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ABSTRACT
Efficient quantum control is necessary for practical quantum computing imple-
mentations with current technologies. Conventional algorithms for determining
optimal control parameters are computationally expensive, largely excluding
them from use outside of the simulation. Existing hardware solutions structured
as lookup tables are imprecise and costly. By designing a machine learning
model to approximate the results of traditional tools, a cheaper method for
arriving at the control parameters can be produced. Such a model can then be
synthesized into a hardware accelerator for use in quantum systems. In the
long term, such an accelerator could be used near quantum computational
hardware where traditional computers cannot operate, enabling effective quan-
tum control at a reasonable cost in-the-loop at low latencies without incurring
large data bandwidths outside of the cryogenic environment.
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1 INTRODUCTION
Quantum computing has great potential but today’s quantum com-
puters are still encumbered by errors that limit their practical useful-
ness [1, 2]. Quantum control seeks to enable precise manipulation
of quantum hardware via control-theoretical approaches [3? –5].
The result would be an increase in performance of the imperfect
hardware. It is desirable to apply such techniques in actual quantum-
computational environments, necessitating purpose-built control
hardware that can function at low temperature [6? –10]. By ap-
proximating existing quantum control algorithms using machine
learning (ML), we hope to achieve comparable functionality using
significantly less computation. The resulting model could then be
implemented as a hardware accelerator at reasonable costs [11].

A qubit (quantum bit) is a quantum computing system’s smallest
unit of information. Its quantum state can be described as a linear
combination of two orthonormal states |0⟩ and |1⟩:𝐴 = 𝛼 |0⟩ + 𝛽 |1⟩.
Quantum gates apply specified transformations, changing quantum
states accordingly. We desire to create a target gate 𝑈 which opti-
mally changes quantum state𝐴 into𝑈 ∗𝐴. Time-varying pulses are
used to produce such action. For some gate,𝑈 (𝛽), where 𝛽 is a gate
parameter, the problem of gate synthesis can be understood as find-
ing optimal pulse parameters 𝛼 to produce action𝑈 (𝛽). Devising
pulses for a given value of 𝛽 is computationally expensive because
the size of the underlying pulse parameters (the vector 𝛼) can be
quite large. Furthermore, there are infinitely many possible 𝛽 (as
generally 𝛽 is selected from some subset of R). Conventional tools
for such calculations include Juqbox.jl, Quandary, and QuTiP [12–
14]. These tools utilize optimization techniques such as gradient
ascent to discover optimal 𝛼 .

In this work, a machine learning model will be trained to de-
termine the appropriate 𝛼 for producing 𝑈 (𝛽) for any 𝛽 (Fig. 1).
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Figure 1: Simplified overview.

The model will be implemented as a hardware accelerator via
hls4ml [15]. hls4ml is a toolset that converts pre-trained ML mod-
els into accelerators for FPGA or ASIC implementation with low
power or ultra-low latency goals. It requires little designer overhead.
Furthermore, the integration with the Google QKeras library allows
aggressively quantized deep neural networks to be implemented.
The final model is highly resource-efficient and sacrifices little to
no accuracy. Since the goal of our present work is to produce an
accelerator capable of operating within the harsh conditions of a
quantum computing environment, it is desirable for such an ac-
celerator to be small to minimize energy dissipation within the
low-temperature quantum environments managed by systems of
limited cooling capacity. Hardware implementations need to be fast
so that quantum computations can be done within the coherence
time since noise is a big bottleneck for current quantum devices.

Note that hardware implementations that function as lookup
tables mapping from a fixed number of 𝛽 to the corresponding 𝛼
do exist [16]. However, such tables are limited by their precision,
as only entries for a finite number of 𝛽 can be stored. Further
discussion of the advantages and disadvantages of such systems
can be found in Section 4.2.

