Stress-induced structural changes in superconducting Nb thin films

Jaeyel Lee,* Zuhawn Sung, Akshay A. Murthy,† Anna Grassellino, and Alex Romanenko
Superconducting Quantum Materials and Systems Center (SQMS),
Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA

Nathan S. Sitaraman† and Tomás A. Arias
Department of Physics, Cornell University, Ithaca, New York 14853, USA
(Dated: May 17, 2023)

We report on the analysis of stress-induced structural changes and the formation of an omega (ω) phase in polycrystalline Nb thin films deposited on Si by high-power impulse magnetron sputtering (HiPIMS) for superconducting qubits using X-ray diffraction (XRD), transmission electron microscopy (TEM), and density-functional theory (DFT). XRD analysis indicates that internal stresses in the Nb thin films lead to the formation of {112}\{111\} deformation twins and TEM analysis shows that ω-phases nucleate at some of the twin boundaries in the Nb thin films. The size of ω-phases ranges from 10 to 100 nm, which is comparable to the coherence length of Nb (≈ 40 nm), and ≈ 1% volume fraction of Nb grains exhibit this ω-phase. The details of the formation mechanism and superconducting properties of the ω-phases are investigated by DFT and potential roles of the ω-phase in Nb as a source of decoherence in superconducting qubits are also discussed.

keywords: superconducting thin films, stress, structural changes, superconducting qubits

Nb thin films have been extensively used for resonators and electrodes of superconducting qubits [1–3]. Scaling up this technology to deliver truly transformational quantum computing solutions to the larger community requires improving metrics such as the coherence times, which represent the period over which information remains in a state of quantum superposition. Specifically, it has been observed that materials defects, such as interfaces, surfaces, and impurities play critical roles in inducing this unwanted quantum decoherence [4–6]. For instance, it has been shown that amorphous regions at various interfaces in the device act as parasitic two-level systems (TLS) and cause decoherence [7–9], including metal-air [2, 10, 11], substrate-air [10, 12], and metal-substrate [13, 14]. Similarly, there have been reports on impurities and precipitation formation serving as possible sources of decoherence via pair-breaking [3, 15]. Identifying the atomic origins of microwave loss in these devices and mitigating them has rapidly developed into an active research area.

It has been shown that when various pure bcc metals and alloys such as Ta, Ti, and Zr alloys experience stress, it leads to twinning and a subsequent phase transformation from bcc to omega (ω) phase with hexagonal crystal structures [16–18]. There has been a recent report on the formation of ω-phase transition in single crystal Nb when subjected to compressive stress [19, 20], but the conditions necessary for this phase transition are not yet well-characterized, and the implications for Nb in the thin film geometry remain unclear. As Nb is soft with low yield strength (30-80 MPa) and critical resolved (20 MPa) shear stress, it is possible that internal stress in Nb thin film is sufficient to induce this metastable phase [21–23]. This topic requires further study, considering the aforementioned low yield strength and the potential for structural changes to hinder superconducting performance as has been observed for the bcc-to-ω phase transition in Nb-Zr alloys [24]. Furthermore, the impact of these changes on electronic and superconducting properties remains unclear.

Here, we report the observation of {112}\{111\} twinning-induced ω-phase formation in Nb thin films for superconducting qubits. We find that this twinning and ω-phase formation in Nb occurs in as-grown Nb thin film on Si thus indicating internal stress in the Nb thin film is sufficient to induce this phase transformation. Previous XRD analysis shows that Nb thin films are indeed under significant internal stress [25], consistent with a theory of stress-driven twinning and omega phase formation in as-grown Nb thin films on Si substrate. We use density-functional theory to investigate the formation mechanism for the ω phase and its effect on the superconducting properties of Nb. We also discuss implications of the ω-phase transition for superconducting qubit and superconducting radio-frequency applications.

