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A new approach to color-coherent parton evolution
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We present a simple parton-shower model that replaces the explicit angular ordering of the coher-
ent branching formalism with a differentially accurate simulation of soft-gluon radiation by means
of a non-trivial dependence on azimuthal angles. We introduce a global kinematics mapping and
provide an analytic proof that it satisfies the criteria for next-to leading logarithmic accuracy. In the
new algorithm, initial and final state evolution are treated on the same footing. We provide an im-
plementation for final-state evolution in the numerical code Alaric and present a first comparison
to experimental data.

I. INTRODUCTION

Parton showers are a cornerstone of computer simulations for high-energy collider physics [1, 2]. They implement
the evolution of QCD from the hard scales to be probed by experiments, to the low scale of hadronization, where
the transition of quasi-free partons (the quarks and gluons of perturbative QCD) to observable hadrons occurs.
In this process, a number of additional partons are generated according to evolution equations that are based on
the factorization properties of QCD amplitudes in the soft and collinear limits. The most commonly used parton
showers can be thought of as numerical implementations of the DGLAP equations [3–6], but various other approaches
exist [7–9].

The first generation of parton shower programs [10–14] was developed four decades ago. Implementations differed
in the way in which the ordering inherent to the evolution equations was realized in the simulation, and how the
kinematics of the emissions were set up. Color coherence, manifesting itself through angular ordering [15–20] became
a guiding principle for the construction of parton showers [21, 22]. Some of these parton showers were also improved
using spin correlation algorithms [23–26]. Increasing precision requirements, especially in preparation for the Large
Hadron Collider (LHC), mandated more precise Monte-Carlo simulations. The matching of parton showers to next-
to-leading order calculations [27–33] and the merging of calculations for varying jet multiplicity [34–44] became focus
points of event generator development. The correspondence between fixed-order infrared subtraction schemes and
parton showers was identified as central to a correct matching procedure, leading to the construction of algorithms
with a dipole-local momentum mapping and ordering in transverse momentum [45–52].

These newly developed algorithms were found to have significant drawbacks in terms of their logarithmic accu-
racy [53]. The resummation of observables at leading logarithmic (LL) accuracy is relatively straightforward to
achieve using a parton-shower algorithm. The resummation at next-to-leading logarithmic (NLL) precision however
poses a number of challenges. The first generic technique to quantify the logarithmic accuracy of parton showers
was presented in [53, 54] and consists of a set of fixed-order and all-order criteria, which can broadly be classified
as tests related to kinematic recoil effects, and tests of color coherence. In the present manuscript, we will discuss
only kinematic effects. A discussion of sub-leading color effects can be found for example in [55–67]. One of the main
results of [53] was that the kinematics mapping in the transition from an n-particle to an n + 1-particle final state
should not alter the existing momentum configuration in a way that distorts the effects of the pre-existing emissions
on observables. This criterion is formulated such that only the effects relevant at NLL precision can be extracted, by
taking the limit αs → 0 at fixed λ = αs ln v, where v is the observable to be resummed. The algorithms in [47, 50, 52]
do not satisfy the criteria for NLL precision, because their momentum mappings can generate recoil whose effect on
existing emissions at commensurate scales does not vanish in the αs → 0 limit. It is important to note that these
failures to agree with known NLL resummation are not related to the effects of momentum and probability conser-
vation discussed in [68]. In order to remedy the problem with NLL accuracy, new kinematics mapping schemes were
developed in [54, 69–71]. The main difference of the new dipole schemes in [54, 71] compared to existing algorithms
is that recoil is assigned according to the rapidity of the emission in the frame of the hard process, rather than the
dipole frame, and that initial-state radiation is treated such that the interpretation of the hard system is unchanged
for subsequent emissions.

We will approach the same problem from a different perspective. Recalling that color–coherent parton evolution is
a consequence of the angular dependence of the soft eikonal, we will reformulate the radiator functions of [21] using a
partial fractioning approach similar to the identified particle subtraction scheme in [72]. In addition, we note that in
dipole and antenna showers the anti-collinear direction is inextricably linked to the direction of the color spectator. By
lifting this restriction, we are able to construct an algorithm which allows the entire QCD multipole to absorb the recoil
from parton branching, independent of the number of pre-existing emissions, and independent of their kinematics.
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The price for such a generic scheme is a dependence of the parton shower splitting functions on the azimuthal angle
between the decay plane and the plane defined by the emitting parton and its color spectator. Our new formulation
presents a major extension of existing parton shower formalisms in this regard, and it introduces the most generic form
of a spin-averaged splitting function in four dimensions, with a dependence on all three phase-space variables of the
radiated parton. Based on previous analyses [73, 74], it seems plausible that this scheme will considerably simplify the
inclusion of higher-order corrections to the splitting kernels. We provide a first implementation of the new algorithm
in the numerical code Alaric1, which will be made available as part of the event generator Sherpa [75–77].

This manuscript is organized as follows: In Sec. II we revisit the soft singularity structure of QCD amplitudes
and introduce our new decomposition of the soft eikonal. In Sec. III we discuss the novel phase-space mapping and
the corresponding phase-space factorization. In Sec. IV we detail how soft and collinear emissions are generated in a
probabilistic picture. Section V is dedicated to the analytic proof of logarithmic accuracy, and the numerical validation
in the αs → 0 limit. Section VI presents first numerical results for the process e+e− → hadrons, and Sec. VII contains
an outlook.

II. THE MATCHING OF SOFT TO COLLINEAR RADIATORS

We start the discussion by recalling the singularity structure of n-parton QCD amplitudes in the infrared limits.
If two partons, i and j, become collinear, the squared amplitude factorizes as

n〈1, . . . , n|1, . . . , n〉n =
∑

λ,λ′=±
n−1

〈
1, . . . , i\(ij), . . . , j\, . . . , n

∣∣∣ 8παs
2pipj

Pλλ
′

(ij)i(z)
∣∣∣1, . . . , i\(ij), . . . , j\, . . . , n

〉
n−1

, (1)

where the notation i\ indicates that parton i is removed from the original amplitude, and where (ij) is the progenitor

of partons i and j. The functions Pλλ
′

ab (z) are the spin-dependent DGLAP splitting functions. They depend on
the momentum fraction z of parton i with respect to the mother parton, (ij), and on the helicities λ [3–6]. In the
collinear limit, the momentum fraction is equal to an energy or light-cone momentum fraction. In this manuscript
we will consider only spin-averaged splitting functions; algorithms for spin-dependent evolution are discussed in [23–
26, 78].

