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ABSTRACT
We present an alternative calibration of the MagLim lens sample redshift distributions from
the Dark Energy Survey (DES) first three years of data (Y3). The new calibration is based on
a combination of a Self-Organising Maps based scheme and clustering redshifts to estimate
redshift distributions and inherent uncertainties, which is expected to be more accurate than the
original DES Y3 redshift calibration of the lens sample. We describe in detail the methodology,
we validate it on simulations and discuss the main effects dominating our error budget. The
new calibration is in fair agreement with the fiducial DES Y3 n(z) calibration, with only mild
differences (< 3𝜎) in the means and widths of the distributions. We study the impact of this
new calibration on cosmological constraints, analysing DES Y3 galaxy clustering and galaxy-
galaxy lensing measurements, assuming a ΛCDM cosmology. We obtain Ωm = 0.30 ± 0.04,
𝜎8 = 0.81 ± 0.07 and 𝑆8 = 0.81 ± 0.04, which implies a ∼ 0.4𝜎 shift in the Ω − 𝑆8 plane
compared to the fiducial DES Y3 results, highlighting the importance of the redshift calibration
of the lens sample in multi-probe cosmological analyses.
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1 INTRODUCTION

The Dark Energy Survey (DES, Flaugher et al. 2015) is currently
the largest photometric galaxy survey to date, spanning 5000 deg2

© 2022 The Authors

ar
X

iv
:2

20
9.

05
85

3v
2 

 [a
st

ro
-p

h.
C

O
]  

18
 O

ct
 2

02
3

FERMILAB-PUB-22-536-PPD (accepted) DOI:10.1093/mnras/stad2945



2 Giannini et al.

of the southern hemisphere and having detected hundreds of mil-
lions of galaxies. Together with other ongoing and future galaxy
surveys (e.g., Kilo-Degree Survey KIDS, Kuĳken et al. 2015; Hy-
per Suprime-Cam HSC, Aihara et al. 2018; Vera Rubin Observatory
Legacy Survey of Space and Time (LSST), LSST Science Collab-
oration et al. 2009; Euclid, Laureĳs et al. 2011), DES can achieve
competitive constraints on cosmological parameters by studying
both the spatial distribution of the detected galaxies and by measur-
ing the tiny distortions in their observed shapes due to gravitational
lensing effects induced by the large scale structure of the Universe.
For instance, the analysis of the first three years (Y3) of DES data
(DES Collaboration 2022) placed tight constraints on cosmological
parameters combining three different measurements of the two-
point (3x2pt) correlation functions that involved galaxy positions
and measured galaxy shapes. These measurements are namely:

(i) Cosmic shear, i.e. the 2-point correlation function of galaxy
shapes; the DES Y3 measurements (Amon & Gruen et al. 2022;
Secco & Samuroff et al. 2022) involve the angular correlation of
108 galaxy shapes from the weak lensing sample (Gatti & Sheldon
et al. 2021), divided into four tomographic bins. We refer to this as
the “source” sample.

(ii) Galaxy clustering: the 2-point correlation function of the
positions of bright galaxies (which we refer to as the “lens” sample)
(Rodríguez-Monroy et al. 2022);

(iii) Galaxy-galaxy lensing: the cross-correlation function of
galaxy shapes and the position of the galaxies of the lens sample
(Prat et al. 2022).

The modelling of each of these correlation functions requires
knowledge of the redshift distributions (from hereafter n(z)) of the
two samples (lens and source galaxies), which have to be estimated
with great accuracy in order to avoid biased cosmological results
(Huterer et al. 2006; Cunha et al. 2012; Benjamin et al. 2013;
Huterer et al. 2013; Bonnett et al. 2016; Hildebrandt et al. 2017;
Hoyle et al. 2018; Joudaki et al. 2020; Hildebrandt et al. 2021;
Tessore & Harrison 2020). The optimal solution would be to avail
ourselves of spectroscopic observations, providing an accurate red-
shift measurement of each targeted galaxy. Unfortunately, it is not
feasible to obtain said spectra other than for a small fraction of the
science sample, due to the required time and cost of the observ-
ing campaign. Cosmological surveys like DES therefore have to
use for their redshift estimation measurements only a few, noisy,
broad-band fluxes, requiring inventive methods to create robust and
unbiased redshift calibration pipelines.

For the DES Y3 3x2pt analysis, two different lens samples were
used. The first sample is defined by selecting luminous red galax-
ies through the RedMaGiC algorithm (Rozo et al. 2016), which
retains galaxies with high quality photometric redshift, by fitting
each galaxy to a red-sequence template. The galaxies passing the
RedMaGiC selection have, however, a low number density, and
the final sample comprises roughly 3,000,000 galaxies. The sec-
ond sample slightly compromises on the redshift accuracy to the
benefit of a larger number density. The MagLim sample (Porredon
et al. 2021b) is a magnitude-limited sample with a number density
more than 3 times greater than RedMaGiC, comprising roughly
10,000,000 galaxies. In the fiducial DES 3x2pt (DES Collaboration
2022) and 2x2pt analyses (Porredon et al. 2021a) that rely on the
MagLim sample, the redshift distributions of the sample have been
characterised using the machine learning photometric redshift code
Directional Neighbourhood Fitting (DNF, De Vicente et al. 2016).
In its current implementation, the DNF code provides per-galaxy
redshift estimates using nearest neighbour techniques. The redshift

distributions were then further calibrated using clustering redshift
(hereafter WZ), which relies on cross-correlation measurements
with spectroscopic samples (Cawthon et al. 2022). This calibration
step also placed uncertainties on the redshift distribution estimates,
which were modelled by “shifting” and “stretching” the redshift
distributions.