For this exploration, a simplified scenario is specified as follows:
The gate 𝑈 (𝛽) (X-gate) rotates a qubit about the x-axis by angle
−𝜋 ≤ 𝛽 ≤ 𝜋 . We model the qubit as the ground and first excited
states of a transmon, a type of superconducting qubit. The pulses are
specified by a 20-dimensional vector 𝛼 . The dimension "20" is due
to the B-spline parametrization we follow in Juqbox [12], which is
based on the numerical techniques in Refs. [17, 18]. The dimension
of alpha is proportional to the multiplication of number of carrier
frequencies and number of B-splines (here 1 and 10, respectively).
X-gate brings the state (ground state) to a superposition state as
shown in Figure 2, which visualizes on a Bloch sphere the qubit
being rotated from its initial |0⟩ quantum state.

The accelerator will be evaluated for accuracy, cost, and perfor-
mance. Accuracy is measured by comparing the ML-model results
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Figure 2: Bloch sphere visualization of a rotation
transformation starting from the |0⟩ quantum

state.

to those of conventional quantum control algorithms. This met-
ric is considered both for the software model and its synthesized
hardware implementation, which may perform differently due to
quantization. Accuracy evaluation includes both traditional ML
measures such as mean squared error (MSE) and domain-specific
measures such as quantum gate fidelity. Cost is measured as the
FPGA area of the synthesized result. Performance is measured via
an analysis of accelerator latency and throughput.

Fidelity is a metric of the overlap between two unitaries (gates),
𝑈1 and𝑈2. It can be defined in several ways. We use the definition
[19]:

𝐹 =
𝑀 + |𝑡𝑟 (𝑈 ) |2
𝑀 (𝑀 + 1) , (1)

where 𝑈 = 𝑈
†
1𝑈2 and 𝑀 = 2 is the dimensionality of the Hilbert

space for single qubit. We use the following definitions for three
types of unitaries considered in this paper. The “Golden” gate is
the target gate. "Optimized" gate is calculated via pulse optimizer
(Juqbox.jl [12] for this paper), which starts from a random pulse
and finds the optimal pulse until reaching a target fidelity (cal-
culated as overlap between "optimized" and "golden" gates). The
“Predicted” gate is the one calculated from the ML model. We check
the overlap between these three types of gates, where 𝑈1 and 𝑈2
are two of these three types (golden, optimized, predicted).

2 MODEL DEVELOPMENT
Our initial dataset consists of 101 samples. Each sample is a rotation
angle upon the x-axis of a qubit (𝛽 value) and the corresponding
quantum state transformations in the form of 20 parameters (𝛼 vec-
tor) that were generated with Juqbox, i.e., an open-source software
package designed to solve quantum optimal control problems in
closed systems [12]. Our later analysis has shown that the mod-
els perform well for most angles other than −𝜋 . This was because
the dataset used the same pulses for the angles −𝜋 and 𝜋 , as both
transformations produce the same final quantum state (i.e., the
transformation for −𝜋 actually is carried out in the positive direc-
tion). Thus we decided to remove from the dataset the samples

Figure 3: The initial model architecture: a multi-layer per-
ceptron with seven hidden layers, 1,040 parameters.

that were associated with −𝜋 . We used a 60-20-20-percent split for
training, validation, and test sets.

As a starting point in our neural-architecture exploration, we
chose the multi-layer perceptron (MLP) shown in Fig. 3. The model
has a total of seven hidden layers and 1,040 trainable parameters.
We trained the model in Tensorflow with Adam optimizer and
minimized the mean-squared error (MSE) as a loss function. We set
a target of 5, 000 epochs with an early-stopping callback [20]. The
final MSE value that we measured on the test set was 7.908 × 10−8.
Since there is no “correct” value for MSE, but the lower, the better,
and a zero value means the model is perfect, we assumed this value
as our reference for the rest of the neural-architecture exploration.

We also compared the expected and predicted results of the
pulses on the Bloch sphere using the graphical features of the QuTiP
framework [14]. Fig. 4 shows the similarities of the results. This
visual comparison further proves that the proposed model could
learn the relationship between the final angle and the required
quantum state transformations.

We adopted the gate fidelity in Eq. 1 as our last tool to quantify
the quality of our results further. Figure 5 shows the fidelity when
comparing the gates produced by our model, the traditional soft-
ware optimizer, and mathematically-derived ground truth. Again,
it is evident that the ML model performs poorly around 𝛽 = −𝜋 ,
suggesting that the −𝜋 row of the training dataset be removed so
that the sign of 𝛽 values is consistent with the direction of the
resultant rotation transformation.