In the limit that gluon j becomes soft, the squared amplitude factorizes as [79]

n〈1, . . . , n|1, . . . , n〉n = −8παs
∑

i,k 6=j
n−1

〈
1, . . . , j\, . . . , n

∣∣TiTk wik,j
∣∣1, . . . , j\, . . . , n

〉
n−1

, (2)

where Ti and Tk are the color insertion operators defined in [72]. In the remainder of this section we will discuss the
case of massless radiators only and focus on the eikonal factor, wik,j , and how it can be rewritten in a suitable form
to match the spin-averaged splitting functions Pab(z) in the soft-collinear limit. Since our analysis concerns only the
denominator of wik,j , it will apply to spin-correlated evolution as well. The eikonal factor is given by

wik,j =
pipk

(pipj)(pjpk)
, (3)

and it can be written in terms of (frame-dependent) energies and angles as

wik,j =
Wik,j

E2
j

, where Wik,j =
1− cos θik

(1− cos θij)(1− cos θjk)
, (4)

We note that Eq. (4) is symmetric in i and k, and that it encapsulates the complete soft singularity structure of the
hard matrix element [79]. If we were to implement Eq. (4) for each of the radiators i and k in the collinear limit, we
would therefore double-count the most singular component of the emission probability [80]. This is known as the soft
double-counting problem, which can be solved by following the technique of [21]. In this approach, Wik,j is written
as a sum of two terms, which are enhanced only in either the ij- or kj-collinear limit:

Wik,j = W̃ i
ik,j + W̃ k

ki,j , where W̃ i
ik,j =

1

2

(
1− cos θik

(1− cos θij)(1− cos θjk)
+

1

1− cos θij
− 1

1− cos θjk

)
. (5)

1 Alaric is an acronym for A Logarithmically Accurate Resummation In C++
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FIG. 1: Azimuthally integrated radiator functions. Figures a and b show the positive and negative contributions to
Ĩiik,j arising from the additive matching in Eq. (5), Fig. c displays Īiik,j from the multiplicative matching in Eq. (9).

It is customary to define the z-axis to be aligned with the momentum pi, such that we can write cos θjk in terms of
polar angles, θ ij , θ ik with respect to the axis defined by pi, and the azimuthal angle φ ijk in the same frame. Note in

particular that θ il = θli, for any l.

cos θjk = cos θ ij cos θ ik + sin θ ij sin θ ik cosφ ijk . (6)

When performing the azimuthal averaging, we find the simple result [21]

1

2π

∫ 2π

0

dφijkW̃
i
ik,j =

Ĩiik,j
1− cos θ ij

, where Ĩiik,j =

{
1 if θ ij < θ ik

0 else
. (7)

The behavior of Ĩiik,j as a function of the polar angles is known as angular ordering, which means that the total

probability for soft radiation averages to zero outside of a cone defined by the cusp angle θ ik of the radiating color
dipole. This is the origin of the coherent branching formalism and the basis for angular ordered parton showers. It is
instructive to investigate this radiation pattern in more detail. Figures 1a and 1b display the positive and negative
contribution to the azimuthal integral, normalized to 2π, as a function of the polar angles. The partial radiator
function W̃ i

ik,j has a root at

cosφ
i(0)
jk = −

√
1 + cos θ ij
1− cos θ ij

1− cos θ ik
1 + cos θ ik

(8)

which falls inside the integration domain if θ ij > θ ik. In this case, the negative contribution to the azimuthal integral
is equal in magnitude to the positive contribution, such that the average radiation probability vanishes identically.
However, there is a strong modulation of this probability as a function of the azimuthal angle. If this modulation
is not included in a parton-shower simulation, wide-angle soft radiation effects will only be captured correctly for
observables that are sufficiently insensitive to the precise distribution of radiation in phase space.

A naive attempt to solving this problem would be to include the full azimuthal dependence of the radiator function
in the Monte-Carlo simulation. Such an approach is bound to fail, because in the region θ ij > θ ik one would need to
sample the same amount of negative and positive weighted Monte-Carlo events, leading to an efficiency of exactly
zero. We therefore adopt a different strategy, pioneered in [72], where the radiator function is partial fractioned such
that it maintains strict positivity

Wik,j = W̄ i
ik,j + W̄ k

ki,j , where W̄ i
ik,j =

1− cos θik
(1− cos θij)(2− cos θij − cos θjk)

. (9)
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Azimuthal averaging again leads to Eq. (7), except that Ĩiik,j is replaced by

Īiik,j =
1√

(Ā i
ij,k)2 − (B̄ i

ij,k)2
, (10)

where

Ā i
ij,k =

2− cos θ ij (1 + cos θ ik)

1− cos θ ik
and B̄ i

ij,k =

√
(1− cos2 θ ij )(1− cos2 θ ik)

1− cos θ ik
. (11)

This function is shown in Fig. 1c. As required, it approaches unity in the limit θ ij → 0, independent of the value

of θ ik, and also for the special case of a back-to-back configuration, θ ik → π. While the Monte-Carlo efficiency of an
algorithm using this technology will be reduced compared to plain angular ordered evolution, the obvious benefit is that
Eq. (9) allows to capture all angular correlations associated with the spin-summed soft eikonal, Eq. (4). In contrast,
traditional angular ordered evolution, which is based on Eq. (7), does not populate the complete emission phase space,
necessitating intricate matrix-element corrections and creating complications in higher-order matching [27]. We note
again that the energy Ej in Eq. (4) is frame dependent. This effect will be discussed in more detail in Sec. IV A.

In the limit where partons i and j are collinear, we can write the eikonal factor in Eq. (3) as

wik,j
i||j−→ w

(coll)
ik,j (z) =

1

2pipj

2z

1− z , where z
i||j−→ Ei

Ei + Ej
. (12)

This can be identified with the leading term (in 1 − z) of the DGLAP splitting functions Paa(z), where 2

Pqq(z) = CF

(
2z

1− z + (1− z)
)
,

Pgg(z) = CA

(
2z

1− z + z(1− z)

)
,

Pgq(z) = TR (1− 2z(1− z)) .

(13)

To match the soft to the collinear splitting functions, we therefore replace

1

2pipj
P(ij)i(z)→ 1

2pipj
P(ij)i(z) + δ(ij)iT

2
i

[
W̄ i
ik,j

E2
j

− w(coll)
ik,j (z)

]
, (14)

where the two contributions to the gluon splitting function are treated as two different radiators [50]. This substitution
introduces a dependence on a color spectator, k, whose momentum defines a direction independent of the direction
of the collinear splitting. In general, this implies that splitting functions which were formerly dependent only on a
momentum fraction along this direction, now acquire a dependence on the remaining two phase-space variables of the
new parton. This is the most general form of a splitting kernel for spin-averaged parton evolution, which we will use
in the following. In particular, the dependence on the azimuthal angle allows to define the recoil momentum such
that NLL precision is maintained for any hard process, as discussed in more detail in Sec. V.

III. MOMENTUM MAPPING AND PHASE-SPACE FACTORIZATION

The mapping of Born momenta to a kinematic configuration after emission of additional partons is a key component
of any parton shower algorithm. It is closely tied to the factorization of the Lorentz-invariant differential phase
space element for a multi-parton configuration. Suitable momentum mappings will preserve the key features of
previously simulated radiation, while an unsuitable mapping could skew the QCD radiation pattern up to a point
where it becomes not only theoretically incorrect, but the differences become visible experimentally. A prime, although
academic, example for the latter problem is a collinear unsafe mapping algorithm, in which the parton shower does
not reflect the features of the collinear limit of the QCD matrix elements, Eq. (3) and therefore introduces an error at

2 Note that in contrast to standard DGLAP notation, we separate the gluon splitting function into two parts, associated with the soft
singularities at z → 0 and z → 1.
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K̃ p̃i

p̃k

φ

n pi

pk~kT pj

K−~kT

FIG. 2: Sketch of the momentum mapping for final-state evolution. See the main text for details. Note that pk does
not participate in the shift, Eq. (17), and only acts as a reference for the azimuthal angle φ.

leading logarithmic accuracy. A key requirement for the construction of any momentum mapping therefore is collinear
safety, and all known parton-shower algorithms satisfy this constraint. An example for a problem which may only
be seen in dedicated measurements was identified in [53]. It originates in a modification of existing soft momenta in
subsequent emissions, that introduces an error in the simulated QCD radiation pattern at next-to-leading logarithmic
accuracy. In the following, we will construct a generic, collinear and NLL safe momentum mapping for both final-state
and initial-state radiation, which is inspired by the identified–particle dipole subtraction algorithm in [72]. We will
provide the analytic proof of NLL safety in Sec. V A and sketch the additional steps that are required to match the
parton shower to NLO calculations in Appendix C.