This work presents an additional and more sophisticated cali-
bration of the redshift distributions of the lens sample, and studies
the impact of these new redshift distribution estimates on the cos-
mological constraints using DES Y3 galaxy clustering and galaxy-
galaxy lensing measurements (2x2pt). In particular, we adopt an
approach similar to the one adopted to characterise the redshift dis-
tributions of the DES Y3 weak lensing (WL) sample, presented
in Myles & Alarcon et al. (2020); Gatti & Giannini et al. (2022).
This methodology also combines photometric and clustering con-
straints to produce redshift estimates, and it is more powerful
than the fiducial redshift calibration adopted for the lenses for a
number of reasons. The photometric information is used to pro-
duce redshift estimates using a self-organizing-map-based scheme
(hereafter SOMPZ), which allows a meticulous control over all the
(known) potential sources of uncertainties affecting the estimates.
The SOMPZ method works by leveraging the DES deep fields,
which have deeper observations with additional photometric bands
and overlap with many-band redshift surveys available. It is pos-
sible to reproduce realistic selection functions in the deep fields
from the injection of galaxies into actual DES images using the
sophisticated image simulation tool Balrog (Everett et al. 2022).
The SOMPZ method provides an ensemble of redshift n(z) for a
given galaxy sample, which captures the uncertainties in the red-
shift distributions at all orders (i.e., not only in the mean or width of
the distributions). The clustering constraints are then incorporated
through a rigorous joint likelihood framework where the clustering
data is forward modelled as a function of the input n(z), and the
specific WZ systematics are marginalized over. This scheme allows
to draw n(z) samples conditioned on both clustering and photomet-
ric measurements, improving the n(z) estimates by correctly taking
into account the significance of the information provided by each
source of information. This combined approach has proven to be
more robust than SOMPZ or WZ applied individually (Gatti & Gi-
annini et al. 2022), as the combination exploits the complementarity
of both methods and reduces the overall n(z) uncertainty.

The paper is organised as follows. In section 2 we introduce
all the samples used in this work, both on data and simulations.
Simulated samples are used to validate the methodology. Section
3 summarises the SOMPZ+WZ methodology adopted in this pa-
per, also outlining the differences with the “standard” SOMPZ+WZ
methodology used to model the DES Y3 source redshift distribu-
tions (Myles et al. 2020; Gatti et al. 2022). Section 4 is devoted to the
characterisation of the method’s uncertainties. Section 5 presents
the redshift distributions MagLim sample produced using the tech-
niques described in this work. Section 6 describes the impact of
this new redshift calibration on cosmological parameters estima-
tion and compares it to the “fiducial” constraints obtained using the
DNF+WZ redshift calibration (Porredon et al. 2021a). In Appendix
A we provide details on the construction of the MagLim sample in
simulations. Appendix B complements the paper with a validation
of the methodology in simulations. In Appendix C are listed the
values of parameters and the prior functions used in the cosmologi-
cal inference; Appendix D discusses the impact of different redshift
uncertainties marginalisation techniques on the cosmological pa-
rameters estimation.

MNRAS 000, 1–27 (2022)
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2 DATA

We describe in this section the data and simulated products used in
this work. The samples used in this work are the following:

• the DES MagLim sample, used as lenses in the DES cosmo-
logical analysis. Characterising its redshift distribution is the main
goal of this work;

• the DES deep field samples, which are observed in small fields
by DES with deeper observations than wide field ones and where
information from additional photometric bands are available. Deep
fields are a key element of the SOMPZ methodology;

• the DES Balrog sample; this sample consists of software-
injected deep field galaxies into DES wide field images and is a key
element of the SOMPZ methodology;

• the “redshift” samples, which are a collection of either spec-
troscopic or multi-band photometric samples collected by other
surveys in the DES deep field region. The redshift samples are a key
element in the SOMPZ methodology;

• BOSS/eBOSS spectroscopic galaxy catalogues; these are
galaxies with spectroscopic redshift overlapping with the DES wide
field footprint used for the WZ measurement;

• the DES WL sample, used as sources in the DES cosmological
analysis; we use the WL sample here when presenting the impact of
MagLim SOMPZ redshift distributions on the cosmological analy-
sis results.

All of these samples in data have also been reproduced in
simulation for testing purposes.

2.1 DES Year 3 Data

DES (Flaugher et al. 2015) is a five broadband (𝑔𝑟𝑖𝑧𝑌 ) photometric
survey that mapped roughly 5000 deg2 of the southern sky, using
a 570 megapixel camera (DECam; Flaugher et al. 2015) mounted
on the 4 meter Blanco telescope at the Cerro Tololo Inter-American
Observatory (CTIO) in Chile. In this work we use data from the
first three years (out of six) of observations (Y3), which were taken
from August 2013 to February 2016. The DES Data Management
(DESDM) team was in charge of processing the raw images (Sevilla
et al. 2011; Morganson et al. 2018; Abbott et al. 2018); full details
are provided in Sevilla-Noarbe et al. (2021) and Gatti & Sheldon
et al. (2021). The main catalog upon all the DES samples are built
is the DES gold catalog, obtained using observations in the griz
bands. Objects belonging to the gold catalog have passed a number
of selections aimed at removing objects in problematic regions of
the sky or anomalous detections (e.g., objects with pixels affected
by saturation or truncation issues). The gold catalog consists of 388
millions objects (Sevilla-Noarbe et al. 2021). Each object comes
with morphological and photometric measurements based on two
different pipelines, the Multi-Object Fitting pipeline (MOF) and
the Single-Object Fitting pipeline (SOF). The former performs a
simultaneous multi-object, multi-epoch, multi-band fit to estimate
morphology and photometric information; the latter does not per-
form the multi-object fit when it comes to crowded objects. The
DES Y3 SOF implementation is faster and less prone to fit failures
compared to the MOF pipeline, and it does not suffer from any
significant loss in terms of accuracy (Sevilla-Noarbe et al. 2021).

