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Qudit gates for high dimensional quantum computing can be synthesized with high precision using
recent numerical quantum optimal control techniques. Large circuits are broken down into modules
and the tailored pulses for each module can be used as primitives for a qudit compiler. Application
of the pulses of each module in the presence of extra modes may decrease their effectiveness due to
crosstalk. In this paper, we address this problem by simulating qudit dynamics for circuit quantum
electrodynamics (cQED) systems. As a test case, we take pulses for single-qudit SWAP gates
optimized in isolation and then apply them in the presence of spectator modes each of which are
in Fock states. We provide an experimentally relevant scaling formula that can be used as a bound
on the fidelity decay. Our results show that frequency shift from spectator mode populations has
to be ≲ 0.1% of the qudit’s nonlinearity in order for high-fidelity single-qudit gates to be useful in
the presence of occupied spectator modes.

I. INTRODUCTION

With the demonstrations of qudit control in quan-
tum devices, such as trapped ions [1], photonic
processors [2], and circuit quantum electrodynam-
ics (cQED) systems [3–7], many computational lev-
els can be successfully manipulated in order to de-
sign and execute quantum algorithms [8]. Com-
pared to its qubit counterparts, high dimensional
quantum computing has many advantages, some of
which are lower-depth circuits, noise improvement
with hardware-efficient solutions [8–11] and efficient
means for large-scale quantum information experi-
ments to be performed in the lab, such as black hole
dynamics modeled as a scrambling unitary [12].

Quantum devices can be controlled optimally via
external fields [13–15]. Gates can be designed in
modules (1- and 2-qudit gates), such as in Ref. [16]
for bosonic modes. To be able to use synthesized
gates in the entire space by preserving their fidelity,
one needs to check if the modules play well with
the entire space. We leverage Juqbox.jl to synthe-
size qudit SWAP gates with B-spline parametriza-
tion following the techniques in [17, 18]. SWAP op-
erations provide simple, yet effective demonstrations
for the effects of frequency shifts, which alter the
ideal transitions between energy levels and cause fi-
delity decay.

We outline the rest of the paper. In Section II,
we provide the effective Hamiltonian of the driven
qudit when it interacts with spectator modes each of
which are in Fock states. In Section III, the infidelity
scaling is given analytically and compared with the

numerical result. Finally, in Section IV, we conclude
the paper with discussing future work including ways
to alleviate the fidelity decay.

II. EFFECTIVE HAMILTONIAN AND
FREQUENCY SHIFT IN THE PRESENCE OF

SPECTATOR MODES

We focus here on a cQED system with many oscil-
lators/modes. The system Hamiltonian in the rotat-
ing frame for each oscillator is given by [13, 14, 18]:

𝐻 = − ∑
𝑖

𝜉𝑖
2

(�̂�𝑖�̂�𝑖 − �̂�𝑖) − ∑
𝑗>𝑖

𝜉𝑖𝑗�̂�𝑖�̂�𝑗, (1)

where 𝜉𝑖 is the self-Kerr for each oscillator 𝑖, and
𝜉𝑖𝑗 is the cross-Kerr between oscillators 𝑖 and 𝑗. If
we take the state at time 𝑡 to be a product state
of the form |𝜓⟩ ⊗ ∣∏𝑗 𝑛𝑗⟩, with the state on the tar-
get oscillator |𝜓⟩ and spectator modes in Fock states
{𝑛𝑗}, it is easy to see that the action of the system
Hamiltonian will be

𝐻 |𝜓⟩ ⊗𝑗 ∣𝑛𝑗⟩ = [−𝜉1
2

(�̂�1�̂�1 − �̂�1)

− ∑
𝑗>1

𝜉1𝑗𝑛𝑗�̂�1 + 𝐶] |𝜓⟩ ⊗𝑗 ∣∏
𝑗

𝑛𝑗⟩

(2)

where 𝐶 is a constant formed by the action of 𝐻 on
the spectator modes which we ignore from here on
as it only generates a global phase.
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The above Hamiltonian does not generate any evo-
lution on the spectator modes (because their initial
state is Fock state), and so focusing only on the tar-
get mode and suppressing the subscript 1 for ease
of notation we get the effective Hamiltonian on the
target mode:

𝐻𝑒𝑓𝑓 = − 𝜉
2

(�̂��̂� − �̂�) − ∑
𝑗

𝜉𝑗𝑛𝑗�̂�, (3)

where the first term 𝐻0 ≡ − 𝜉
2 (�̂��̂� − �̂�) is the time-

independent part of the driven qudit Hamiltonian,
𝜀 ≡ ∑𝑗 𝜉𝑗𝑛𝑗 is the perturbation parameter and 𝑉 ≡
−�̂� is the shift operator appearing due to spectators.
In essence, the cross-Kerr between the target mode
and the spectator modes in Fock states produces a
frequency shift on the target mode. We can write in
short:

𝐻𝑒𝑓𝑓 = 𝐻0 + 𝜀𝑉 . (4)

III. SCALING OF THE INFIDELITY

For the quantum control problem of gate synthe-
sis, the target action 𝑈 is known, and we wish to find
a time-dependent drive Hamiltonian 𝐻𝑑(𝑡) such that
the evolution from 𝐻(𝑡) = 𝐻0 + 𝐻𝑑(𝑡) produces the
target unitary. The propagator for the driven qudit
without spectator modes is given by:

𝑈0(𝑡) = 𝒯 exp [− 𝑖
ℏ

∫
𝑡

0
𝑑𝑡′ (𝐻0 + 𝐻𝑑(𝑡′))] , (5)

where 𝐻𝑑 is the drive term synthesizing the target
gate, i.e., 𝑈0(𝑡 = 𝜏) is the target gate 𝑈, and 𝜏 is the
gate time. Using the same drive terms, the effective
propagator of the qudit due to spectator shifts is
given by:

𝑈𝑒𝑓𝑓(𝑡) = 𝒯 exp [− 𝑖
ℏ

∫
𝑡

0
𝑑𝑡′ (𝐻𝑒𝑓𝑓 + 𝐻𝑑(𝑡′))] .(6)

Fidelity between the ideal gate and shifted gate is
defined as:

𝐹(𝑡) ≡ ∣𝑇 𝑟(𝑈𝑟𝑜𝑡(𝑡))
𝑑

∣
2

, (7)

where 𝑈𝑟𝑜𝑡(𝑡) ≡ 𝑈†
0 (𝑡) 𝑈𝑒𝑓𝑓(𝑡) is the propagator in

the rotating frame of the driven qudit, 𝑑 is the norm
of 𝑈0(𝑡).

𝑈𝑟𝑜𝑡 is defined in terms of the perturbation as:

𝑈𝑟𝑜𝑡(𝑡) = 𝒯 exp [− 𝑖
ℏ

∫
𝑡

0
𝑑𝑡′ ̃𝑉 (𝑡′)] , (8)

where ̃𝑉 (𝑡) ≡ 𝑈†
0 (𝑡)𝑉 𝑈0(𝑡). For small perturbation

𝜀, 𝑈𝑟𝑜𝑡 is expanded via Baker–Campbell–Hausdorff
formula as in Ref. [19]:

𝑈𝑟𝑜𝑡(𝑡) ≃ exp [− 𝑖
ℏ

(𝜀 ̄𝑉 𝑡 + 1
2

𝜀2Γ(𝑡) + 𝒪(𝜀3))] ,(9)

where ̄𝑉 is the time average of ̃𝑉 (𝑡):

̄𝑉 = 1
𝜏

∫
𝜏

0

̃𝑉 (𝑡′)𝑑𝑡′, (10)

and Γ(𝑡) is the integral of the time correlation func-
tion:

Γ(𝑡) = 𝑖
ℏ

∫
𝑡

0
𝑑𝑡′ ∫

𝑡

𝑡′

𝑑𝑡″[ ̃𝑉 (𝑡′), ̃𝑉 (𝑡″)]. (11)

𝑈𝑟𝑜𝑡(𝑡) is:

𝑈𝑟𝑜𝑡(𝑡) ≃ 𝕀 + 𝑋 + 𝑋2

2
+ ..., (12)

where 𝑋 ≡ − 𝑖
ℏ (𝜀 ̄𝑉 𝑡 + 1

2 𝜀2Γ(𝑡)). Fidelity at 𝑡 = 𝜏:

𝐹(𝜏) ≃ 1 −
[𝑇 𝑟( ̄𝑉 2) − 𝑇 𝑟2( ̄𝑉 )]𝜏2

ℏ2 𝑑2 𝜀2. (13)

The normalized trace term in the coefficient of 𝜀2 is
known as fidelity susceptibility for time-independent
systems [20, 21]. We leave the detailed examination
of this trace term with time-averaged operators for
future work. We compare this analytical scaling (∼
𝜀2) with numerical results below (𝑐𝑓. Fig. 2).