We begin by describing the logic underpinning our new kinematics mapping, {p̃l} → {pl}. We identify the splitter

momentum, p̃i, and construct a recoil momentum, K̃, of the overall QCD multipole. Its precise definition differs
for initial and final state evolution, see Appendix A for details. The basic idea is that these two momenta define
the reference frame of the splitting, as shown schematically in Fig. 2 (left). The momentum of the color spectator,
p̃k, defines an additional direction, which provides the reference for the azimuthal angle, φ. In the first step of the
mapping, the emitter momentum is scaled by a factor z, and the emitted momentum, pj , is constructed with transverse

momentum component ~kT and suitable light-cone momenta. The color spectator remains unchanged, pk = p̃k. The
recoil is absorbed by the overall multipole, such that after the emission we have K 6= K̃, while K2 = K̃2. In particular,
the multipole after the emission acquires a transverse momentum with respect to K̃. This is shown schematically in
Fig. 2 (right). To compensate for both the transverse and the longitudinal recoil, the overall multipole is boosted to
its original frame of reference. This changes all momenta and effectively distributes the recoil among them, generating
changes of the order of kT /

√
K2, which vanish in the infrared limits. We will make use of this fact in Sec. V A.

A collinear safe momentum mapping requires that for any two massless collinear partons, i and j, the momenta
behave as

pi
i||j−→ z p̃i , pj

i||j−→ (1− z) p̃i . (15)

In the exact limit, cos θij = 0, the splitting variable z is uniquely defined and given by

z =
pin

(pi + pj)n
. (16)

where n is an arbitrary auxiliary vector that satisfies p̃in 6= 0. Note that n can be either light-like, time-like or
space-like, as long as p̃in 6= 0. In order to construct a collinear-safe momentum mapping for arbitrary values of the
two-particle virtuality pipj , we can simply use the first part of Eq. (15) away from this limit. This implies in particular
that pi retains its direction, and that all angular radiator functions involving pi remain unchanged.

A second important constraint for the mapping is overall four-momentum conservation. We satisfy this by defining
a vector K̃ to be a combination of the momenta {p̃1, . . . , p̃

µ
j−1, p̃

µ
j+1, . . . , p̃n}, and by using the shift

pi = z p̃i , n = K̃ + (1− z) p̃i , (17)

which implies pi + n = p̃i + K̃. The remaining task is to construct two new vectors, K and pj , such that K2 = K̃2,

and such that pj satisfies the collinear safety constraint, Eq. (15). The momenta in K̃ are mapped to new momenta

by a Lorentz transformation that is defined in terms of K̃ and K. The simplest way to obtain the new momenta is
by means of a light-cone parametrization [81]. With the help of the light-like vector

n̄ = n− n2

2p̃in
p̃i = K̃ − κ p̃i , where κ =

K̃2

2p̃iK̃
. (18)
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we can write

pj = v n̄+
1

v

k2
⊥

2p̃iK̃
p̃i − k⊥ , where v =

pipj

piK̃

K = (1− v) n̄+
1

1− v
k2
⊥ + K̃2

2p̃iK̃
p̃i + k⊥ .

(19)

Equation (19) makes it manifest that K̃ absorbs the newly generated transverse and anti-collinear momentum when
parton (ij) is put off-shell, such that overall momentum conservation is satisfied. This leads to the identity3

k2
⊥ = v(1− v) 2pjK − v2K2 = v(1− v)(1− z) 2p̃iK̃ − v2K̃2 . (20)

Note that k2
⊥ is proportional to v and therefore tends to zero in the collinear limit cos θ ij → 0. Inserting this relation

into Eq. (19) makes both collinear safety and overall four-momentum conservation of the kinematics mapping manifest.

pj = (1− z) p̃i + v
(
K̃ − (1− z + 2κ) p̃i

)
+ k⊥ ,

K = K̃ − v
(
K̃ − (1− z + 2κ) p̃i

)
− k⊥ .

(21)

In order to determine a reference direction for the azimuthal angle φ = arctan(ky/kx), we note that the soft radiation
pattern of Eq. (9) must be correctly generated. To achieve this we decompose the transverse momentum as

kµ⊥ = k⊥

(
cosφ

nµ⊥
|n⊥|

+ sinφ
l µ⊥
|l⊥|

)
, (22)

where the reference axes n⊥ and l⊥ are given by the transverse projections4

n⊥ = pk −
pkn̄

p̃iK̃
p̃i −

pkp̃i

p̃iK̃
n̄ , and l µ⊥ = εµνρσ p̃

ν
i n̄

ρ nσ⊥ . (23)

Because the differential emission phase-space element, Eq. (28), is a Lorentz-invariant quantity, the azimuthal angle
φ is Lorentz invariant. It can be expressed as

φ = arccos
(pipj)(pkn̄) + (pipk)(pj n̄)− (pin̄)(pjpk)√

2(pipj)(pj n̄)
√

2(pipk)(pkn̄)
. (24)

This allows us to write the emission phase space in a frame-independent way. After the momenta pi, pj and K are

constructed, the momenta {pl} used to define K̃ are subjected to a Lorentz transformation, which can be written
as [72]

pµl → Λµν(K, K̃) pνl , where Λµν(K, K̃) = gµν −
2(K + K̃)µ(K + K̃)ν

(K + K̃)2
+

2K̃µKν

K2
. (25)

We list the precise algorithm for the construction of final-state splittings in Sec. A 1, and give the algorithm for the
construction of initial-state splittings in Sec. A 2. The initial-state kinematics are obtained by the simple replacement
z → x = 1/z, as indicated by crossing relations.

The last remaining task is to determine the differential emission phase space element. We will outline how to do
this for pure final-state evolution, where the recoil partner K̃ is the complete final state. This covers the important
case of the decay of a color-neutral, massive particle, such as a Z-boson at LEP. Note that in this case the momenta
K, K̃ and n have to be inverted, since they were initially defined as outgoing. The remaining cases are summarized
in App. B.