2.2 MagLim sample

The main galaxy sample considered in this work is the MagLim
sample. The MagLim sample is a subset of the DES gold catalog

Bin z range N galaxies n density Cflux
1 [0.20, 0.40] 2 236 473 0.150 0.43
2 [0.40, 0.55] 1 599 500 0.107 0.30
3 [0.55, 0.70] 1 627 413 0.109 1.75
4 [0.70, 0.85] 2 175 184 0.146 1.94
5 [0.85, 0.95] 1 583 686 0.106 1.56
6 [0.95, 1.05] 1 494 250 0.100 2.96

Table 1. Summary of the MagLim sample. We have outlined for each tomo-
graphic bin the redshift range (selected using DNF 𝑧𝑚𝑒𝑎𝑛), the number of
galaxies, the number density, and the magnification coefficient as measured
in Elvin-Poole et al. 2021

and consists of bright galaxies selected with an ad-hoc selection that
optimises the number density and the redshift accuracy of the sample
(Porredon et al. 2021b). The MagLim sample spans the full DES
Y3 wide field footprint, for a total of ∼ 4143 deg2. SOF magnitudes
in the 𝑟𝑖𝑧 bands1 are used for the selection and photometry. The
selection is meant to be linear in redshift and magnitude, and reads

𝑖 < 4 ∗ 𝑧mean + 18 𝑖 > 17.5, (1)

where 𝑚𝑖 the i-band SOF magnitude and 𝑧mean is a per-object
redshift estimate from the photo-𝑧 code DNF (De Vicente et al.
2016); see also next subsection). The sample is then further limited
to the redshift range 0.2 < 𝑧mean < 1.05. This leads to a sample that
ranges from 18.8 < 𝑖mag < 22.2 The MagLim sample is divided into
6 tomographic bins using DNF 𝑧mean and considering the following
bin edges: [0.2, 0.4, 0.55, 0.7, 0.85, 0.95, 1.05], with a total of a
10,716,506 galaxies, distributed across bins as summarised in Table
1. The MagLim sample is used as lens sample in the galaxy-galaxy
lensing and galaxy clustering measurements of the DES Y3 2x2
cosmological analysis (Porredon et al. 2021a).

2.2.1 DNF

The photo-𝑧 code DNF (Directional Neighborhood Fitting) is used
to define the MagLim selection and to define the MagLim tomo-
graphic bins. The DNF algorithm computes a point estimate 𝑧mean
of redshift of the galaxies by performing a fit to a hyper-plane in
color and magnitude space using up to 80 nearest neighbors taken
from a reference sample made of spectroscopic galaxies with secure
redshift information. For this purpose, a large number of spectro-
scopic catalogs collected by Gschwend et al. (2018) has been used,
including spectra from SDSS DR4 (Abolfathi et al. 2018), OzDES
(Lidman et al. 2020), VIPERS (Garilli et al. 2014), and from the
PAU spectro-photometric catalog (Eriksen et al. 2019). The total
number of spectra used for training is ∼ 105. DNF also provides
a redshift estimate 𝑧DNF drawn from the redshift PDF for each
individual galaxy, although only the quantity 𝑧mean (used for the
selection and for the binning) is of interest in this work.

2.3 Deep Fields sample

The Deep fields catalog is a key element of the SOMPZ methodol-
ogy. We provide here a few key details, but we refer the reader to
Hartley et al. (2022) for extensive details and the characterisation
of the sample.

This work uses four different deep fields, i.e., E2, X3, C3
and COSMOS (COS) covering 3.32, 3.29, 1.94, and 1.38 square

1 We exclude the 𝑔-band as its photometry is known to be affected by PSF
estimation issues (Jarvis et al. 2021).

MNRAS 000, 1–27 (2022)
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Figure 1. Scheme illustrating the operation of Balrog: the practically noise-
less deep fields galaxies are injected many times in DES real wide field
images; those dichotomous images are then processed through the fiducial
DES detection pipeline, to construct a sample containing several noisy rep-
resentations of the same deep galaxies.

degrees, respectively. Each deep field has undergone a scrupulous
masking procedure aimed at removing artefacts (e.g., cosmic rays,
meteors, saturated pixels, etc.). Considering the final unmasked area
overlapping with the UltraVISTA and VIDEO near-infrared (NIR)
surveys (McCracken et al. 2012; Jarvis et al. 2013), which is needed
to provide photometric information in additional bands, we are left
with 5.2 square degrees of area for a total of 267,229 galaxies with
measured 𝑢, 𝑔, 𝑟, 𝑖, 𝑧, 𝐽,𝐻,𝐾𝑠 photometry with limiting magnitudes
24.64, 25.57, 25.28, 24.66, 24.06, 24.02, 23.69, and 23.58. Note
that deep field galaxies have deeper photometry and photometry
available in more bands compared to the wide field galaxies; this is
key for a good performance of the SOMPZ method as it reduces the
color-redshift degeneracy.

2.4 Balrog sample

The Balrog sample is another key element of the SOMPZ method-
ology. It is used to relate galaxies with given deep photometry to
observed galaxies with wide field photometry, which are noisier. To
this aim we rely on Balrog (Suchyta et al. 2016), a software which
injects “fake” galaxies into real images. For this analysis, Balrog
was used to inject deep field galaxies into the broader wide field
footprint (Everett et al. 2022). After injecting galaxies into images,
the output Balrog images are passed into the DES Y3 photomet-
ric pipeline and injected galaxies are detected equivalently to real
galaxies, yielding multiple realisations of each injected galaxy. The
Balrog sample spans ∼20% of the DES Y3 footprint. We fur-
ther select injected galaxies using the MagLim selection. We then
construct a matched catalog matching Balrog injected wide field
MagLim galaxies with their deep field counterparts, for a total of
351,165 galaxies with both deep and wide photometric information.
The resulting catalog is called the Balrog sample.

2.5 Redshift Samples

The redshift samples used for the SOMPZ section of the analysis
consist of galaxies with secure redshift information (either spectro-
scopic or high quality multi-band photometric) observed in the deep
fields. These samples are key to characterise the redshifts of the deep
field sample and, in turn, to transfer the redshift information to the
wide field MagLim sample.

We consider three separate redshift selections, similarly to what

has been used in source sample redshift characterisation (Myles &
Alarcon et al. 2020):

• a collection of spectra from a number of different public and
private spectroscopic samples, from the spectroscopic compilation
by Gschwend et al. (2018). We have not restricted ourselves to a
few, selected surveys as in the case of the DES Y3 weak lens-
ing sample (Myles & Alarcon et al. 2020), where only zCOSMOS
(Lilly et al. 2009), C3R2 (Masters et al. 2017, 2019), VVDS (Le
Fèvre et al. 2013), and VIPERS (Scodeggio et al. 2018) were con-
sidered, because due the bright nature of the MagLim sample we
would mostly select high signal-to-noise galaxies. Furthermore, us-
ing more spectra from different surveys allow us to simultaneously
reduce the shot noise and improve the completeness of the sample,
while minimising the impact of possible outliers;

• multi-band photo-z galaxies from the COSMOS field; in partic-
ular, we used the COSMOS2015 30-band photometric redshift catalog
(Laigle et al. 2016), which is equipped with narrow, intermediate
and broad bands covering the IR, optical, and UV regions of the
electromagnetic spectrum;

• redshifts from the PAUS+COSMOS 66-band photometric redshift
catalog (Alarcon et al. 2021), which adds 40 narrow band filters from
the PAU Survey.