170 nm thick polycrystalline Nb thin films are deposited on Si (100) substrates at room temperature with a base pressure less than 10⁻⁸ torr using high power impulse sputtering (HiPIMS) at Rigetti Computing. X-ray diffraction (XRD) analysis is performed on the Nb thin films using Rigaku Smartlab with Cu K alpha 1 X-ray beam. TEM samples of Nb thin films were prepared by focused ion beam (FIB) with 30 kV Ga⁺ ion beams and damaged layers on the surface of the Nb thin foil are removed using 5 kV and 2 kV Ga⁺ ion beams. High-resolution TEM analysis was performed using JEOL ARM 200 CF microscope with 200 kV electron beam. The microscope was equipped with a Cold FEG source and probe aberration corrector. ADF im-

* jlee406@fnal.gov; These authors contributed equally
† amurthy@fnal.gov
‡ These authors contributed equally
The formation of regions. HR-TEM images in Fig. 2(a-c) illustrate the internal stresses in the Nb thin film. An additional peak at the surface normal and the diffraction vector. There is a peak that arises from twinned of (110) surface normal plane of the Nb thin film on Si (100). (d) Pole figure plot of Nb (110) peak is shifted to lower angle by 0.5° from relaxed bulk Nb, indicating that Nb thin films are under internal stress. (c) A closer look at the Nb (110) peak shows that Nb peaks are shifted toward lower angles from fully relaxed bulk Nb, indicating that Nb thin films are under internal stress. (b) X-ray diffraction spectra of the Nb thin film on Si (100) and bulk Nb are displayed. It shows that Nb peaks are shifted toward lower angles from fully relaxed bulk Nb, which corresponds to 1.1% increase of the planar distance of (110) surface normal plane of the Nb thin film on Si (100). (d) Pole figure plot of Nb (110) taken from Nb thin film on Si (100) for a range of ψ values from 0 to 75° displays a Nb {110} peak at ψ=0 and 60°. At ψ=33.6°, we observe an additional peak that arises from twinned {110} parallel to the surface.

The omega phase of Nb thin film on Si (100) substrate is displayed and compared with relaxed bulk Nb, which corresponds to 1.1% increase of the planar distance of (110) surface normal plane of the Nb thin film on Si (100). (d) Pole figure plot of Nb (110) taken from Nb thin film on Si (100) for a range of ψ values from 0 to 75° displays a Nb {110} peak at ψ=0 and 60°. At ψ=33.6°, we observe an additional peak that arises from twinned {110} parallel to the surface.

XRD spectrum of the Nb thin film demonstrates that the Nb peaks are shifted toward lower angles from fully relaxed bulk Nb, indicating that Nb thin films are under internal stress. (b) X-ray diffraction spectra of the Nb thin film on Si (100) and bulk Nb are displayed. It shows that Nb peaks are shifted toward lower angles from fully relaxed bulk Nb, which corresponds to 1.1% increase of the planar distance of (110) surface normal plane of the Nb thin film on Si (100). (d) Pole figure plot of Nb (110) peak is shifted to lower angle by 0.5° from relaxed bulk Nb, indicating that Nb thin films are under internal stress. (c) A closer look at the Nb (110) peak shows that Nb peaks are shifted toward lower angles from fully relaxed bulk Nb, indicating that Nb thin films are under internal stress. (b) X-ray diffraction spectra of the Nb thin film on Si (100) and bulk Nb are displayed. It shows that Nb peaks are shifted toward lower angles from fully relaxed bulk Nb, which corresponds to 1.1% increase of the planar distance of (110) surface normal plane of the Nb thin film on Si (100). (d) Pole figure plot of Nb (110) peak is shifted to lower angle by 0.5° from relaxed bulk Nb, indicating that Nb thin films are under internal stress. (c) A closer look at the Nb (110) peak shows that Nb peaks are shifted toward lower angles from fully relaxed bulk Nb, indicating that Nb thin films are under internal stress.

The omega phase of Nb thin film on Si (100) substrate is displayed and compared with relaxed bulk Nb, which corresponds to 1.1% increase of the planar distance of (110) surface normal plane of the Nb thin film on Si (100). (d) Pole figure plot of Nb (110) taken from Nb thin film on Si (100) for a range of ψ values from 0 to 75° displays a Nb {110} peak at ψ=0 and 60°. At ψ=33.6°, we observe an additional peak that arises from twinned {110} parallel to the surface.