The differential phase-space element for (n−1) hard momenta, {pµ1 , . . . , pj−1, pj+1, . . . , p
µ
n}, and one soft momentum,

pj , is defined as

dΦn(pa, pb; p1, . . . , pn) =

[
n∏

i=1

1

(2π)3

d3pi
2p0
i

]
δ(4)(pa + pb −

∑
pi) . (26)

3 In Eq. (20), the variable v takes the place of the splitting variable z in a standard collinear parametrization.
4 In kinematical configurations where pµk is a linear combination of pµi and n̄µ, n⊥ in the definition of Eq. (22) vanishes. It can then be

computed using n⊥ = εµjνρ p
ν
i n̄

ρ, where j ∈ {1, 2, 3} may be any index that yields a nonzero result. Note that in this case the matrix
element cannot depend on the azimuthal angle.
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It can be written in terms of the differential phase-space element for the momenta {p̃µ1 , . . . , p̃µj−1, p̃
µ
j+1, . . . , p̃

µ
n} before

the mapping

dΦn−1(p̃a, p̃b; p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n) =

[
n∏

i=1
i6=j

1

(2π)3

d3p̃i
2p̃0
i

]
δ(4)(p̃a + p̃b −

∑

i6=j

p̃i) , (27)

and the ratio of differential phase-space elements after and before the mapping

dΦ+1(p̃a, p̃b; p̃1, . . . , p̃
µ
j−1, p̃

µ
j+1, . . . , p̃n; pj) =

dΦn(pa, pb; p1, . . . , pn)

dΦn−1(p̃a, p̃b; p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n)
. (28)

Eq. (28) denotes the single-emission phase space. It can be computed using the lowest possible multiplicity, i.e. n = 2
We start from the factorization formula

dΦ3(−K; pi, pj , Q) = dΦ2(−K; pj ,−n)
dn2

2π
dΦ2(−n; pi, Q) , (29)

where Q =
∑
k 6=i,j pk. The two-particle phase space in the frame of a time-like momentum P can be written as

dΦ2(p1 + p2; p1, p2) =
1

16π2

√
(p1P )2 − p2

1P
2

(p1 + p2)P
d cos θ

(P )
1

dφ
(P )
1

2π
, (30)

We perform all transformations in the rest frame of n, where we have the simple relations

Ei = z
−p̃iK̃√
n2

, Ej = (1− z) −p̃iK̃√
n2

, EK = (1− z + 2κ)
−p̃iK̃√
n2

, and n2 = −2p̃iK̃ (1− z + κ) . (31)

Using the following identity for the polar angle θj of the emission,

1− cos θ ij = 2v
1− z + κ

1− z , (32)

we find the first two-particle decay phase space in Eq. (29) to be

dΦ2(−K; pj , n) =
1

16π2

1− z + κ

1− z + 2κ
dv

dφ
(n)
j

2π
. (33)

Note that this implies that φ
(n)
j is a Lorentz invariant quantity, which is in fact given by Eq. (24). We also have

dn2 = −2p̃iK̃ dz . (34)

Finally, we rewrite the second two-particle decay phase space as

dΦ2(−n; pi, Q) =
1

16π2

z

2(1− z + κ)
d cos θ

(n)
i

dφ
(n)
i

2π
. (35)

In order to obtain a factorization formula, this must be mapped to the Born phase space, which is given by
dΦ2(−K̃; p̃i, Q̃). The angular integrals in Eq. (35) are identical when working in the rest frame of the momentum n,
which leads to the relation

dΦ2(−n; pi, Q) = z
1− z + 2κ

1− z + κ
dΦ2(−K̃; p̃i, Q̃) . (36)

Combining all of the above, we find the single-emission phase space element

dΦ
(FI)
+1 (−K̃; p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n; pj) =

−2p̃iK̃

16π2
dv dz z

dφ

2π
. (37)

We derive the analogous factorization formulae for recoilers in the final state and for initial-state emitters in App. B.
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IV. DETAILS OF THE ALGORITHM

This section introduces the details needed to implement our new parton-shower algorithm. The procedure rests on
the fact that the angular radiator function (1− cos θ ij )W̄ i

ik,j , with W̄ i
ik,j given in Eq. (9), has a fairly mild dependence

on the azimuthal angle. In particular, it is finite in the physical domain 0 < θ ij , θ
i
k < π. We can therefore generate the

azimuthal angle using a flat prior distribution, and work with standard algorithms for the remainder of the parton
shower. In the following, we will assume some familiarity of the reader with these algorithms. Details can be found
in the many excellent reviews in the literature, for example [80, 82].

A. Soft evolution

We determine energies and angles in a global frame, which is defined by n. In the soft limit, pj → 0, this frame
coincides with the event frame, defined by K. The energies of particles i and j are given by Eq. (31). The polar angle
θ ij of the emission is determined by Eq. (32) 5. We define partial radiator functions, w̄iik,j , analogous to Eq. (9), such

that wik,j = w̄iik,j + w̄kki,j . This leads to

w̄iik,j =
W̄ i
ik,j

E2
j

=
W̄ik,j

pipj
, where W̄ik,j =

z

1− z (1− cos θ ij ) W̄ i
ik,j . (38)

The function W̄ik,j describes the frame-dependent azimuthal modulation of the radiation pattern. We implement it
in the numerically more convenient form (see also Appendix C)

W̄ik,j =
likpi
likpj

, where lµik =
pµi
pin

+
pµk
pkn

. (39)

The function (1 − cos θ ij )W̄ i
ik,j assumes its maximum for φ ijk = 0. It is bounded from above by 2. The eikonal part

of the splitting function can therefore be overestimated by

w̄iik,j ≤ 2w
(coll)
ik,j (z) =

1

2pipj

4z

1− z . (40)

We define the evolution variable of the parton shower as

t = 2E2
j (1− cos θ ij ) = v (1− z) 2p̃iK̃ . (41)

Note that 1− cos θ ij = 2 sin2(θ ij /2), such that t corresponds to a transverse momentum. In the generalized rescaling
limit ρ→ 0 of [84], it can be identified with the transverse momentum squared in the Lund plane, hence our parton
shower algorithm corresponds to the case βPS = 0 in [54]. The kinematical variable v is given as a function of t by

v =
τ

1− z , where τ =
t

2p̃iK̃
. (42)

There is no Jacobian factor for the transformation ln v → ln t. The differential branching probability for soft radiation
is eventually given by the manifestly Lorentz invariant expression

dP
i (soft)
ik,j (t, z, φ) = dΦ+1({p̃}, pj) 8παs Ci w̄

i
ik,j = dt dz

dφ

2π

αs
2π t

2Ci W̄ik,j . (43)

For any |τ | > τ0 = t0/2p̃iK̃, with t0 the infrared cutoff of the parton shower, Eq. (41) defines a boundary on z that is
given by z+ = 1/(1 + τ0). This regularizes the integral of the overestimate of the splitting function in Eq. (40). We

also introduce a lower bound on z, given by z2
− = t0/K̃

2, to render the upper bound of the t integration finite. This
is analogous to the determination of the upper photon energy bound in [85]. The splitting variable z can therefore be
generated using standard Monte-Carlo techniques.

5 Note that for the first emission off a two-parton final state, κ = −1, such that 1− cos θ ij = 2v z/(1− z), which is the same result as in

the coherent branching formalism [83].
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B. Collinear evolution

We are now left with the task to define the parton-shower algorithm to resum purely collinear logarithms. The
corresponding splitting functions can be derived by subtracting the collinear limit of the soft eikonal factor, Eq. (3),
from the leading-order DGLAP splitting functions, Eq. (13). The differential branching probability for collinear
radiation is then given by (see Eq. (14))

dP
i (coll)
ik,j (t, z, φ) = dΦ+1({p̃}, pj)

αs
2π

(
Pı̃i(z)

2pipj
− δı̃i 2Ci w

(coll)
ik,j (z)

)

= dt dz
dφ

2π

αs
2π t

(
Pı̃i(z)− δı̃i Ci

2z

1− z

)

= dt dz
dφ

2π

αs
2π t

Cı̃i .

(44)

Here we have defined the purely collinear remainder functions

Cqq = CF (1− z) ,
Cgg = CA z(1− z) ,

Cgq = TR (1− 2z(1− z)) .

(45)

While we use the same ordering parameter as in soft evolution, Eq. (41), an ordering in virtuality or other variables
is possible without affecting the logarithmic precision.