To design a gate using optimal control techniques,
we optimize pulse control terms ̂𝑎 + ̂𝑎† and ̂𝑎 − ̂𝑎†

acting on the target oscillator (thus, they commute
with the spectator modes). Transitions between the
Fock states |𝑖⟩ and |𝑗⟩ in the oscillator are generated
by control pulses at the transition frequency between
the states, in our case that is 𝜉

2 (𝑖2 − 𝑗2 + 𝑖 − 𝑗). The
spectator modes, however, shift these frequencies by
∑𝑘 𝜉𝑘𝑛𝑘(𝑖 − 𝑗).

To demonstrate the effect of this frequency shift,
we can optimize a set of control pulses to produce
a swap gate between |0⟩ and |𝑗⟩ on a spectator
mode. For concreteness, we use 𝜔/2𝜋 = 4.8GHz and
𝜉/2𝜋 = 0.22GHz, with the self-Kerr of the spectator
modes being modulated as some fraction of 𝜉 and
cross-Kerr parameters equal to 𝛽𝑗𝜉 with parameter
𝛽𝑗 varying for each mode 𝑗. We use these system pa-
rameters so that our gates are directly comparable
to those in Section 7 of Ref. [17]. Other parameters,
such as which SWAPs will be generated (SWAPs
from |0⟩ to |3⟩ , |4⟩ , |5⟩ , |6⟩) and the time for each
gate (140, 215, 265, and 425 ns respectively) are also
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Figure 1: Heatmaps of infidelity (black/purple = 0, ie perfect fidelity, white/yellow = 1) of the |0⟩ |4⟩
transition. Each pixel in each heatmap is a given photon occupation of the spectator modes (from 0 to 50
for oscillator 1 (x-axis) and oscillator 2 (y-axis))) with the title of each subplot denoting the cross-Kerr to

spectator modes in tuples (𝑖, 𝑗), where the cross Kerr to the 1st (2nd) oscillator is set to be 10(𝑖−1)/2𝜉
(10(𝑗−1)/2𝜉). The top-left heatmap Top-left has a frequency shift of size 𝜉 for each photon in neighboring

cavities, while the bottom-right heatmap has a shift of 10−3.5𝜉 per photon in the spectator modes, resulting
in a 3.2% shift in frequency for 50 photons in each spectator mode (100 photons total). You can see for

off-diagonal terms the oscillatory behavior is very different on each axis corresponding to the differing
magnitude of the frequency shifts from cross-Kerr interactions due to spectator mode occupation.

taken from that section, along with the use of a sin-
gle guard level (which implies that a SWAP to state
|𝑘⟩ has 𝑘 + 1 levels actively participating in the gate
and 𝑘 + 2 states simulated in the optimization and
frequency-shifted calculations). Our only difference
is that we restricted our optimization of the control
parameters for the ideal (without spectator modes)
case to 200 iterations. Note that our simulations
were performed for closed systems but noise is not
a bottleneck for this work since pulse durations are
much shorter than typical coherence times for cQED
systems, such as superconducting cavities [3, 6, 7].

A SWAP gate between level |𝑖⟩ and |𝑗⟩ is defined

as:

SWAP|𝑖⟩⟷|𝑗⟩ = 𝕀 + |𝑖⟩⟨𝑗| + |𝑗⟩⟨𝑖| − |𝑖⟩⟨𝑖| − |𝑗⟩⟨𝑗| . (14)

SWAP gates are vital for shifting matrix elements
around and moving quantum states around lattices
of qubits, while partial SWAP operations can gen-
erate entanglement and more complicated superpo-
sitions. Here, our choice of simple SWAPs between
the ground state and various excited states of the
single oscillator is meant as only an example to illus-
trate the effect of spectator mode shift of the target
oscillator’s transition frequencies.

Below, in Fig. 1, we show the fidelity of the im-
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Figure 2: (Above) Infidelity for the labeled SWAP operation arising from a frequency shift 𝜀 = Σ𝑗𝜉𝑗𝑛𝑗
from the presence of 𝑛𝑗 photons in the 𝑗th spectator mode with cross-Kerr strength to the target mode 𝜉𝑗.
We exclude zero occupation as the x-axis value would be 0, but the infidelity for that ideal case is 𝒪(10−4)
to 𝒪(10−3) for each gate, as seen at the smallest 𝜀. The slope for small 𝜀/𝜉 = 𝒪(10−4) is ≈ 2, meaning that
infidelity scales quadratically with 𝜀. The flat region at very small 𝜀 is the region when the perturbation is
negligible, while for larger 𝜀 higher order terms (in part due to saturation near infidelity ≈ 1) take effect.

