (2020), and Abbott et al.
(2022). In the top panel, we express the RSD measure-
ment by parameter combination ’)/?'50'8, which basically mea-
sures the amplitude of matter perturbation. Compared with
the Planck result, all clustering analysis using low redshift
galaxies, with the exception of the z ~ 0.25 bin from Lange
et al. (2021), give lower estimates of the perturbation am-
plitude than Planck. Note that the e BOSS LRG (Chapman
et al. 2021) result with vy = 1 has a consistent measurement
with Planck, but with a high x2. In the bottom panel, we
compile some of the latest galaxy lensing measurements of
Ss = 081/, /0.3. The overall results of our clustering anal-
ysis are in agreement with these lensing analyses that the
lensing amplitude is also lower than Planck prediction (Leau-
thaud et al. 2017). A more robust analysis can combine the
galaxy lensing measurement and RSD signals to improve the
accuracy and the constraint on any deviation from GR or
ACDM and also incorporate more flexible model for galaxy—
halo connection (Zu 2020).

8. DISCUSSION AND CONCLUSION

Galaxy clustering at small scales has been demonstrated
to have a significant amount of cosmological constraining
power, especially for the parameters that govern the growth
and amplitude of structure. This paper extends the emulator
approach for modeling galaxy clustering developed in Zhai
et al. (2019) to analyze the clustering of BOSS galaxies. In
addition to the standard cosmological parameters of {2, and
og, we introduce the parameter 7 to scale the velocity field
of dark matter halos to mimic the effect of modified grav-
ity. At all redshifts covered by BOSS, our constraints on the
parameter combination fog are below those predicted by the
ACDM+GR model assuming the current Planck cosmology,
with varying levels of statistical significance at each redshift
bin. This result is similar to that of the “lensing is low"
phenomenon (Leauthaud et al. 2017) in which the galaxy—
galaxy lensing signal of the BOSS galaxies is lower than that
predicted assuming a Planck cosmology by 30% (Leauthaud
et al. 2017; Wibking et al. 2020). As shown in Figure 11,
there are a growing number of results using small-scale clus-
tering and lensing that are in tension with the current Planck
cosmology.

There are three primary ways that this tension between our
galaxy clustering results and the Planck constraints can be
ameliorated. These include: (1) new physics that imparts de-
viations from general relativity, (2) cosmological solutions in
the form of massive neutrinos, and (3) astrophysical solutions
rooted in galaxy formation processes.

The first of these solutions, in which gravity deviates from
GR in order to change the prediction for the halo velocity
field at a fixed matter density, is not favored. The first reason
is that this class of explanation does not necessarily resolve
the tension between the Planck cosmology and the afore-
mentioned lensing results. For example, models with weaker
gravity than GR boost the lensing signal in the two-halo term
(Leauthaud et al. 2017), but would reduce the value of fog
(Samushia et al. 2014). This resolves one tension at the cost

of amplifying the other. But the second reason is that, by our
own analysis, such a solution is not favored by the redshift-
space distortions. In our fiducial analysis, v, =1 (i.e., gravity
is GR) is within ~ 1o. If we adopt a Planck prior for all cos-
mological parameters except vy, we do find that v¢ < 1 to
high significance, but this model is not a good fit to the data.
However, when allowing the cosmology to be free but adopt-
ing a prior of 7 =1, our model is a good descriptor of the
BOSS clustering data.

The second solution addresses the tensions created by both
lensing and clustering results simultaneously. From Figure
11, the collected results from both of these probes indicate
the need for a lower value of og than derived from CMB
data. The values of these two constraints on the amplitude of
matter fluctuations, one at z < 1 and the other at z ~ 1,100,
can be reconciled to some degree through the presence of
massive neutrinos. The presence of massive neutrinos sup-
presses the growth of structure, which manifests in a scale-
dependent manner with smaller scales being more highly af-
fected. Given the current constraints on sum of neutrino
masses to be < 0.12 eV, it is unlikely that massive nuetrinos
can fully resolve the tension between the results listed above
and the Planck constraints on the clustering amplitude, but it
goes in the right direction to resolve both lensing and RSD
results, and it could alleviate a significant amount of the ten-
sion.