V. ANALYSIS OF LOGARITHMIC STRUCTURE

In this section we will analyze the logarithmic structure of the new parton-shower algorithm. We first provide an
analytic proof that the recoil effects from new emissions on pre-existing ones vanish in the ρ → 0 limit [84]. This
corresponds to a similarity transformation in the Lund plane such that all emissions can be considered as soft or
collinear. The technique was introduced to eliminate corrections from kinematic effects which would generate terms
beyond NLL accuracy. Parton showers that create non-vanishing recoil effects in this limit are not NLL accurate [53].
Here we focus solely on the question whether the generalized scaling of emissions introduced in [84] is maintained in
our parton shower when additional splittings are generated at lower or commensurate scales. In addition, we perform
a numerical test of NLL accuracy, following the proposal in [54], which provides an additional strong check of our new
algorithm.

A. Recoil effects in the infrared limit

We will first show that the new parton shower algorithm satisfies the fixed-order criteria for NLL accuracy laid
out in [53, 54] to all orders. Proofs for other parton-shower algorithms have been provided in numerical form [54], or
based on approximations of the parton-shower branching probability, combined with analytical integration for specific
observables [70, 86]. Here we will follow a different approach, making use of the techniques for general final-state
resummation developed in [84]. We describe the case of final-state radiation, similar arguments apply to initial-state
evolution as well.

The aim is to show that the recoil arising from the Lorentz transformation in Eq. (25) does not lead to an appreciable
alteration of the momenta of pre-existing emissions. This criterion is formally defined in terms of the generalized
scaling behavior of emissions in the Lund plane, introduced in Sec. 2.2.3 of [84]. In order to analyze the behavior of

the Lorentz transformation, we use Eq. (21) to split Kµ into its components along the recoil momentum, K̃µ, the
emitter momentum, p̃µi , and the emission, pµj ,

Kµ = K̃µ −Xµ , where Xµ = pµj − (1− z) p̃µi . (46)

The vector Xµ will tend to zero in both the soft and the collinear limit, because it has no component along the
direction of the emitter momentum, p̃i. This implies in particular that for emissions off the original hard partons, Xµ

will tend to zero, even in the hard collinear region, such that the Lorentz transformation vanishes. In terms of K̃µ

and Xµ, Eq. (25) takes the form

Λµν(K, K̃) = gµν + K̃µAν +XµBν , (47)
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where

Aν = 2

[
(K̃ −X)ν

(K̃ −X)2
− (K̃ −X/2)ν

(K̃ −X/2)2

]
, and Bν =

(K̃ −X/2)ν

(K̃ −X/2)2
. (48)

Following Sec. 2.2.3 of [84], we now analyze the behavior of this change under the generalized rescaling of all emissions,
pl, according to

kt,l → k′t,l = kt,lρ
(1−ξl)/a+ξl/(a+b) , ηl → η′l = η − ξl

ln ρ

a+ b
, where ξ =

η

ηmax
. (49)

Note that the transverse momentum kt in this analysis is not the same as k⊥ in Eq. (21). It is instead given in
terms of Lund plane coordinates, see Sec. 2 of [84] for details of these definitions. We can choose to use the initial
momenta of the hard quark and anti-quark (which are not subject to the rescaling) as reference directions to define the
Lund plane transverse momentum and rapidity, and work in their rest frame with the quark (antiquark) momentum
pointing along the positive (negative) z direction. In this frame, the longitudinal components of the momenta pl
scale as p̃0,3

l ∼ ρ(1−ξl)/a, while the transverse components behave as p̃1,2
l ∼ ρ(1−ξl)/a+ξl/(a+b). In our parton shower

formalism the evolution variable corresponds to aPS = 1 and bPS = 0 (see Eq. (41)), and we will use this in the
following.

From Eq. (46) we deduce that all components of Xµ scale as the soft momenta p̃l in Eq. (49), because the component
of pj along the emitter momentum p̃i has been subtracted. This is a very important feature of our kinematics mapping.
We will now show that this mapping maintains the scaling properties, Eq. (49), of an arbitrary set of pre-existing
emissions in the ρ→ 0 limit.

First we take the ρ→ 0 limit of the coefficients in Eq. (47)

Aν
ρ→0−→ 2

K̃X

K̃2

K̃ν

K̃2
− Xν

K̃2
, and Bν

ρ→0−→ K̃ν

K̃2
. (50)

The momentum shift of particle l under the Lorentz transformation is then given by

∆pµl = 2
K̃X

K̃2

p̃lK̃

K̃2
K̃µ − p̃lX

K̃2
K̃µ +

p̃lK̃

K̃2
Xµ . (51)

For color singlet decay or production processes we can work in the multipole center-of-mass frame. K̃ then only has
an energy component, which is not rescaled as ρ → 0. Let us first assume that the emitter momentum, p̃i, is one of
the soft momenta.

The scaling of the scalar products in Eq. (51) is then given by

p̃lK̃ ∼ ρ1−ξl ,

p̃lX ∼ ρ2−ξl−max(ξi,ξj) .
(52)

The denominators in Aν and Bν do not scale with ρ. With that we can derive the scaling of the change in each
component of pl and compare it to the scaling of the original components in p̃l.

p̃0
l ∼ ρ1−ξl ∆p0

l ∼ ρ1−ξlX0 + ρ2−ξl−max(ξi,ξj)K̃0 + ρ1−ξlX0 ∼ ρ2−ξl−max(ξi,ξj)

p̃3
l ∼ ρ1−ξl ∆p3

l ∼ ρ1−ξlX3 ∼ ρ2−ξl−max(ξi,ξj)

p̃1,2
l ∼ ρ ∆p1,2

l ∼ ρ1−ξlX1,2 ∼ ρ2−ξl

(53)

If ξl < 1 and max(ξi, ξj) < 1, these changes will vanish in the ρ→ 0 limit. The case of ξl = 1 and/or max(ξi, ξj) = 1
corresponds to a phase-space region of measure zero and does therefore not need to be considered.

In the case where p̃i is one of the hard momenta, the leading terms in Eq. (46) cancel exactly, and the remaining
components of Xµ are transverse or anti-collinear, leading to a scaling with ρ and ρ2, respectively, in Eq. (53). This
leads to the same conclusions as the case ξi = ξj = 0.

B. Numerical tests of kinematics mapping

In this section we present numerical tests of our new algorithm 6. We follow the procedure outlined in [54] and
perform a scaling of the strong coupling, while keeping the variable λ = αs ln 1/v fixed, where v is an observable

6 The PyPy code for these tests can be found at https://gitlab.com/shoeche/pyalaric.

https://gitlab.com/shoeche/pyalaric
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FIG. 3: NLL test for ∆ψ12.

whose single-emission contribution to a measurement can be parametrized in the form v(k) = (kt/Q)ae−b|ηk|, see [84].
In particular we analyze the event shape observables thrust, T [87], jet broadening, BT [88], heavy jet mass, MH , and
the fractional energy correlators FC1−β [84] for β = 0 and 1/2. We also analyze the leading Lund plane declustering
scale in the Cambridge algorithm, y23, and the azimuthal angle between the two leading Lund plane declusterings,
∆ψ12 [54].