We match these redshift catalogs to our deep field galaxies and
keep only those that are selected at least once into our MagLim
selection according to their Balrog injections. Due to the bright
nature of the MagLim sample, the number of galaxies in our final
redshift samples is greatly reduced: for the SPC sample, for example,
the unique total number of galaxies passes from 118745 to 17718,
a reduction of around 85%.

In some cases, the same galaxy might have redshift information
from multiple surveys. Following Myles & Alarcon et al. (2020),
we created three slightly different redshift samples, where in case of
multiple information from different surveys we use as fiducial the
redshift from a specific survey. The samples are:

• 1) SPC, where in case of multiple information available we
first use the spectroscopic catalog (S), then PAUS+COSMOS (P), and
finally COSMOS2015 (C);

• 2) PC, where we rank first the PAUS+COSMOS catalog before
COSMOS2015, and we do not include spectroscopic redshifts;

• 3) SC: where we first use the spectroscopic catalog before
COSMOS2015, but we do not include the PAUS+COSMOS catalog.

Table 2 summarises the number of unique galaxies appearing
in each of the three redshift samples, before and after performing
the MagLim sample selection. The fiducial ensemble of redshift
distributions is generated by marginalizing over all three of these
redshift samples (SPC, PC, SC) with equal prior, which in practice
is achieved by simply merging the 𝑛(𝑧) samples produced from the
three redshift samples, creating a three times larger pool of n(z). In
such a way we marginalise over potential uncertainties and biases
in the different redshift catalogs (S, P and C).

2.6 BOSS/eBOSS Galaxy catalogs

The BOSS/eBOSS galaxy catalog is our reference sample for the
WZ measurement. It consists of a number of spectroscopic sam-
ples from the Sloan Digital Sky Survey (SDSS, Gunn et al. 2006;
Eisenstein et al. 2011; Blanton et al. 2017), and combines SDSS
galaxies from BOSS (Baryonic Oscillation Spectroscopic Survey,
Smee et al. 2013; Dawson et al. 2013) and from eBOSS (extended-
Baryon Oscillation Spectroscopic Survey Dawson et al. 2016; Ahu-

MNRAS 000, 1–27 (2022)
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Raw After MagLim selection
SPC SC PC SPC SC PC

Spec-z 35826 35826 - 10429 10429 -
PAU 18780 - 28780 3950 - 7015
COSMOS 64139 82856 69686 3299 7231 3721
Total 118745 118682 98466 17678 17660 10736

Table 2. Number of unique galaxies belonging to each of the three redshift
catalogs (spectroscopic collection, COSMOS, and PAU) for each of the
samples SPC (composed by galaxies from spectra, PAU, COSMOS in this
order), SC (spectra, COSMOS), PC (PAU, COSMOS). The sample selection
for the MagLim sample applied to the corresponding Balrog injections
reduces greatly the size of all samples. For more information, see Section
2.5.

Spectroscopic Samples
Name Redshifts 𝑁gal Area

LOWZ (BOSS) 𝑧 ∈ [0.0, 0.5] 45671 ∼ 860 deg2

CMASS (BOSS) 𝑧 ∈ [0.35, 0.8] 74186 ∼ 860 deg2

LRG (eBOSS) 𝑧 ∈ [0.6, 1.0] 24404 ∼ 700 deg2

ELG (eBOSS) 𝑧 ∈ [0.6, 1.1] 89967 ∼ 620 deg2

QSO (eBOSS) 𝑧 ∈ [0.8, 1.1] 7759 ∼ 700 deg2

Table 3. List of the spectroscopic samples from BOSS/eBOSS overlapping
with the DES Y3 footprint used as reference galaxies for clustering redshifts
in this work.

mada et al. 2020; Alam et al. 2021). In particular, the BOSS sample
includes the LOWZ and CMASS catalogs from the SDSS DR 12
(Reid et al. 2016), while we included the large-scale structure cat-
alogs from emission line galaxies (ELGs Raichoor et al. 2017),
luminous red galaxies (LRGs, Prakash et al. 2016) and quasi stellar
objects (QSOs) (eBOSS in prep.) from eBOSS. Following Gatti
et al. (2022); Cawthon et al. (2022), we stack together the different
samples and use them as a single reference sample. We also cre-
ate a single random catalog by stacking all the random catalogs of
each individual samples. The BOSS/eBOSS sample is divided into
50 bins spanning the 0.1 < 𝑧 < 1.1 range of the catalog (width
Δ𝑧 = 0.02). The number of galaxies for each sample are listed in
Table 3, with the final sample consisting of 241,987 objects and
covering an area ranging from 14 to 17% of the total DES footprint.

We note that estimates of the magnification coefficients are not
available for BOSS/eBOSS galaxies. For our fiducial analysis we
assumed magnification values for the BOSS/eBOSS sample to be
set to zero. We are confident about this choice for the narrow shape
of the MagLim tomographic bins, since the magnification is usually
significant in the tails of the distribution when the clustering kernel
due to selection effects is larger. We nonetheless verify in this work
that our analysis is not very sensitive to the particular choice of the
values of the magnification parameters (see Section 6.1.2).

2.7 Weak Lensing catalog

The DES Y3 WL sample is used in this work as source in the galaxy-
galaxy lensing measurement with the MagLim sample. The WL
sample is created using the metacalibration pipeline (described
and tested in Huff & Mandelbaum 2017 and Sheldon & Huff 2017
and applied to the Y3 data in Gatti & Sheldon et al. 2021) and
it is a subset of the gold catalog. The metacalibration pipeline
provides a per-galaxy self-calibrated shape measurement, which is
free from shear and selection biases. An additional, small calibration
based on image simulations (MacCrann et al. 2022) accounts for

blending and detection biases. The final catalog consists of ∼ 100
million galaxies, spanning the full DES Y3 wide field footprint and
with an effective number density of 𝑛eff = 5.59 gal/arcmin−2. The
WL sample is divided into four tomographic bin using the SOMPZ
method (Myles & Alarcon et al. 2020).