Fig. 1. (a) ADF-STEM image of 170 nm thick Nb thin film on Si (100) substrate deposited by HiPIMS. It shows typical columnar grain structures of Nb thin films on Si substrates for films deposited with this method. (b) X-ray diffraction spectra of the Nb thin film on Si (100) and bulk Nb are displayed. It shows that Nb peaks are shifted toward lower angles from fully relaxed bulk Nb, which corresponds to 1.1% increase of the planar distance of (110) surface normal plane of the Nb thin film on Si (100). (d) Pole figure plot of Nb (110) peak is shifted to lower angle by 0.5° from relaxed bulk Nb, which corresponds to 1.1% increase of the planar distance of (110) surface normal plane of the Nb thin film on Si (100). (d) Pole figure plot of Nb (110) peak is shifted to lower angle by 0.5° from relaxed bulk Nb, indicating that Nb thin films are under internal stress. (c) A closer look at the Nb (110) peak shows that Nb peaks are shifted toward lower angles from fully relaxed bulk Nb, indicating that Nb thin films are under internal stress. (b) X-ray diffraction spectra of the Nb thin film on Si (100) and bulk Nb are displayed. It shows that Nb peaks are shifted toward lower angles from fully relaxed bulk Nb, which corresponds to 1.1% increase of the planar distance of (110) surface normal plane of the Nb thin film on Si (100). (d) Pole figure plot of Nb (110) peak is shifted to lower angle by 0.5° from relaxed bulk Nb, indicating that Nb thin films are under internal stress. (c) A closer look at the Nb (110) peak shows that Nb peaks are shifted toward lower angles from fully relaxed bulk Nb, indicating that Nb thin films are under internal stress. (b) X-ray diffraction spectra of the Nb thin film on Si (100) and bulk Nb are displayed. It shows that Nb peaks are shifted toward lower angles from fully relaxed bulk Nb, which corresponds to 1.1% increase of the planar distance of (110) surface normal plane of the Nb thin film on Si (100). (d) Pole figure plot of Nb (110) peak is shifted to lower angle by 0.5° from relaxed bulk Nb, indicating that Nb thin films are under internal stress. (c) A closer look at the Nb (110) peak shows that Nb peaks are shifted toward lower angles from fully relaxed bulk Nb, indicating that Nb thin films are under internal stress.
we observe that this Nb thin film exhibits a critical temperature of 9.3 K with the normal-superconducting transition width $\Delta T_c (T_{90\%} - T_{10\%})$ of 0.08 K. The value of residual resistivity ratio (RRR) is estimated to be $\text{RRR} \approx 3.64$ - similar to typical polycrystalline Nb thin films [28]. Due to the limited volume fraction of ω-phase (≈ 1 vol. %), physical property measurement system (PPMS) measurements are not well-suited to identify the relationship between this phase and T_c. More detailed characterization of the properties of ω-Nb will require further studies involving specialized geometries and samples.

Though the ω phase has been widely observed in bcc and hcp metals such as Zr, Ti, and Ta alloys, it has not received significant attention in the case of Nb [29]. As the ω-phase transition has been previously linked to stress [17, 19], we consider in particular the potential that the ω-phases in our thin film are induced by the internal stress in the film, which is also demonstrated by the XRD analysis, Fig. 1. The internal stress is generally seen in sputtered metallic thin films and is caused by various factors such as gas pressures, gas impurities, ion bombardment, and kinetics of growths of thin films during the sputtering process [25, 30, 31]. Also, we note that the preferred orientation relationships at Nb/Si interface indicated by HR-TEM analysis (Fig. S2), which are in agreement with the previous study, can play a role [10]. Additionally, a high level of O, C, H impurities near the surface of Nb can cause additional stresses and induce twinning and ω-phase transition [3]. Impurity levels of hydrogen and oxygen in the top surface of Nb is roughly anticipated to be 1-3 at.% [3] and is predicted to cause 0.2-0.5% of strain on the surface of Nb thin film by lattice expansion. As the Young’s modulus of Nb is 104
GPa, the additional stresses caused by impurities in Nb is 200-500 MPa, which is well above the yield strength and critical resolved shear stress of Nb [32].

To investigate the \(\omega \) phase in greater detail, we perform density functional theory calculations using the JDFTx density-functional theory software package with the PBE exchange-correlation functional and ultrasoft pseudopotentials [33–35]. In particular, we aim to address two key uncertainties about this phase: firstly, its unexpected stability in Nb despite being much higher energy than the equilibrium bcc phase, and secondly its superconducting properties, which have not been investigated yet either experimentally or theoretically.