The last of the primary solutions involves the galaxy—halo
connection. In this paper, we have attempted to make our
galaxy bias model as flexible as possible, constructing a
model with 11 free parameters. However, the tension be-
tween our results and the Planck cosmology is primarily
driven by the clustering signal at < 3 A~'Mpc, a scale that
probes galaxy pairs within a single host halo as well as the
transition between 1-halo and 2-halo galaxy pairs. Thus, a
systematic error in the HOD approach cannot be ruled out.
The tests presented in this paper use abundance matching
techniques to create the test data. These test many of the as-
sumptions in our model, such as spherical halos with isother-
mal velocity distributions and NFW density profiles for satel-
lite galaxies. However, subhalo abundance matching does
not incorporate baryonic effects that may influence the spa-
tial distribution of galaxies. Currently, hydrodynamic sim-
ulations are not large enough to present statistically robust
tests of the emulator. But it may be possible to incorporate
the impact of baryons on the spatial distribution of galaxies
in larger, dark matter only simulations, providing a more rig-
orous test (Hearin et al. 2016, 2021). The effects of galaxy
formation on the galaxy-halo connection, and thus galaxy
clustering, may present itself either through assembly bias or
in an occupation function that is not well-represented with
our current model.

The chief observational systematic, that of fiber collisions
between BOSS spectra, is not likely to be a dominant source
of bias. We note that the discrepancy with the Planck cosmol-
ogy persists if we exclude data below 0.4 4~'Mpc, the scale
at which collisions become significant in the highest redshift
bin. We also note that the method of correcting for collisions
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employed in this paper is distinct from the method used in
the Chapman et al. (2021) emulator analysis of eBOSS LRG
clustering, but both studies are consistent in finding tension
with Planck when including the smallest scales.

For the last two of the proposed solutions listed above, the
AEMULUS Project is in excellent position to make signifi-
cant progress. The natural next step in development of sim-
ulations for emulator development is to create new simula-
tions that incorporate neutrinos as an active particle species
along with the dark matter. This will properly model the dif-
ferential growth of structure induced by such particles, giv-
ing our next generation emulators the ability to incorporate
and constrain the sum of the neutrino masses. These simula-
tions are currently underway (DeRose et al, in preparation).
Adding new parameters to the galaxy bias model, be they
applicable to the mean occupation function or related to as-
sembly bias, is a straightforward process. The addition of
new parameters in a model necessitates increased constrain-
ing power from data. The AEMULUS approach, however, is
open-ended. Non-standard galaxy clustering statistics, such
as void statistics, marked statistics, and kNN statistics, can be
emulated with equal efficacy to redshift-space distortions and
weak lensing. These statistics bring in complementary infor-
mation that can be used to constrain new freedom in HOD
models (Tinker et al. 2008; Walsh & Tinker 2019; Vakili &
Hahn 2019; Wang et al. 2019; Szewciw et al. 2021). The next
generation of AEMULUS emulators will include complemen-
tary, non-standard statistics (Storey-Fisher et al, in prepara-
tion).

The measurement of the growth and amplitude of large-
scale structure is a crucial test of our cosmological model.
It provides complementary information to geometric probes,
i.e., the cosmic distance measurements from observation of
Type Ia supernovae and baryon acoustic oscillations. The
measurement of fog as a function of redshift is able to con-
strain the growth history of the cosmic density field. For the
large families of dark energy and modified gravity models
that are proposed to explain cosmic acceleration, the growth
measurement is able to distinguish them and pare down the
viable parameter space. The accurate and model-independent
measurement presented in this paper serves as the latest at-
tempt. In future work, we will explore the cosmological im-
plications of this latest measurement.

The AEMULUS Project aims at providing accurate and un-
biased emulators for galaxy statistics at any redshift and
number density. This paper represents the first application
to the BOSS dataset. The overall performance is consistent
with the estimates of our earlier work, and additional im-
provement is also possible. Ongoing surveys, most notably
DESI, will increase the statistical constraining power of ob-
servational data and will thus require higher precision and
accuracy from theoretical models. The next generation of
Aemulus simulations and emulators will allow the analysis
of small-scale clustering to continue down the path on which
this paper lies.
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APPENDIX
A. LUMINOSITY SELECTION ON GALAXY CLUSTERING

The selection of galaxies based on their luminosity results in a brighter subsample. In Figure 12, we show the 2PCF of these
galaxies and in comparison with the original BOSS galaxies. Due to the correlation between galaxy brightness and the host halo
mass, our subsample reveals an increased amplitude of correlation function. The impact is significant for w), at all scales, and
becomes weaker for RSD multipoles on small scales. This change requires the emulator of 2PCF from Zhai et al. (2019) to be

re-trained to explain the measurements as described in the text.