2.8 Simulated Galaxy catalogs

Our methodology is thoroughly validated using simulated catalogs.
In particular, we use one realisation of the sets of the Buzzard N-
body simulations (DeRose et al. 2022). All the catalogs we used in
data have their simulated counterparts, although we adopted some
reasonable simplifications, when needed. We give here a brief sum-
mary of the Buzzard simulation and the simulated catalog we had
to create for this project, i.e., the simulated MagLim sample. The
simulated BOSS/eBOSS catalog description is provided in Gatti &
Giannini et al. (2022), whereas the simulated WL sample is de-
scribed in DeRose et al. (2022).

Buzzard is a synthetic galaxy catalog built starting from
N-body lightcones produced by L-GADGET2 (Springel 2005).
Galaxies are incorporated in the dark matter lightcones using
the ADDGALS algorithm (DeRose et al. 2019). Buzzard spans
10313 square degrees. The cosmological parameters chosen are
Ωm = 0.286, 𝜎8 = 0.82, Ω𝑏 = 0.047, 𝑛𝑠 = 0.96, ℎ = 0.7. The
simulations are created starting from three lightcones with different
resolutions and size (10503, 26003 and 40003 Mpc3ℎ−3 boxes and
14003, 20483 and 20483 particles), to accommodate the need of a
larger box at high redshift. Halos are identified using the public code
ROCKSTAR (Behroozi et al. 2013) and they are populated with
galaxies using ADDGALS (DeRose et al. 2019), which provides
positions, velocities, magnitudes, SEDs and ellipticities. Galaxies
are assigned their properties based on the relation between redshift,
𝑟-band absolute magnitude, and large-scale density from a subhalo
abundance matching model (Conroy et al. 2006; Lehmann et al.
2017) in higher resolution N-body simulations. SEDs are assigned to
galaxies by imposing the matching with the SED-luminosity-density
relationship measured in the SDSS data. SEDs are 𝐾-corrected and
integrated over the DES filter bands to generate DES 𝑔𝑟𝑖𝑧𝑌 magni-
tudes. Ray-tracing is performed through the CALCLENS algorithm
(Becker 2013), to introduce lensing effects, in order to provide
weak-lensing shear, magnification and lensed galaxy positions for
the lightcone outputs. CALCLENS is run onto the sphere, masked
with the DES Y3 footprint, using the HEALPix algorithm (Górski
& Hivon 2011) and is accurate to ∼ 6.4 arcseconds.

2.8.1 Simulated MagLim sample

In order to define a simulated MagLim sample, the photo-𝑧 code
DNF has been run on a subset of the Buzzard simulations, restricted
to i-band magnitudes 𝑖 < 23, so as to reduce the running time
without affecting the final result (note that the MagLim selection
presents a cut at 𝑖 < 22.2). The goal is to attain similar number
density and color distributions as in data. We provide more detailed
information on the adaptation to the sample selection for Buzzard
in Appendix A.

2.8.2 Simulated Deep catalog

The simulated true fluxes from Buzzard are used as the deep mea-
surements, but we further assign a realistic error by using the lim-
iting flux for each mock deep band. We use the same uncertainties
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as in data, but as the Buzzard simulation has a different zero point,
those values have to be converted in magnitude using zero point
of 30, and then is converted to a flux uncertainty for a zero point
of 22.5, which is the zero point of the Buzzard fluxes. We do not
differentiate between fields, as it has been proven in Myles & Alar-
con et al. (2020) that this had no impact on the simulated redshift
distribution. The size of the sample is 968759 galaxies. We use the
true redshift for the redshift sample and to compare our inferred
redshift distributions to the true ones.

2.8.3 Simulated Balrog catalog

We mimic the Balrog algorithm by randomly selecting positions
over the full Y3 footprint and run the corresponding error model
on the galaxies of the simulated deep catalog to obtain noisy ver-
sions, according to the exposure times of each location. The deep
galaxies can be injected an arbitrary number of times and we set
this at 10. Only the wide counterparts of the deep galaxies that re-
spect the MagLim selection defined in the Buzzard simulation are
then included in the sample, yielding the final number of 250193
galaxies.

3 REDSHIFT INFERENCE METHODOLOGY

We describe in this section the methodology adopted in this work to
infer the redshift distributions of the lens sample. The methodology
is similar to the one adopted for the weak lensing sample (Myles &
Alarcon et al. 2020) and relies on two key techniques:

• photometric classification with Self-Organising Maps (SOM),
known as the SOMPZ method (Buchs et al. 2019; Myles et al. 2020).
The SOMPZ method takes advantage of the deeper photometry of 8
bands (ugrizJHKs) available in the DES deep fields, where galaxies
with high-quality redshifts can be accurately classified in the deep
color space, to ensure small selection biases, and well characterised
redshift estimates and uncertainties of DES wide field galaxies;

• clustering-based or clustering redshift techniques (WZ), more
established in cosmology (Newman 2008; Ménard et al. 2013).
The redshift distributions calibration is based on angular correla-
tion with a reference sample with high-quality redshift estimates.
This method is affected by systematic biases different than pho-
tometric methods, which makes this combination interesting and
improves the robustness of our redshift estimates. For example, it
does not require the spectroscopic sample used for calibration to be
representative of the target sample. On the other hand, the galaxy
bias evolution of the galaxy samples is involved, and magnification
effects have to be taken into account.

These two techniques are combined together to provide an estimate
of the redshift distributions of the lens sample. Such a combina-
tion is powerful because it exploits the complementarity of the two
methods, which are affected by two very different sets of biases
and uncertainties. We provide the key ingredients of these two tech-
niques in the following sections, followed by a description of how
the two are combined together.

We note that this method is an alternate method compared to
the one presented in Porredon et al. (2021a); Cawthon et al. (2022),
which provides redshift estimates combining photometric estimates
from the photo-𝑧 code DNF (De Vicente et al. 2016) and clustering
constraints from Cawthon et al. (2022). We delay the comparison
between the two methods to section 5.1.