Since the running of the strong coupling will not affect the kinematics reconstruction, we keep αs constant in this
numerical test. In addition, we do not use the CMW scheme, and we work in the strict leading color approximation,
2CF = CA = 3. We find that this is sufficient to reproduce the dominant features of the Dire dipole shower algorithm
that were observed to break NLL precision in [53, 54]. Figure 3 shows the azimuthal angle separation ∆ψ12. The
predictions from Dire exhibit the same features as already shown in [54], and it can be seen that the deviation from
a flat ∆ψ12 distribution does not vanish as α → 0. In contrast, for the Alaric algorithm we observe increasingly
smaller deviations from a flat ∆ψ12 dependence, in agreement with NLL resummation.

Figure 4 displays the event shape observables and the leading Lund declustering scale for varying αs. In order to
test for a variety of possible effects of NLL violation, we have chosen observables with different NLL contributions.
In addition, we test observables with b = 0 (

√
y23, BT and FC1), observables with b = 1/2 (FC1/2) and observables

with b = 1 (1 − T , MH). In each case we find that the deviation of the Alaric prediction from the NLL target
result (modified to account for constant αs, no CMW rescaling and leading color) decreases in size proportional to
the scaling in αs, as αs → 0. At the same time, we observe large deviations of the Dire predictions from the target
NLL result. It is notable that the predictions from Alaric are flat with respect to the NLL result starting at fairly
small values of −λ for most observables. This concludes our tests of the kinematics mapping.

VI. COMPARISON TO EXPERIMENTAL DATA

In this section we present first numerical results obtained with the Alaric final-state parton shower, as implemented
in the event generation framework Sherpa [75–77]. We do not perform NLO matching or multi-jet merging, and
we set CF = (N2

c − 1)/(2Nc) = 4/3 and CA = 3. All quarks are considered massless, and we implement flavor
thresholds at mc = 1.42 GeV and mb = 4.92 GeV. The running coupling is evaluated at two loop accuracy, and we set
αs(mz) = 0.118. Following standard practice to improve the logarithmic accuracy of the parton shower, we employ
the CMW scheme [91], i.e. the soft eikonal contribution to the flavor conserving splitting functions is rescaled by
1 + αs(t)/(2π)K, where K = (67/18 − π2/6)CA − 10/9TR nf . Our results include the simulation of hadronization
using the Lund string fragmentation implemented in Pythia 6.4 [82] 7. We use the default hadronization parameters,
apart from the following values: PARJ(21)=0.3, PARJ(41)=0.4, PARJ(42)=0.36 for Alaric, and PARJ(21)=0.3,
PARJ(41)=0.4, PARJ(42)=0.45 for Dire. All analyses are performed with Rivet [93].

Figure 5 shows predictions from the Alaric parton shower for differential jet rates in the Durham scheme compared
to experimental results from the JADE and OPAL collaborations [89]. The perturbative region is to the right of the

7 Hadronization using the Sherpa cluster fragmentation [92] will require an implementation of massive splitting functions in Alaric, in
order to simulate the QCD evolution of partonic hadron decays. We postpone this to a future publication.
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FIG. 4: NLL test for various event shape observables. See the main text for details.

plot, and y ∼ 2.8 · 10−3 corresponds to the b-quark mass. The simulation of nonperturbative effects dominates the
predictions below ∼ 10−4. We observe fairly good agreement with the experimental data, however, we note that at
moderate values of y the prediction will be altered when a proper evolution of massive quark final states is included.

Figure 6 shows a comparison for event shapes measured by the ALEPH collaboration [90]. The perturbative region
is to the right of the plot, except for the thrust distribution, where it is to the left. We notice some deviation in
the predictions for the total jet broadening and for the aplanarity. They are mostly within the 2σ uncertainty of
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FIG. 5: Alaric and Dire predictions in comparison to LEP data from [89].
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FIG. 6: Alaric and Dire predictions in comparison to LEP data from [90].
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the experimental measurements. It can be expected that the simulations will improve upon including matrix-element
corrections or when merging the Alaric parton shower with higher-multiplicity calculations. Deviations in the
hadronization region may be associated with the treatment of b-quarks and c-quarks as massless partons.

VII. CONCLUSIONS

We have presented a new parton-shower algorithm, which is closely modeled on the fixed-order subtraction formalism
for identified particles by Catani and Seymour. This technique allows, for the first time in a dipole-like parton shower,
to disentangle color and kinematics, at the price of introducing an azimuthal angle dependence in the splitting
functions. Partial fractioning the angular radiator function and matching to the collinear limit maintains strict
positivity of the evolution kernels, thus allowing a straightforward implementation without the need for explicit
angular ordering. Through a suitable assignment of recoil, which is absorbed by the entire QCD multipole, we are
able to show that the local kinematics mapping satisfies the criteria for NLL precision.

Several extensions of this algorithm are required: Firstly, it should be modified to include spin correlations [23–26]
and dominant sub-leading color effects [67, 74, 94]. A number of formally less relevant, but practically important
considerations need to be addressed as well. They include the evolution for massive partons, in order to properly
describe bottom and charm jet production and b- and c-quark fragmentation functions. Another open question is
the extension to processes with non-trivial color dependence at Born level, such as top-quark pair production and
inclusive jet or di-jet production at hadron colliders. A related, though substantially simpler problem is the treatment
of processes with multiple, disconnected QCD multipoles, such as vector boson fusion in the structure function
approximation, or the production of a Higgs boson in association with a hadronically decaying vector boson in the
narrow width approximation. The latter cases can be handled by applying the algorithms introduced here to each
QCD multipole individually, while keeping track of spin correlations among the different multipoles. Finally, we plan
to extend our new algorithms to higher-orders, based on the techniques developed in [73, 74, 95].
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Appendix A: Implementation details

This appendix summarizes details of the kinematics mapping and the relations between the kinematic invariants
and the evolution and splitting variables for both final-state and initial-state evolution.

1. Final-state evolution

We will first discuss the case of a final-state emitter with final-state recoiler. The momentum mapping is sketched
in Fig. 7 (FF). The emitting particle is labeled i, the emission is labeled j, and the color spectator is labeled k. The
momenta pi, pj and K are given by Eq. (21)

pi = z p̃i ,

pj = (1− z) p̃i + v
(
K̃ − (1− z + 2κ) p̃i

)
+ k⊥ ,

K = K̃ − v
(
K̃ − (1− z + 2κ) p̃i

)
− k⊥ ,

(A1)
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FIG. 7: Sketch of the momentum mapping for final-state emitters with final-state spectator (FF), final-state
emitters with initial-state spectator (FI), initial-state emitters with final-state spectator (IF) and initial-state

emitters with initial-state spectator (II).

where

k2
⊥ = v(1− v)(1− z) 2p̃iK̃ − v2K̃2 , and v =

τ

1− z . (A2)

The particles included in the momentum K̃ are subjected to a Lorentz transformation, which accounts for the decay
of the new recoil momentum, K, in a different frame. If the recoil momentum is given by a single, light-like vector,
no such transformation is necessary.

pµl → Λµν(K, K̃) pνl . (A3)

The momentum mapping for final-state emitters with initial-state spectator is sketched in Fig. 7 (FI). We define the

momentum K̃ as incoming, i.e. K̃0 > 0. This implies the replacement v → −v, K̃ → −K̃ and n→ −n, leading to

pi = z p̃i ,

pj = (1− z) p̃i + v
(
K̃ + (1− z − 2κ) p̃i

)
+ k⊥ ,

K = K̃ + v
(
K̃ + (1− z − 2κ) p̃i

)
+ k⊥ ,

(A4)

where

k2
⊥ = v(1 + v)(1− z) 2p̃iK̃ − v2K̃2 , and v =

τ

1− z . (A5)

The complete QCD multipole is then subjected to a Lorentz transformation, determined such as to restore the
momenta of the initial-state particles, p̃a and p̃b. This can be achieved by the mapping

pµl → Λµν(pa + pb, p̃a + p̃b) p
ν
l , (A6)

Note that the above transformation is applied to all particles in the multipole.