B. CONSTRUCTION OF COVARIANCE MATRIX

The construction of the covariance matrix is described with details in Section 6.1. In this appendix, we present the measurement
of the 2PCF and the resultant correlation matrix in Figure 13 and 14 respectively. The top panel of Figure 14 shows the correlation
matrix of w,, § and & using jackknife resampling method of BOSS galaxies, and the bottom panel is from the GLAM mocks.
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Figure 12. The two-point correlation function w), (left), £ (middle) and &, (right) for the three subsamples of BOSS galaxies with and without
luminosity selection. Dashed lines are measurements using all the galaxies, while the solid lines and squares denote our subsample selected by
brightness. The low-z and high-z subsamples are shifted vertically for plotting purpose.

For the high-z subsample, we produce another set of GLAM mocks based on a random HOD. The correlation function is shown
as the dashed purple line in Figure 13 with different clustering amplitude. However the resultant correlation matrix is similar to
the first GLAM mocks (bottom panel of Figure 14). Based on these galaxy mocks, we construct the covariance matrix in the
likelihood analysis as explained in the text, and test the impact of different choices of covariance matrix in Appendix G.
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Figure 13. Correlation function of the GLAM mocks to construct the covariance matrix. The squares with error bars are measurements from
BOSS galaxies. The red, blue, and black lines are obtained by populating the GLAM mocks with an optimized HOD parameter set and the
GLAM cosmology. We do not require the mocks to give consistent results as observation, since the GLAM cosmology may not be the true
cosmology. In order to further test the covariance matrix, we “randomly" pick a HOD model to populate the GLAM halo catalog for high-z
galaxies, as shown in the dashed purple lines. The clustering amplitude shows different behavior but the correlation matrix only shows mild
variation.

C. CONSTRUCTION OF THE EMULATOR

The construction of the emulator for w,, & and &, follows the same method as in Zhai et al. (2019), including the modeling
of the training error, the choice of kernel function for the Gaussian-Process (GP) and the optimization method. Since the HOD
parameter space is extended with additional parameters for assembly bias and widened ranges for Mg, and «, the sampling of
the emulator needs to be improved. Our test shows that using 80 HODs per cosmology is able to provide sufficient sampling
for the emulator accuracy, which is a 60% increase compared with Zhai et al. (2019). The 2PCF of the galaxy mocks from both
the training sample and test sample is computed by the publicly available code CORRFUNC (Sinha & Garrison 2020). Given the
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Figure 14. Top: Correlation matrix for galaxy statistics w,, £, and &, obtained by jackknife re-sampling of the BOSS galaxies. Bottom: The
correlation matrix constructed using GLAM mocks.

number density of our galaxy mocks, the average cost of one model evaluation using emulators for w, +&o+& is at the level of
1 CPU-second. In Figure 15, we present the overall accuracy of the emulator for w,, { and &; at three redshifts. The training
error and test sample error are also shown for comparison. The emulator performance is quite similar as the pilot study in Zhai
et al. (2019). For w,, and &, the emulator accuracy is close or better than sample variance. At scales from 1 to 10 h~'Mpc, the
accuracy is better than 1 or 2%, which enables the use of the clustering measurement at the most informative scales. The emulator
performance is worse for &;, but it is still able to contain useful information for cosmological constraint.

D. PRIOR FOR THE LIKELIHOOD ANALYSIS

The sampling in the cosmological parameter space is restricted within the area covered by training cosmologies. We incorporate
this restriction by defining a prior for cosmological parameters. We first compute the mean ji.s and covariance matrix Ccos 0f the
seven parameters using AEMULUS training cosmologies. Then for an arbitrary point x in the cosmological parameter space, we
define a distance metric

Xgos = [U_Mcos]qols (14— fheos]- DD

We choose a threshold value for x2,; < 12 and only allows sampling that can satisfy this condition. This roughly corresponds
to 30 level of this multivariate Gaussian distribution. The resulting seven-dimensional ellipsoid is able to enclose the training
cosmlogies. In Figure 16, we display the projection of the training cosmologies, as well as the prior space.

E. TEST ON SHAM CATALOGS

We construct the SHAM catalog following the model proposed in Lehmann et al. (2017). This model adopts a velocity proxy
to allow continuous transition between two halo properties

Vinax Qsham
Va =Vvir | — ) (E2)

Vvir
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Figure 15. Performance of the emulator for w), (left), £, (middle) and & (right) for three redshifts. The solid blue line stands for the training
error, while the red line is the error of the test samples. The test samples have multiple boxes and population to suppress sample variance and
shot noise. The shaded area represents the inner 68% distribution of the emulator performance.

where vpax 18 the maximal circular velocity and

GMVir 12
Vyir = . (Es)
( Rvir >

Note that we add subscript “sham" to distinguish oy, from the HOD parameter . When cipam = 0, vo = vyir, €quivalent to
matching galaxy by halo mass. When agham = 1, Vo = Vmax, the matching is based on maximal circular velocity. The typical value
of aisham 18 restricted within [0, 1], however we can artificially increase the value to increase the dependence of clustering on viax
and therefore boost the level of assembly bias.