Figure 6 shows the same results with the first three 𝛽 removed.
The traditional software optimizer was configured to ensure fidelity
greater than 0.999 between its results and the ground truth, as visi-
ble in the figure. It is interesting to note how the curve indicating
overlap between the ML model outputs and the ground truth ap-
pears as a “smoothed” version of the overlap between the ML model
outputs and the optimizer. Such a result suggests that the ML model
can ignore lots of the random noise from the optimizer while ef-
fectively learning how to produce the target gate. The ML model
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Figure 4: Comparison of transformations produced by Juqbox
optimizer and our machine-learning model. Each row illus-
trates results for a different angle 𝛽 .

Figure 5: Gate fidelity of forward model. Gates from ML
model (“Predicted”), Juqbox optimizer

(“Optimized”), and golden mathematically-derived
(“Golden”) gates.

produces gates with a gate fidelity of over 0.99 for all remaining 𝛽 ,
suggesting practical usefulness.

Figure 6: Gate fidelity of forward model. Outlier results for
smallest three 𝛽 removed.

3 MODEL CODESIGNWITH HLS4ML
hls4ml is an open-source framework for the codesign of optimized
neural networks and deployment on field-programmable gate ar-
rays (FPGAs) and custom hardware (ASIC) [15]. At its core, hls4ml
translatesmachine-learningmodels from common open-source soft-
ware frameworks such as Tensorflow into a register-transfer level
(RTL) implementation using high-level synthesis (HLS) tools [21].

The hls4ml framework originates from the Fast Machine Learn-
ing for Science community [22], whose focus is the development of
tools for scientific applications. The framework includes tools for
the design-space exploration and the final FPGA or ASIC implemen-
tations. The resulting hardware implementations are configurable,
spatial dataflow architectures tailored for speed and efficiency with
extreme flexibility in the data-type precision [23].

In hls4ml, a designer can trade off the performance (i.e., latency
and throughput) and resource utilization for a model by varying
the parallelization of the algorithm via several configuration pa-
rameters. For example, the reuse factor (RF) parameter controls how
many times each multiplier resource is used in the final hardware
implementation: a designer with the goal of low latency will choose
the lowest RF value.

In this work, we used hls4ml, and additionally, we combined
quantization-aware training inQKeras [24]withmodel- and hardware-
centric optimizations to findmodels that simultaneously accomplish
the goals of high accuracy, low latency, and low FPGA-resource
usage.We aimed tominimize resources such as onboard FPGAmem-
ory (BRAM), digital signal processing (arithmetic) blocks (DSPs),
registers (flip-flops, or FFs), and programmable logic (lookup tables,
or LUTs).

Our experiments targeted three off-the-shelf FPGA-based devel-
opment boards with decreasing resources, thus making the code-
sign effort increasingly challenging: a Digilent Genesys 2, an Avnet
Ultra96-V2, and a Digilent Arty A7-100T.
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Figure 7: A smaller multi-layer perceptron with six hidden
layers and 783 parameters.

3.1 Initial hardware implementation
The Digilent Genesys 2 board is a development board equipped
with an AMD/Xilinx Kintex-7 FPGA chip (xc7k325tffg900-2),
which comes with 890 BRAMs, 840 DSPs, 407,600 FFs, and 203,800
LUTs. We passed as input of hls4ml the model developed in Sec. 2
with a target clock period of 5 ns, a reuse factor of 1, and fixed-
point precision with overall 16 bits for word width. The resulting
implementation was a pipeline with a latency1 of 35 cycles and
initiation interval2 of 1. The synthesized model used 54% of the
available DSPs and 13% of available LUTs (other resources are not
discussed as their utilization remains well below availability in this
and all further experiments described herein).