3.1 SOMPZ Methodology

The SOMPZ methodology estimates wide field redshift distribu-
tions by exploiting a mapping between wide field galaxies and deep
field galaxies with deeper and more precise photometry. Extracting
the redshift information from deep, several band photometry in or-
der to estimate the redshift of an observed wide field galaxy amounts
to marginalizing over deep photometric information (Buchs et al.
2019). Let us consider the probability distribution function for the
redshift of a galaxy 𝑝(𝑧); let us assume such a probability to be
conditioned on observed wide field color-magnitude x̂ and covari-
ance matrix Σ̂. The probability can be written by marginalizing over
deep photometric color x as follows:

𝑝(𝑧 |x̂, �̂�) =
∫

𝑑x 𝑝(𝑧 |x, x̂, �̂�)𝑝(x|x̂, �̂�). (2)

The large dimensionality of this form prevents us from applying it
to real situations. This problem can be circumvented by discretising
the color space x and (x̂, �̂�) in cells 𝑐 and 𝑐, each spanning a portion
of the whole and representing a specific galaxy phenotype, respec-
tively of the deep and wide field. The galaxy samples are arranged
in cells/phenotypes using Self-Organizing Maps (SOM) (Kohonen
1982), which is an unsupervised machine learning technique used
to produce a lower-dimensional representation of a complex data
set, while preserving its core properties. The choice of the topology
of the cells follows Buchs et al. (2019), where a two-dimensional
representation of the color space was chosen as it ensures an im-
mediate visualisation of the data not possible otherwise. Once we
compressed our data in a more manageable set of information, we
can write the 𝑝(𝑧) for the group of galaxies living in a particular
wide cell 𝑐. Since the MagLim tomographic bins �̂� are already de-
fined, we are going to construct one set of SOMs (one deep and
one wide) for each bin. Assigning all galaxies belonging to a tomo-
graphic bin to a wide SOM is straight forward. In order to construct
the deep SOM we have to use our Balrog sample, consisting of
all detected and selected Balrog realisations of the galaxies in the
wide field, each associated to its own “noiseless” replica in the deep
sample. We therefore can assign to the deep SOM associated to a
tomographic bin, galaxies whose Balrog wide replica is selected
in that specific wide bin. Therefore we can marginalize over deep
field phenotypes 𝑐 as:

𝑝(𝑧 |𝑐, �̂�) =
∑︁
𝑐

𝑝(𝑧 |𝑐, 𝑐, �̂�)𝑝(𝑐 |𝑐, �̂�). (3)

At this point we want to marginalise over all wide cells 𝑐 belonging
to each tomographic bin. Again, we are computing 𝑝(𝑧 |�̂�) for each
bin separately from different sets of SOMs:

𝑝(𝑧 |�̂�) ≈
∑︁
�̂�

∑︁
𝑐

𝑝(𝑧 |𝑐, 𝑐, �̂�)𝑝(𝑐 |𝑐, �̂�)𝑝(𝑐, �̂�). (4)

Unfortunately there are very few galaxies for each (𝑐, 𝑐) pair, and
in many cases there are none. This makes the term 𝑝(𝑧 |𝑐, 𝑐) quite
difficult to estimate. However, we can reasonably assume that the
𝑝(𝑧) for galaxies assigned to a given deep cell 𝑐 should not depend
on the noisy wide photometry of that galaxy. Therefore we can relax
the selection:

𝑝(𝑧 |�̂�) ≈
∑︁
�̂�

∑︁
𝑐

𝑝(𝑧 |𝑐, �̂�)𝑝(𝑐 |𝑐, �̂�)𝑝(𝑐, �̂�). (5)

We use this approximation for our fiducial result. We obtain each
of the terms appearing in Eq. 3.1 by placing galaxy samples to the
SOM cells, as follows:

• 𝑝(𝑐) is computed collecting wide field galaxies from the
MagLim sample into a wide field SOM (one per tomographic bin);
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Figure 2. Flowchart illustrating the MagLim redshift distributions calibration scheme. The two methodologies included in the analysis are SOMPZ and
clustering redshifts. Inspired by the flowchart in Myles & Alarcon et al. 2020.

• 𝑝(𝑐 |𝑐) is computed from the deep/Balrog sample. It consists
of all detected and selected Balrog replicas of the deep galaxies in-
jected in the wide field. We therefore can arrange the deep/Balrog
sample simultaneously into a wide and deep SOMs. We call this term
the transfer function. We weight the deep field galaxies according
to their detection rate measured from Balrog. An alternative to
Balrog would be using a sub-section of the wide field and deep
fields overlap, giving us both deep and wide photometry for a lim-
ited number of galaxies. However, the area of overlap is small and
the particular observing conditions found in this area will not be
representative of the overall observing conditions found in the Y3
footprint as highlighted in Myles & Alarcon et al. (2020).

• 𝑝(𝑧 |𝑐) is computed from the redshift sample, which is a subset
of the deep sample, for which we have both credible redshifts, 8-band
deep photometry, and thanks to Balrog also wide-field realisations.

3.1.1 SOM properties

As in Buchs et al. (2019) and Myles & Alarcon et al. (2020), we
use squared-shaped SOMs with 𝑛 cells for each side (for a total of
𝑛 × 𝑛 cells) and periodic boundaries, which makes the visualisa-
tion easier without compromising the efficiency. We parametrize
the SOMs using luptitudes and lupticolors, following Buchs et al.
(2019). Luptitudes are defined in Lupton et al. (1999) as inverse
hyperbolic sine transformation of fluxes:

𝜇 = 𝜇0 − 𝑎 sinh−1 𝑓

2𝑏
𝜇0 = 𝑚0 − 2.5 log 𝑏, (6)

where m are magnitudes, f are fluxes, 𝑎 = 2.5 log 𝑏 and b is a
softening parameter that defines at which scale luptitudes transition
between logarithmic and linear behaviour. For the deep SOM we
compute 7 lupticolors with respect to the i-band

𝜇 = (𝜇1 − 𝜇𝑖 , ..., 𝜇7 − 𝜇𝑖), (7)

where the index from 1-7 runs over the deep bands urgzJHK. We
avoid using the g-band for the wide field galaxies, as any obser-

vational systematics and chromatic effects are more evident in the
g band. With only two lupticolors available in the wide SOM, we
decided to add the i-band luptitude, as Buchs et al. (2019) find
empirically that addition of the luptitude improves the training per-
formance:

𝜇 = (𝜇𝑖 , 𝜇𝑟 − 𝜇𝑖 , 𝜇𝑧 − 𝜇𝑖). (8)

The resolutions of the SOMs are 32x32 cells for the wide, and
12x12 cells for the deep. The reason behind the fewer cells in the
deep SOM lies in the MagLim selection: the bright magnitude-
redshift cuts must be applied also to the wide-component of the
deep and redshift samples, and only the deep galaxies whose wide
component is selected are included in the sample. This results in
smaller deep and redshift samples covering a very small portion of
the color space, compared to the weak lensing source sample Myles
& Alarcon et al. (2020). Also, reducing the number of cells means
yielding more galaxies in each one. This is necessary in order to
minimise the number of wide field galaxies assigned by the transfer
function to a deep SOM cell with no redshift information. Reducing
this number under 1% is crucial to ensure that we get a correctly
estimated redshift distribution for our sample. We note that shot
noise caused by a small number of redshifts in a deep cell can play
a significant role in biasing the estimate. We therefore performed
a test to identify the optimal SOM size which would minimise
these issues. We first computed several estimates in the Buzzard
simulations using different resolutions for the deep SOM. We then
evaluated which setting produced the smallest shift on the mean
redshift with respect to the true value. As mentioned at the beginning
of this section, SOMs require to be trained before being able to
classify galaxies. After ensuring that the redshift samples and the
MagLim sample span the same luptitude-lupticolor space (achieved
using Balrog to obtain the redshift samples wide photometry), we
decided to use the redshift sample for the deep SOM training. We
instead use the MagLim sample itself to train the wide SOM.
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3.2 WZ

Clustering redshift is a widely used method (Newman 2008; Ménard
et al. 2013; Davis et al. 2017; Morrison et al. 2017; Scottez et al.
2018; Johnson et al. 2017; Gatti & Vielzeuf et al. 2018; van den
Busch et al. 2020; Hildebrandt et al. 2021; Cawthon et al. 2022; Gatti
& Giannini et al. 2022) to infer or calibrate redshift distributions of
galaxy samples. It relies on the assumption that the cross-correlation
between two samples of objects is non-zero only in the case of
overlap of the distribution of objects in physical space, due to their
mutual gravitational influence.

Various implementations of the clustering redshift methodol-
ogy differ in their details, but they all agree on one key aspect: the
“target” sample (hereafter dubbed “unknown” sample), which has
to be calibrated, has to be cross-correlated with a “reference” sam-
ple divided into thin redshift bins. The reference sample consists of
either high-quality photometric or spectroscopic redshift galaxies,
and has to spatially overlap with the unknown sample.

Assuming linear galaxy-matter bias, we can express the clus-
tering 𝑤ur between the unknown sample and each of the reference
sample thin bins as function of the separation angle 𝜃 between the
unknown and reference sample:

𝑤ur (𝜃) =
∫

𝑑𝑧′𝑛r (𝑧′)𝑛u (𝑧′)𝑏r (𝑧′)𝑏u (𝑧′)𝑤DM (𝜃, 𝑧′) + 𝑀 (𝜃), (9)

where 𝑛r and 𝑛u are the redshift distributions of the reference and
unknown sample, 𝑏r and 𝑏u are the galaxy-matter biases of both
samples, 𝑤DM is the clustering of dark matter and 𝑀 (𝜃) denotes
contributions due to magnification. Note that we are assuming Lim-
ber approximation (Limber 1953), but this has been shown to have
no impact on the results (McQuinn & White 2013).

In our methodology, we use a single estimated value from the
cross-correlation signal for each thin redshift bin. In practice, we do
this by measuring the correlation function as a function of angular
separation and then averaging it with a weight function to produce
the single estimate:

�̄�ur =

∫ 𝜃max

𝜃min

𝑑𝜃 𝑊 (𝜃)𝑤ur (𝜃), (10)

where𝑊 (𝜃) ∝ 𝜃−1 is a weighting function (Gatti & Giannini et al.
2022). The integration limits in the integral in Eq. 10 are set to fixed
physical scales (1.5 to 5 Mpc).

Since the 𝑛r are binned in narrow bins we can approximate the
number density of the sample of reference as a Dirac delta, and the
revised expression becomes:

�̄�ur ≈ 𝑛u𝑏r𝑏u�̄�𝐷𝑀 + �̄�. (11)

The above equation relates the redshift distribution of the unknown
sample to the measured clustering signal �̄�ur. The galaxy-matter
biases of the reference can be estimated from the autocorrelation of
the reference sample. Usually the galaxy-matter bias of the unknown
sample cannot be inferred and is treated as nuisance parameter. In
this work, however, due to the relatively good redshift provided by
DNF for the MagLim sample, we also use the autocorrelation of
the latter as a prior for 𝑏u (see section 4.2). The other terms in the
above equation are the clustering of dark matter �̄�DM, which can be
estimated from theory and it is not very sensitive to the cosmological
parameters (Gatti & Giannini et al. 2022), and the magnification
term, which is expected to have a little impact (Gatti & Giannini
et al. 2022) and can be estimated if magnification coefficients for
the samples are provided.

The angular scales considered have been chosen to span the

physical interval between 1.5 and 5.0 Mpc. These bounds, applied to
data as well as simulations, are selected so that the upper bound is be-
low the range used for the galaxy clustering cosmological analyses,
therefore granting the WZ likelihoods to be essentially independent
of the assumed cosmology, and allowing us to produce n(z) sam-
ples in an MCMC chain that runs independently of the cosmological
ones. We perform the cross-correlations of MagLim with each of
the 50 bins of width Δ𝑧 = 0.02 of the BOSS/eBOSS catalog, which
spans 0.1 < z < 1.1 as previously mentioned. We also weigh each
galaxy of the MagLim sample by the clustering weights computed
in Rodríguez-Monroy et al. (2022).