In Figure 17, we present the measurements of w,, { and &, for the SHAM catalogs using different values of scatter and ogham.
We first perform the recovery test on the Uchuu SHAM catalog. The covariance matrix in the likelihood analysis is similar
to the fiducial model as introduced in Section 6.1: the correlation matrix is from the GLAM mocks and the diagonal elements
correspond to the sample variance of the AEMULUS training box. Since the Uchuu simulation has a box size of 24~'Gpc, we
also use the ratio of the volume to scale the diagonal elements to match the Uchuu volume. These two tests are distinguished
as (17'Gpc) and (247! Gpc) respectively. Since this volume factor only applies to the sample variance Cyyy, While the emulator
error remains the same, the difference in the finalized covariance matrix is diluted. Figure 18 displays the final constraints on the
cosmological parameters and the key assembly bias parameter f;,,. We can see that the input cosmology of the Uchuu simulation
is well recovered within 1o using galaxy correlation function at non-linear scale. It shows that the assembly bias induced in the
sub-halo matching process doesn’t bias the cosmological constraint, and supports the robustness of our emulator. The two tests
with different diagonal elements of the covariance matrix (17'Gpc) and (2h~'Gpc) show quite similar results, with the (247! Gpc)
case presenting slightly tighter constraint on the contour plot. It is consistent with expectation that the larger volume can suppress
the sample variance, but with a smaller difference due to the intrinsic emulator error.

In Figure 19, we present the same recovery tests on the UNIT SHAM catalog. For simplicity, we assume the sample variance
of the measurement of correlation function is equivalent to the training box of the AEMULUS suite. The actual “effective volume"
of the UNIT boxes is non-trivial to estimate due to the inverse phase technique to reduce cosmic variance. However, the overall
findings based on this recovery test is likely to hold. For different values of the scatter and cp,m, our HOD-based model is also
able to recover the input cosmology. The result is quite similar to Uchuu simulation.

F. CONSTRAINT ON ALL THE PARAMETERS

Figure 20 displays the full triangle plot for the constraint on all the parameters in our model using measurements of w, +&y+&>.
The results of the three subsamples are shown on top of each other.
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Figure 16. Illustration of the prior space in the likelihood analysis for cosmological parameters. The black dots are the 40 training cosmologies
from AEMULUS suite. Since Box023 has an outlier value of og, we just use the other 39 models to get a covariance matrix of the cosmological
parameters. Then we define a distance metric x> and only allow the sampling of the points within a threshold. This defines a 7D ellipsoid with
uniform and un-informative distribution. The red dots show the resulting sampling in the prior space, i.e., the ellipsoid imposed with the range
of each parameters as shown in the first section of Table 3.
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Figure 17. Galaxy 2PCF of the SHAM catalogs using Uchuu and UNIT simulations at z ~ 0.55, in comparison with high-z BOSS galaxies.

G. LIKELIHOOD TEST OF COVARIANCE MATRIX

In this section, we show the constraint using different covariance matrices as constructed in Section 6.1. We use the high-z
(0.48 < 7 < 0.62) subsample to present our results, but the low-z and med-z subsamples give similar results. For the high-z sub-
sample, we remind the readers that we create another set of GLAM mocks using a “randomly" chosen HOD. Figure 21 presents
the finalized constraint using w), + &+ &, for all these different covariance matrices. We find that the overall constraint is stable
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box still gives a tighter constraint, consistent with expectation. The result shows that the input cosmology can be recovered within 1o for all the
cosmological parameters. This demonstrates the robustness of our assembly bias augmented HOD model and the construction of the emulator.
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Figure 19. Test on the SHAM catalog constructed using UNIT simulation. The galaxy statistics employed in the analysis is w, +&y+ &> for
high-z subsample. The left hand panel shows SHAM catalog constructed with scatter= 0.15, while the right hand panel is for scatter=0.19. The
test is done on SHAM catalogs with different values of asham, Which is a measure of the significance of assembly bias. The result shows that
our HOD based model can give unbiased recovery of the input cosmology.
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Figure 20. 1D and 2D contours of the parameters for our fiducial constraint using w, +&o +&>.

against difference choices of covariance matrix with some offset for a subset of the parameters. In order to explicitly investigate
the impact on resultant measurement of structure growth rate, we extract fog from these analysis and present the distribution in
Figure 22. The results shows that different constructions of the covariance matrix give quite consistent measurement of linear
growth rate of structure.