2. Initial-state evolution

For initial-state emissions, we redefine z → 1/z. The momentum mapping for initial-state spectators is sketched in
Fig. 7 (II). The emitting particle is labeled i, the emission is labeled j, and the color spectator is labeled k. We define
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both p̃i and K̃ as incoming, i.e. p̃i,0 > 0 and K̃0 > 0. The momenta pi, pj and K are then given by Eq. (21)

pi =
1

z
p̃i ,

pj =
1− z
z

p̃i + v

(
K̃ +

(
1− z
z
− 2κ

)
p̃i

)
+ k⊥ ,

K = K̃ + v

(
K̃ +

(
1− z
z
− 2κ

)
p̃i

)
+ k⊥ ,

(A7)

where

k2
⊥ = v(1 + v)

1− z
z

2p̃iK̃ − v2K̃2 , and v =
τ

1− z . (A8)

The complete QCD multipole is then subjected to a Lorentz transformation, determined such as to restore the
momenta of the initial-state particles, p̃a and p̃b. This can be achieved by the mapping

pµl → Λµν(pa + pb, p̃a + p̃b) p
ν
l (A9)

Note that the above transformation is applied to all particles in the multipole.
The momentum mapping for initial-state emitters with final-state spectator is sketched in Fig. 7 (IF). The momenta

pi, pj and K are given by

pi =
1

z
p̃i ,

pj =
1− z
z

p̃i + v

(
K̃ −

(
1− z
z

+ 2κ

)
p̃i

)
+ k⊥ ,

K = K̃ − v
(
K̃ −

(
1− z
z

+ 2κ

)
p̃i

)
− k⊥ ,

(A10)

where

k2
⊥ = v(1− v)

1− z
z

2p̃iK̃ − v2K̃2 , and v =
τ

1− z . (A11)

The particles included in the momentum K̃ are subjected to a Lorentz transformation, which accounts for the decay
of the new recoil momentum, K, in a different frame. If the recoil momentum is given by a single, light-like vector,
no such transformation is necessary.

pµl → Λµν(K, K̃) pνl . (A12)

Appendix B: Phase-space factorization

This appendix summarizes details on the phase-space factorization for both final-state and initial-state evolution.
The case of final-state emitter and initial-state recoiler was discussed in Sec. III, and we do not repeat it here.

1. Final-state emitter and final-state recoiler

This case covers electroweak decays of a color-charged resonance, such as the top quark. We start from

dΦ3(pi, pj ,K;Q) = dΦ2(pi, n;Q)
dn2

2π
dΦ2(pj ,K;n) (B1)

The generic frame-independent form of the two-particle phase space is given in Eq. (30). We perform all transforma-
tions in the rest frame of n, where we have the simple relations

Ei = z
p̃iK̃√
n2

, Ej = (1− z) p̃iK̃√
n2

, EK = (1− z + 2κ)
p̃iK̃√
n2

, and n2 = 2p̃iK̃ (1− z + κ) . (B2)
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Using the following identity for the polar angle θj of the emission,

1− cos θ ij = −2v
1− z + κ

1− z , (B3)

we find the first two-particle decay phase space to be

dΦ2(pj ,K;n) =
1

16π2
dv

dφ
(n)
j

2π
. (B4)

Analogous to Eq. (34), we can write dn2 = 2p̃iK̃ dz. Finally, we rewrite the second two-particle decay phase space

dΦ2(pi, n;Q) =
1

16π2

z

2(1− z/2 + κ)
d cos θ

(n)
i

dφ
(n)
i

2π
. (B5)

In order to obtain a factorization formula, this must be mapped to the Born phase space, which is given by
dΦ2(p̃i, K̃;Q). The angular integrals in Eq. (B5) are identical when working in the rest frame of the momentum

n, which leads to the relation dΦ2(pi, n;Q) = z dΦ2(p̃i, q̃i; K̃). Combining all of the above, we find the single-emission
phase space element

dΦ
(FF)
+1 (K̃; p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n; pj) =

2zp̃iK̃

16π2
dv dz

dφ

2π
. (B6)

2. Initial-state emitter and final-state recoiler

This case covers hadroproduction of a colorless final state, in particular Drell-Yan lepton pair production. We start
from the factorization formula

dΦ2(pj ,K;Q+ pi) = dΦ2(pj ,K;n)
dn2

2π
dΦ1(n;Q+ pi) (B7)

The generic frame-independent form of the two-particle phase space is given in Eq. (30). Again, we perform all
transformations in the rest frame of n, leading to the relations in Eq. (B2). Using Eq. (B3) for the polar angle
θj of the emission, we find the two-particle decay phase space in Eq. (B4). Analogous to Eq. (34), we can write

dn2 = 2p̃iK̃ dz. The one-particle production phase space is given by

dΦ1(n;Q+ pi) = 2π δ(n2 − (Q+ pi)
2) . (B8)

In order to obtain a factorization formula, this is mapped to the Born phase space, leading to dΦ1(n;Q + pi) =

1/z dΦ2(K̃;Q+ p̃i). Combining all of the above, we obtain the single-emission phase space element

dΦ
(IF)
+1 (K̃; p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n; pj) =

2p̃iK̃

16π2
dv

dx

x

dφ

2π
. (B9)

3. Initial-state emitter and initial-state recoiler

This case covers deep inelastic scattering. We start from the two-particle phase space

dΦ2(pj , Q;K + pi) . (B10)

Its generic, frame-independent form is given in Eq. (30). We perform all transformations in the rest frame of n, where
we have the relations in Eq. (31). Next we insert the identity

1 =

∫
dx δ

(
x− p̃iK̃

pin

)
=

∫
dx

2p̃iK̃

x
δ
(

2p̃iK̃ − (pi + pj)n
)

=

∫
dx

2p̃iK̃

x
δ
(

(p̃i + K̃)2 −Q2
)
. (B11)

In order to obtain a factorization formula, this is mapped to the Born phase space as dΦ1(Q̃; p̃i + K̃) = 2π δ(Q̃2 −
(p̃i + K̃)2). Combining all of the above, we obtain the single-emission phase space element

dΦ
(IF)
+1 (K̃; p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n; pj) =

2p̃iK̃

16π2
dv

dx

x

dφ

2π
. (B12)
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Appendix C: Monte-Carlo counterterms for MC@NLO matching

To match a parton shower to NLO calculations in dimensional regularization based on the MC@NLO algorithm
[27], the integral of the splitting functions must be known in D = 4− 2ε dimensions. Since our new parton shower is
modeled on the Catani-Seymour identified particle subtraction, we can utilize the techniques developed in [96, 97]. By
means of a suitable identification of the radiating color multipole, this allows us to treat the problem of standard final-
state evolution, resonant particle production, color singlet production at hadron colliders, deep-inelastic scattering,
etc. on the same footing.