(Below) Rescaled fidelity curves such that the value at the 𝜀 = 10−4 for each curve is equal, so as to
highlight the similarity of the slope in that region.

plemented gate when we optimize our control pulse
taking into account only the Hamiltonian on the tar-
get mode, ignoring spectator modes, and then ap-
ply those pulses to a system with spectator modes
of various cross-Kerr parameters for various occu-
pations in the spectator modes. Specifically, we plot
2D heatmaps for the infidelity where each axis is the
photon occupation number of the spectator mode (x-
axis being the 1st spectator, y-axis the 2nd specta-
tor) on a grid representing the cross-Kerr parameters
between the target mode and the spectator modes.
The title of each subplot represents the cross-Kerr
of each oscillator, written in tuples (𝑖, 𝑗) where the
cross-Kerr to the 1st (2nd) oscillator has cross-Kerr
= 10(𝑖−1)/2𝜉 (10(𝑗−1)/2𝜉). We see that until the cross-
Kerr is very small (≪ the number of photons in a
given cavity such that the frequency shift is small
relative to the transition frequencies of the target os-
cillator) we get very high infidelities even for just a
few photons in the spectator modes. The infidelities

exhibit an oscillatory behavior which roughly corre-
lates with the relative magnitudes of the cross-Kerr
parameters of the cavities.

We can simplify the heatmap in Fig. 1 by not-
ing there are a large number of symmetries in the
plot. The action on the system Hamiltonian from
the spectator modes is conveyed entirely through the
term 𝜀 ̂𝑉 = −�̂�Σ𝑗𝜉𝑗𝑛𝑗. Instead of plotting the infi-
delity as a function of the populations in adjacent
modes, we instead plot it against the parameter 𝜀
(really, 𝜀/𝜉 as this is the primary dynamically rele-
vant parameter) in Fig. 2 for each of the four SWAP
gates tested. Here we exclude the zero spectator
mode photon occupation case (as 𝜀 = 0 in that case
and thus cannot be placed on a log-log plot). We will
simply note that infidelity is 𝒪(1𝑒 − 4) to 𝒪(10−3)
in the zero-noise case for each sample. We see that
each SWAP gate tested shows the same scaling with
𝜀/𝜉 for 𝜀/𝜉 ≪ 0.001, scaling with a slope of ≈ 2 on
a log-log plot, denoting quadratic scaling in 𝜀, just
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SWAP gate infidelity slope
|0⟩ ⟷ |3⟩ 1.95
|0⟩ ⟷ |4⟩ 1.98
|0⟩ ⟷ |5⟩ 1.94
|0⟩ ⟷ |6⟩ 1.84

Table I: Slope in the region of 𝜀/𝜉 = 10−4 of the
infidelity curves to three significant figures for each

SWAP gate tested, found by taking the slope of
said curve in the region 10−4.05 < 𝜀/𝜉 < 10−3.95.

as predicted in Section III.
To make this even clearer, we also plot a rescal-

ing of these infidelities in Fig. 2, with each curve’s
y-values rescaled such that at a data point for an in-
termediate value of 𝜀 (𝜀 = 10−4) each curve has the
same y-axis value. All the data lines up nearly per-
fectly for more than an order of magnitude from just
over 10−5 to around 10−3.5 and only diverges as 𝜀/𝜉
approaches 0.001. We also provide a table, Table I,
showing the slope of the infidelity curves on the log-
log plot in the region of 10−4, estimated by taking
the slope in the region between 10−4.05 and 10−3.95,
and all of the slopes are near 2, ie are approximately
quadratic.

Thus, we see both from theory and simulation that
the effect of spectator modes on the fidelity of a gate
generated by a control pulse produced without tak-
ing into account spectator modes’ frequency shift on
the target mode is approximately quadratic in the
magnitude of that frequency shift, and rises rapidly
to yield an almost orthogonal gate for shifts on the

order of 10−3 times the qudit nonlinearity.

IV. CONCLUSIONS

We provided a fidelity decay formula and simu-
lated qudit gates in the presence of spectator modes
in order to compare the estimated scaling and nu-
merical results. The fidelity formula, Eq. 13, is in-
dependent of the gate, so we expect to get a similar
scaling for 𝜀 → 0 for gates other than SWAP.

We highlight that these frequency shifts yield ex-
tremely stringent bounds on interaction parameters
and spectator mode occupations. For future direc-
tions, one may try to tackle alleviating the effects
of fidelity decay with several useful approaches from
quantum computing and error correction, such as
dynamical decoupling [19, 22, 23], shortcuts to adia-
baticity and steering [24], risk-neutral approaches in
robust control [18] and bosonic error correction [25].
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