We find that the omega crystal structure is significantly higher energy than the bcc crystal structure, a difference of 0.31 eV/atom if we assume the ideal lattice relationship \(a_{\omega} = \sqrt{2}a_{\text{bcc}}, c_{\omega} = \sqrt{3}a_{\text{bcc}}/2 \). If allowed to relax, lattice of the \(\omega \) phase differs significantly from the parent bcc lattice: in particular, we find a 5.6% contraction in the [111]\(_{\text{bcc}}/\langle 0001 \rangle_{\omega} \) direction, a 4.4% expansion in the [110]\(_{\text{bcc}}/\langle 1210 \rangle_{\omega} \) and [112]\(_{\text{bcc}}/(1010)_{\omega} \) directions, as well as a shear distortion which brings the angle between the [111]\(_{\text{bcc}}/\langle 0001 \rangle_{\omega} \) and [112]\(_{\text{bcc}}/(1010)_{\omega} \) axes to 83 degrees, in agreement with the calculations of Li et al. [19]. This relaxation reduces the phase energy difference to 0.20 eV/atom, supporting the idea that stresses could contribute to the bcc-to-\(\omega \) phase transition.

Whether we take the value of 0.31 eV/atom or 0.20 eV/atom, this is a large phase energy difference. For instance, Li et al [19] finds an energy difference 0.03 eV/atom for their maximum observed shear strain of 4 degrees. Schnell et al [36] calculated the effect of pressure on phase energy differences in Zr, and found a change of about 0.003 eV/(atom×GPa). Popov et al [37] studied Nb grain boundaries and found an energy of 284 mJ/m\(^2\) for the {112}\{111\} twin, equivalent to no more than a single atomic layer of \(\omega \) phase. Considering these results, we concluded that strain itself may not be sufficient for stabilizing \(\omega \) phase in bcc Nb. This is in contrast to the case of group 4 elements and group 4-5 alloys in which the energy barriers for \(\omega \) phase transition are generally smaller [38]. Therefore we consider that other lattice defects, in particular vacancies, are likely to play a role in the stabilization of \(\omega \) phase in bcc Nb.

We perform calculations on 36-atom bcc and \(\omega \) supercells to determine the vacancy formation energies in Table I. There is a remarkably large difference in vacancy formation energy between the two phases: the vacancy formation energy in \(\omega \)-phase for sites on (0001)\(_{\omega} \) plane B, which is the "collapsed" bcc (111) in Fig. 2(c), is negative, indicating that it is energetically favorable for these planes to form with a finite vacancy concentration. The low formation energy of vacancies in \(\omega \)-phase for sites on (0001)\(_{\omega} \) plane B and their basic behavior in titanium was previously described by Hennig et al [38]. Therefore vacancies (or dislocations) could play an important role in stabilizing the \(\omega \) phase, possibly in conjunction with impurities and strain. It also agrees with the observation that \(\omega \)-phase is likely to nucleate at \{112\}(111) twin boundaries, where the concentration of vacancies or density of dislocations are relatively high. As a proof of principle, we find that a high vacancy concentration stabilizes a defected \(\omega \)-like phase in Nb which we will call the \(\omega^* \) phase [39]. A vacancy-segregation region forms a stable interface with the bcc phase on the [112]\(_{\text{bcc}} \) plane as shown in Figs. S4-5. It needs dedicated DFT studies to fully understand the \(\omega \)-phase transition in Nb, and details on the \(\omega \) (and \(\omega^* \)) phase and its structure are available in Supplementary Material.

Finally, we consider the effects of the bcc-to-\(\omega \) phase transition on the superconducting properties of Nb. As the \(\omega \)-Nb displays a different electronic structure and electron-phonon coupling values compared to bcc Nb, it is anticipated that the superconducting properties such...
as superconducting gap (Δ) and critical temperature (T_c) also differ in ω-Nb compared to bcc Nb [40–43]. For instance, there has been a report that the presence of substantial volume fractions of omega phase (\approx5 vol% according to TEM micrographs) leads to a changes of T_c from 10.2 K to 6.8 K in Zr-15at.\% Nb alloys [24]. Also, Ti-4.5at.\% Mo and Ti-10at.\% Mo alloys show that the formation of omega phase in Ti-Mo alloys degrades T_c [44].

To estimate T_c for the omega phase in Nb, we first consider the effect of the {112} plane collapse on the Fermi-level density of states $N(0)$, which to first approximation is proportional to the electron-phonon coupling strength [41]. Interestingly, we find that even small displacements of the atoms away from their ideal bcc locations have a significant effect on the electronic structure and on the predicted T_c value, as shown in Figure 4. We note that the reaction coordinate represents the transition state between bcc and ω-Nb associated with atomic shuffle of Nb atoms on {112} plane to {111} direction. We also consider the ω^* phase; because this is a dynamically stable structure we can perform a more rigorous electron-phonon T_c calculation. This calculation yields a T_c of 1.1 K, similar to the value we would expect from its lower $N(0)$ relative to the bcc phase. The details of this calculation are available in Supplementary Material. With this evidence, we conclude that any ω-like phase will likely have significantly reduced T_c value, regardless of its precise microscopic structure.