Here we will limit ourselves to listing the main changes with respect to [96, 97] that are needed in order to implement
the algorithm. For details on the respective phase-space integrals, and on the basis of the subtraction technique, we
refer the reader to [72]. Details on the implementation of MC@NLO can be found in [27, 32].

1. Final-state emitter

By combining the integrated splitting function with the collinear mass factorization counterterms, we can derive the
combined integrated subtraction term for identified parton production with a partonic fragmentation function [96, 97]

∫

m+1

dσS +

∫

m

dσC =
1

2

∑

i=g,q,q̄

m∑

ı̃=1

∫ 1

0

dz

z2−2ε

∫

m

dσB(p1, . . . ,
pi
z
, . . . , pm)⊗ Î

(FS)
ı̃i , (C1)

where the ⊗ stands for spin and color correlations. In the MS scheme, the insertion operator is given by

Î
(FS)
ı̃i = −αs

2π

1

Γ(1− ε)

{
m∑

k=1,k 6=ı̃

Tı̃Tk

T2
ı̃

(
4πµ2

2pipk

)ε
V̄ı̃,i(z; ε; pi, pk, n)− δı̃i

1

ε

(
4πµ2

µ2
F

)ε
Pı̃i(z)

}
. (C2)

The explicit pole in ε, originating from the renormalization of the perturbative fragmentation function, cancels against
the corresponding pole in V̄ı̃,i. The remainder can be split into three contributions:

Î
(FS)
ı̃i = δ(1− z)Iı̃i + Pı̃i + Hı̃i . (C3)

The singularities in the virtual corrections are canceled by the insertion operator present for standard final-state
dipoles with final-state spectator [72]

Iı̃i(p1, . . . , pi, . . . , pm; ε) = −αs
2π

1

Γ(1− ε)
m∑

k=1,k 6=ı̃

Tı̃Tk

T2
ı̃

(
4πµ2

2pipk

)ε
Vı̃i(ε) . (C4)

Employing color conservation and expanding through O(ε), the remaining two operators read [96, 97]

Pı̃i(p1, . . . ,
pi
z
, . . . , pm; z;µF ) =

αs
2π

m∑

k=1,k 6=ı̃

Tı̃Tk

T2
ı̃

ln
zµ2

F

2pipk
δı̃iPı̃i(z) (C5)

and

Hı̃i(p1, . . . , pi, . . . , pm;n; z) = −αs
2π

m∑

k=1,k 6=ı̃

Tı̃Tk

T2
ı̃

[
K̃ ı̃i(z) + K̄ ı̃i(z) + 2Pı̃i(z) ln z + Lı̃i(z; pi, pk, n)

]
. (C6)

Finally, an integration over pi has to be performed. Following Refs. [96, 97] we replace the integration over pi by
an integration over p̃i. This leads to a Jacobian of z2−2ε, canceling the prefactor in Eq. (C1). Consequently, the
differential Born cross-section dσB decouples from the z integration and we obtain

m∑

ı̃=1

∫
dDpi

(2π)D−1
δ(p2

i )σ
I(pi) =

m∑

ı̃=1

∫

m

dσB(p1, . . . , pm)⊗
∫ 1

0

dz
1

2

∑

i=g,q,q̄

Îı̃i . (C7)

The integral over
∑
iPı̃i vanishes, because

∑
i Pĩi is a pure plus distribution. The other two z-integrals can be

evaluated directly, because p̃i is z-independent. In particular, the integral of the Iı̃ operator is trivial. The integral
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over the Hı̃i operator is given by a modified form of the result in [96, 97]. We note that the arguments of the
dilogarithms depend only on the angle and velocity of lik as defined in Eq. (39), see Appendix B in [72]. Using the
following substitution in Eq. (B.9) in [72]

1− β cosχ→ n2 likpi
(pin)(likn)

, 1− β2 → n2l2ik
(likn)2

. (C8)

we therefore obtain

∫ 1

0

dzHı̃i(p1, . . . , pi, . . . , pm;n; z)

= −αs
2π

m∑

k=1,k 6=ı̃

Tı̃Tk

T2
ı̃

{
Kı̃i + δı̃i Li2(β2)−

∫ 1

0

dz P qqreg(z) ln
n2p̃ipk

2z(p̃in)2

}
.

(C9)

where the integral Kı̃i is defined as

Kı̃i =

∫ 1

0

dz
(
K̃ ı̃i(z) + K̄ ı̃i(z) + 2Pı̃i(z) ln z

)
(C10)

In general, the last term of Eq. (C9) must be computed numerically, as n implicitly depends on z, see Eq. (17).

2. Initial-state emitter

As in the case of a final-state emitter, the case of an initial state emitter is treated in the same manner as in [96, 97].
The sum of the subtraction terms and the collinear counterterms is given by

∫

m+1

dσS +

∫

m

dσC =
∑

ĩ=g,q,q̄

∫ 1

0

dx

∫

m

dσB(p1, . . . , xpi, . . . , pm)⊗ Î
(IS)
iı̃ , (C11)

where the ⊗ again stands for spin and color correlations. In the MS scheme, the insertion operator is given by

Î
(IS)
iı̃ = δ(1− z)Iiı̃ + Piı̃ + Kiı̃ . (C12)

The operator Iiı̃ is obtained by replacing k → k̃ in Eq. (C4). The K operator can be written as

Kiı̃(p1, . . . , pm; pi, n, x) = −αs
2π

m∑

b̃=1

Tk̃Tı̃

T2
ı̃

[
K̄i,̃ı(x) + K̃i,̃ı(x) + Li,̃ı(x; pi, p̃k, n)

]
. (C13)

This result can be derived from Eq. (C6) by using the known expressions for the breaking of the Gribov-Lipatov
relation at NLO QCD, see Sec. 6.4 of [98]. All remaining components of the subtraction formulae can be found in
Appendix C of [72].
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[15] A. H. Mueller, Phys. Lett. B104, 161 (1981).
[16] B. I. Ermolaev and V. S. Fadin, JETP Lett. 33, 269 (1981).
[17] Y. L. Dokshitzer, V. S. Fadin, and V. A. Khoze, Phys. Lett. B 115, 242 (1982).
[18] Y. L. Dokshitzer, V. S. Fadin, and V. A. Khoze, Z. Phys. C15, 325 (1982).
[19] Y. L. Dokshitzer, V. S. Fadin, and V. A. Khoze, Z. Phys. C 18, 37 (1983).
[20] A. Bassetto, M. Ciafaloni, G. Marchesini, and A. H. Mueller, Nucl. Phys. B207, 189 (1982).
[21] B. Webber, Ann. Rev. Nucl. Part. Sci. 36, 253 (1986).
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[76] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and J. Winter, JHEP 02, 007 (2009),

arXiv:0811.4622 [hep-ph].
[77] E. Bothmann et al. (Sherpa), SciPost Phys. 7, 034 (2019), arXiv:1905.09127 [hep-ph].
[78] K. Hamilton, A. Karlberg, G. P. Salam, L. Scyboz, and R. Verheyen, JHEP 03, 193 (2022), arXiv:2111.01161 [hep-ph].
[79] A. Bassetto, M. Ciafaloni, and G. Marchesini, Phys. Rept. 100, 201 (1983).
[80] R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and collider physics, 1st ed., Vol. 8 (Cambridge Monogr. Part. Phys.

Nucl. Phys. Cosmol., 1996) p. 435.
[81] V. V. Sudakov, Sov. Phys. JETP 3, 65 (1956).
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