3.2 Shrinking the model
TheAvnet Ultra96-V2 is a smaller development board equippedwith
an AMD/Xilinx Zynq UltraScale MPSoC (xczu3eg-sbva484-1-e).
This SoC combines four ARM Cortex A53 cores and programmable
logic that offers 432 BRAMs, 360 DSPs, 141,1120 FFs, and 70,560
LUTs. The synthesis of our previous model returned a DSP utiliza-
tion of 220% and LUT utilization of 38%. Thus, we took additional
steps to reduce the resource requirements of our hardware imple-
mentation. We removed one hidden layer and some nodes from the
remaining hidden layers. The resulting model shown in Fig. 7 had
a total of 783 parameters.

To reduce the final resource requirements on FPGA, besides re-
ducing the overall number of model parameters, we could have
increased the reuse factor in the hls4ml configuration, but we de-
cided to keep the initial value of one. While a larger reuse factor
would significantly decrease the size of the implementation, doing
so also decreases parallelism, impacting latency and throughput.

Instead, to address the resource usage, we opted for a more
aggressive quantization during the quantization-aware training
with QKeras. We analyzed the model inputs and outputs, and for
each layer, we chose a fixed-point precision with a 2-bit-integer
part and either 10- or 11-bits for the overall word width. The new
model trained in QKeras has an MSE of 6.6093 × 10−8, which is

1The latency of a pipeline is the time required for one input to pass through the system
from start to end.
2The initiation interval of a pipeline is the time necessary for the system to process
the next input (or to produce the next output).

Figure 8: Gate fidelity of the final implementation. Predicted-
golden fidelity exceeds 0.99 for all angles (𝛽 values).

slightly worse than the original model from Sec.2. But such a change
is significant for the underlying FPGA-resource mapping since
multipliers on 12 and fewer bits get mapped on LUTs rather than
the scarcer DSPs. The resulting model fitted excellently within the
Ultra96-V2 constraints: it uses 41% of DSPs and 58% of LUTs.

3.3 Final implementation
The third board we tested is an Arty A7-100T with an AMD/Xilinx
Artix-7 chip (xc7a100t-csg324-1). This chip has fewer resources
but shows similarities to a future eFPGA platform of interest: 270
BRAMs, 240 DSPs, 126,800 FFs, and 63,400 LUTs.

We adopted the same MLP architecture as in Fig. 7. However,
we chose a mixed approach to balance DSP and LUT usage and the
overall model accuracy. We used word lengths of 14, 12, 12, and
16 bits (and thus DSPs) for the first three layers and the last layer,
respectively, while the word length for the remaining layers was 10
(and thus implemented in LUTs). The number of bits for the integer
part was two for all layers, except the output layer, which has zero
bits for the integer part. The MSE measured on the test set was
5.7473 × 10−8.

To fit the board-resource constraints, after the quantization-
aware training phase, we manually edited the hls4ml-generated
design. We set a smaller 10- and 12-bit-word length for the third and
output layer, respectively. Such changes decreased the resource re-
quirements while largely preserving performance. The synthesized
implementation fit the Artix-7 chip with a 99% DSP utilization and
62% LUT utilization. The resulting implementation was a pipeline
with an initiation interval of 1 and a latency of 35 cycles. Looking
at Figure 8, we see that the fidelity between the gates produced by
the model and the target gates is above 0.99 for all 𝛽 .

4 FURTHER CONSIDERATIONS
In this section, we discuss some additional topics and future lines
of research.
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4.1 Even higher fidelity
Our final model achieves a gate fidelity of over 0.99 for all 𝛽 exam-
ined. However, it is always desirable to increase the fidelity even
further. For example, our training data reaches fidelity of over 0.999
for all 𝛽 , so the question arises: Would it be possible for a model
trained on this data to achieve the same level of performance? Vari-
ous solutions exist that can be combined with our current codesign
flow based on hls4ml. We can employ AutoML solutions to auto-
matically discover a more performant model. These approaches
are also known as neural architecture search (NAS) [25]. Tools like
AutoKeras [26] use a process of searching through neural network
architectures to best address the optimal modeling task.