Our findings suggest the omega phase regions could potentially lead to increased Cooper pair breaking and serve as a source of decoherence in superconducting qubit systems. It can cause the excitation of quasiparticles and degradation of quality factors of Nb resonators, and in turn, a decrease in T_1 of superconducting qubits, which may need a dedicated study to understand better. Additionally, the existence of ω-Nb phase in Nb thin films also indicates that this phase is possibly present in Nb thin films for superconducting radiofrequency (SRF) cavities for accelerator applications. As the size of the ω-Nb phase is 10-100 nm in this geometry, which again is comparable to the coherence length of Nb (\approx40 nm), local deviations in superconducting properties can allow for magnetic flux penetration into Nb thin film SRF cavities and lead to a degradation in the overall quality factor [45, 46]. While we observe ω-phase formation in these samples, we do not observe the ω-phase in epitaxially grown single-grain Nb thin film on sapphire (0001) substrates [27]. These observations suggest that by engineering the stresses at the metal/substrate interface and the density of crystalline defects and grain boundaries inherent to the Nb thin films, we can potentially mitigate the formation of this phase. A more detailed investigation aimed at linking film growth conditions to internal film stress as well as the formation of this phase is currently underway.

We report the discovery of omega (ω) phase in Nb thin films deposited by high-power impulse magnetron sputtering (HiPIMS) for superconducting qubits. XRD and TEM analyses of Nb thin films indicates that internal stresses in the Nb thin films lead to {112}{111} deformation twinning of some Nb grains in the Nb thin films and the ω-phase are nucleated at the twin boundaries. Density-functional theory (DFT) studies suggest that vacancies and dislocations can possibly play roles in stabilizing the ω-phase at the twin boundaries in the Nb thin films. DFT studies also indicates that density of state (DOS) at Fermi level decrease in the ω-phase and, in turn, the superconducting properties of ω-Nb may have suppressed T_c. It implies that such secondary phases can potentially introduce quantum decoherence in superconducting qubits through pair-breaking. We also note that the presence of this ω-phase transition in Nb may potentially matter for the Nb thin film superconducting radiofrequency (SRF) cavities, where they could allow for flux penetration and potentially lead to degradation in the quality factor.

ACKNOWLEDGMENTS

We thank Drs. Sam Posen, Grigory V. Eremeev, Martina Martinello for valuable discussions. We also thank Drs. S. kewalramani and K. V. L. V. Narayananachari for discussions on the analysis of stresses in Nb thin films using X-ray diffraction. This material is based upon work supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Superconducting Quantum Materials and Systems Center (SQMS) under contract number DE-AC02-07CH11359, as well as the U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams. We thank the Rigetti chip design and

<table>
<thead>
<tr>
<th>Phase</th>
<th>Sites</th>
<th>Formation energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcc</td>
<td></td>
<td>2.77</td>
</tr>
<tr>
<td>ω</td>
<td>(0001)$_{\omega}$ plane A</td>
<td>1.22</td>
</tr>
<tr>
<td>ω</td>
<td>(0001)$_{\omega}$ plane B</td>
<td>-0.73</td>
</tr>
</tbody>
</table>

FIG. 4. Calculated effect of the bcc-to-ω phase transition on T_c. Inset figures illustrate the changing crystal structures as well as realspace Fermi-level density of states contours in yellow.
fabrication teams for the development and manufacturing of the qubit devices used in the reported experimental study, and for Rigetti Computing supporting the development of these devices. This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN, and Northwestern’s MRSEC program (NSF DMR-1720139). Also, this work (NSF ECCS-2025633), the IIN, and Northwestern’s MR-SEC program of the National Science Foundation (DMR-1720139) at the Materials Research Center of Northwestern University and the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-2025633).

SUPPLEMENTARY MATERIAL

See Supplementary Material for omega (ω) phase at Nb/Si interfaces (Fig. S1), orientation relationships at Nb/Si interface (Fig. S2), transport measurements (Fig. S3), and further detailed information on ω^* phase, which is ω-phase with 8 at.% of vacancies (Figs. S4-S5, and Table S1).

[21] T. Bieler, N. Wright, F. Pourboghrat, C. Compton, K. Hartwig, D. Baars, A. Zamiri, S. Chandrasekaran,