H. TEST OF CENTRAL OCCUPANCY

The HOD model assumes the central occupancy N, approaches 1 at the very massive end, i.e., the most massive halos
must host a LRG at the center. However, this is not necessarily true given the target selection of BOSS galaxies and the mass
incompleteness (Leauthaud et al. 2016). In order to investigate its impact on our measurement of linear growth rate from small
scales, we introduce parameter f.x to scale the amplitude of N, within the range [0.1, 1.0]. This parameter is equivalent to fr
in Lange et al. (2021) for a similar discussion. We take the galaxy sample at 0.48 < z < 0.62 for this test and remake the emulator
to perform the cosmological constraint. The result is shown in Figure 23 after marginalizing other parameters, with comparison
of the fiducial case of fixing fi,ax = 1. The new parameter can degrade the accuracy of the emulator slightly. However the final
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Figure 21. Test of the different constructions of covariance matrix. The result shows constraint on a subset of the cosmological, HOD and
assembly bias parameters using w, +&o +&; for high-z (z ~ 0.55) subsample. The consistency of these results demonstrate that the construction

of the covariance matrix for sample variance doesn’t have a significant impact on the cosmological inference.

constraint on the key cosmological parameters is quite stable, leading a consistent measurement of the linear growth rate. The
constraint on fi.x peaks at 0.6 ~ 0.7, in agreement with earlier works in Hoshino et al. (2015) and Lange et al. (2021). This
parameter is also explicitly investigated in Chapman et al. (2021) for the LRG sample from eBOSS. Their Figure 6 clearly shows

how a lower value of fi,,x can impact the inferred cosmological measurements.
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Figure 22. Projection of fog using different constructions of the covariance matrix, labeled as Figure 21. The results shows that the different
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Figure 23. Impact of fu.x on the cosmological constraint, compared with the fiducial result of BOSS galaxies at 0.48 < z < 0.62. This
additional degree of freedom for the central occupancy doesn’t bias the measurement of linear growth rate as we present in this paper.

I. REDSHIFT UNCERTAINTY

One of the systematics in the clustering analysis is redshift uncertainty, or velocity dispersion, which can be estimated by repeat
observations. The examination of BOSS galaxies shows that this uncertainty can be described by a Gaussian distribution with
some value of standard deviation. The result based on both LOWZ and CMASS reveals a clear dependence of the dispersion on
redshift, see Bolton et al. (2012) for a detailed analysis. From a theoretical point of view, this velocity dispersion can be captured
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through our HOD modeling by the parameters «, and velocity bias for central and satellites. In order to explicitly investigate the
impact of this systematics on our cosmological measurements. We randomly pick 10 HOD models from our test suite, and add
this velocity dispersion to the velocity of the galaxies in the mock and do the recovery test using the same set of emulator. In
particular, we choose the high-z subsample (0.48 < z < 0.62) in this analysis, add an additional velocity component randomly
draw from a Gaussian distribution with a standard deviation of 30 km/s corresponding to the maximum estimate in Bolton et al.
(2012) within our redshift range. We perform the recovery tests using galaxy statistics w, +&p+&, for models with and without
this additional velocity component, and present the inferred measurement of structure growth rate in Figure 24. The dots with
error bars represent the 1o and 20 uncertainties of fog recovered from the mocks compared with the input truth. This result
shows that this velocity dispersion has a negligible impact on the final constraint. Since the velocity dispersion is increasing with
redshift, the low-z and med-z subsamples can experience a less significant effect. Therefore this result validates the robustness of
our measurement.

In Chapman et al. (2021), the velocity dispersion is examined for the eBOSS LRG sample. Since these high-redshift galaxies
have an average velocity dispersion of 91.8 km s!, a factor of three higher than our high-z BOSS galaxies, it can impact the
cosmological constraint to a higher extent. For full scale measurement, the parameter , can be biased with an offset of 0.50.
Although this component of systematics doesn’t bias the BOSS measurements as in this paper, it imposes an additional concern
for high-redshift galaxies in the near future, e.g., ELGs from eBOSS, DESI etc. Either a more flexible emulator or forward
modeling is needed to achieve unbiased cosmological inference.
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Figure 24. Impact of velocity dispersion on the measurement of structure growth rate. The tests are done with ten randomly chosen models.
The result shows the difference of fog recovered from the mock with respect to the input truth. The red dots with errorbars are result without
additional velocity dispersion, while the blue dots are from mocks with additional velocity component. For plotting purpose, the points for the
same model are shifted slightly along the x-axis and the errorbars represent 1 and 2 o.
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