We have also observed that perhaps the function to compute each
𝛼 differs greatly across the pulse parameters. Thus, we can devise
a branched model in which each output is preceded by a hidden
layer of its own, with a shared hidden layer at the top connected to
the input. We started investigating such a model as in Fig. 9, but
we are still in the early phases of the analysis. Similarly, we are
investigating larger models (up to 20 times the current number of
parameters) that would require larger FPGAs but provide one order
for magnitude lower MSE and fidelity that exceeds 0.999, as shown
in Fig. 10.

4.2 Implementations with lookup tables
While it is significant that a machine-learning model can achieve
comparable accuracy to a specific dataset, a designer may wonder
why we cannot simply store the training dataset in a lookup table
and use as an index the 𝛽 value so we can obtain the optimized 𝛼
values when needed. Admittedly, such an implementation would
take up a smaller area and have lower latency for this particular
gate.

However, the desired parameter domain may be much larger for
more complicated gates. For example, in this initial set of experi-
ments, we have only one gate parameter 𝛽 , which ranges from −𝜋
to 𝜋 . However, consider another gate that performs a rotation to
any point on the Bloch sphere. The expected number of entries in
the lookup table will increase exponentially as a function of the
number of input parameters if the same per-parameter granularity
is maintained. With an implementation based on neural networks,
however, as we are still outputting only 20 pulse parameters, we
may expect the network resource requirements to grow slower. For
example, one could even imagine that we duplicate the network to
produce 20 pulse parameters independently for each input parame-
ter. Then, the designer can use another network to combine these
pulse parameters into one final set of pulse parameters. Such a net-
work architecture grows linearly in the number of gate parameters.
Furthermore, these networks allow for interpolation and perhaps
extrapolation. While a lookup table is constrained to the values
stored, the “intelligence” of a neural network allows it to reasonably
interpolate the pulse parameters for input gate parameters not seen
during training.

Current quantum computing systems implemented using lookup
tables will round gate parameters to the closest matching entry in
the table [16]. The result is the application of lower-fidelity gates
for the desired transformations, as the gate employed will have
been optimized for different gate parameters than those of the

desired gate. As a result, the accuracy of algorithmic results will
decrease. For example, with the quantum approximate optimization
algorithm (QAOA), we would expect the optimization results to be
of lower quality, as gates are poorly approximated at each step [27].

5 CONCLUSIONS
To summarize the main contributions of this work, we have devel-
oped a neural network capable of predicting pulse parameters for a
quantum gate (specifically, a rotation on the Bloch sphere on the
x-axis) to the fidelity of 0.99 and shown an FPGA implementation of
this network that fits a small off-the-shelf development board. This
implementation exhibits a latency of 175 ns and is pipelined with
an initiation interval of 1 and a clock period of 5 ns. Our experimen-
tal setup is publicly available at github.com/fastmachinelearning/
ml4quantum-release.

Preliminary results have shown that defining a machine learning
model with a fidelity higher than 0.999 is possible. We leave the
FPGA deployment of such a model to future investigation together
with the training with further-optimized training data, the augmen-
tation of the dataset with data generated using additional random
seeds, the design of a custom eFPGA-based system, the performance
evaluation in extreme low-temperature environments, the compar-
ison with lookup-table-based solutions, and the implementation of
more complicated gates.

One may imagine that such models could be extended to con-
trol multi-qubit systems performing complex tasks. For example,
application-specific hardware accelerators could be designed to
capture multi-stage domain-specific operations in gates generated
on-the-fly. Such abilities would allow for cheaper, more precise,
and faster quantum computing systems that will be used to solve
the problems of tomorrow. By moving the computation into the
colder domains of the quantum computing system, the number of
wires leading to the warmer domains can be reduced significantly
(as we no longer need wires to transmit 𝛼 values calculated exter-
nally). Such wires are costly in the amount of energy they dissipate
within the cold domains which are managed by machines of limited
cooling capacity [7].
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Figure 9: Branched model design. A central crop of the architecture diagram is shown for clarity (the full diagram is available
within the documentation repo). The figure continues to the left and right in a similar pattern for all 20 pulse parameters (𝛼).

Figure 10: Predicted-golden gate fidelity of large model. Test
set points are marked by red circles, showing the ability of
the model to interpolate. Fidelity exceeds 0.999 for all test set
𝛽 .
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