We use the Davis & Peebles (1983) estimator for the cross-
correlation signal,

𝑤ur (𝜃) =
𝑁Rr
𝑁Dr

𝐷u𝐷r (𝜃)
𝐷u𝑅r (𝜃)

− 1, (12)

where 𝐷u𝐷r (𝜃) and 𝐷u𝑅r (𝜃) represent data–data and data–random
pairs. The pairs are normalized through 𝑁Dr and 𝑁Rr, which is the
total number of galaxies in the reference sample and in the reference
random catalog. The correlation estimates were computed using
treecorr2.

4 CHARACTERIZATION OF SOURCES OF
UNCERTAINTY

In this section, we present the characterisation of the systematic
uncertainties of our methodology. The dominant sources of uncer-
tainties for the SOMPZ method are sample variance and shot noise.
In the clustering redshift method, the main uncertainty is caused by
the lack of prior knowledge on the redshift evolution of the galaxy-
matter bias of the MagLim sample. This is modelled by a flexible
systematic function, informed by a measurement of the MagLim
auto-correlation function in data. Other, minor sources of uncer-
tainties are related to magnification effects and the approximation
of linear bias (Gatti & Giannini et al. 2022). We provide further de-
tails on each source of uncertainty in the following subsections. A
full catalog-to-cosmology validation of the method (in simulations)
is then presented in Appendix B.

4.1 SOMPZ uncertainties

For the SOMPZ method we consider the following sources of un-
certainty:

• sample variance of the deep fields: main uncertainty, caused
by the limited area of the deep fields. We model the effect of sample
variance by means of the three step Dirichlet (3sDir) analytical
model described in §4.1.1;

• shot noise in the deep and redshift samples: this is induced by
the limited number of galaxies available in the deep and redshift
samples. We model the effect of shot noise by means of the 3sDir
analytical model described in §4.1.1;

• SOMPZ method uncertainty: this uncertainty stems from dis-
cretising the color space in the SOMPZ mapping. We do estimate its
impact on the SOMPZ estimates by replicating the SOMPZ methods
multiple times in simulations, and incorporate its effects by using
Probability Integral Transforms (PITs) (§ 4.1.2);

2 https://github.com/rmjarvis/TreeCorr
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• photometric calibration: related to uncertainties in the calibra-
tion of the deep fields zeropoint, it is accounted for in the SOMPZ
estimates by means of PITs (§ 4.1.3).

• redshift sample biases: these biases stem from uncertainties
and biases in the redshift estimates of the redshift samples. Their
impact is accounted for in our methodology by marginalising over
three different combinations of redshift samples (§ 4.1.4);

• transfer function: any bias induced by an erroneous estimation
of the transfer function due to a size-limited Balrog sample; we
anticipate this to be negligible following the results from Myles &
Alarcon et al. (2020) (§ 4.1.5).

In the following sections we will proceed to describe in detail
how we account for each of the items listed above.

4.1.1 Sample variance and shot noise (3sDir)

Sample variance is the dominant uncertainty affecting our SOMPZ
estimates, and stems from the limited size and area coverage of the
redshift and deep samples, with respect to the whole wide field. The
deep fields only cover ∼ 9deg2, which means we could be learning
the color/redshift relation from a non-representative sample of the
sky due to fluctuations in the matter density field; moreover, the
finite size of the redshift sample can introduce shot noise effects,
preventing a correct sampling of the quantities required for the
redshift inference.

Generally the impact of sample variance can be evaluated esti-
mating the redshift distributions in simulations multiple times using
different line of sights for the deep fields (e.g. Hildebrandt et al.
2017, Hildebrandt et al. 2021; Hoyle et al. 2018; Buchs et al. 2019;
Wright et al. 2020). Although we also performed a test where we
evaluated the impact of sample variance using the Buzzard sim-
ulation, in our standard procedure we use the three step Dirichlet
(3sDir) approach 3sDir presented in Sánchez et al. (2020) and ap-
plied to the redshift calibration of the DES Year 3 source sample
(Myles & Alarcon et al. 2020).

The 3sDir method consists of an analytical sample variance
model predicting what the redshift-color distribution would be from
the observed individual redshift and galaxy phenotypes (colors) of
galaxies coming from smaller deep fields. Using this model we can
build an ensemble of redshift distributions realisations whose fluc-
tuations realistically represent the effect of sample variance. During
the cosmological inference, by sampling over these realisations, one
can effectively marginalise over the effect of sample variance. Here
we provide a short description of the 3sDir method, but we direct
the reader to Myles & Alarcon et al. (2020) and Sánchez et al.
(2020) for more details. The 3sDir method assumes the probability
𝑝(𝑧, 𝑐) that galaxies belong to a redshift bin 𝑧 and color phenotype
𝑐 to be described by a probability histogram with coefficients 𝑓𝑧𝑐
(with

∑
𝑓𝑧𝑐 = 1 and 0 ≤ 𝑓𝑧𝑐 ≤ 1). Under this assumption, the

expected number counts of galaxies in a deep SOM cell given the
coefficients 𝑓𝑧𝑐 are described by a multinomial distribution; if we
assume a Dirichlet function for the prior on 𝑓𝑧𝑐 , the posterior of
𝑓𝑧𝑐 given the observed number count will also be described by a
Dirichlet function. Such a Dirichlet posterior can be used to draw
samples and naturally accounts for the effect of shot noise in the
data. The effect of sample variance can be introduced by tuning the
width of the prior on 𝑓𝑧𝑐 , which does not change the expected value
for 𝑓𝑧𝑐 in the Dirichlet distribution, but does change its variance to
simultaneously account for shot noise and sample variance.

If all the galaxies belonging to the redshift sample were inde-
pendently drawn, then a Dirichlet distribution parametrized by the

redshift sample counts in each couple of redshift bin 𝑧 and pheno-
type 𝑐, 𝑁𝑧𝑐 , would fully characterize 𝑓𝑧𝑐 . However, one subtlety
is that sample variance correlates with redshifts; to increase the
variance with the correct redshift dependence one can use the fact
that two different phenotypes (deep SOM cells) overlapping in red-
shift are correlated due to the same underlying large-scale structure
fluctuations. The 3sDir model assumes that phenotypes at the same
redshift share the same sample variance, and therefore groups cells
with similar redshifts in superphenotypes T. One can then express
the 𝑓𝑧𝑐 as:

𝑓𝑧𝑐 =
∑︁

𝑓 𝑧𝑇𝑐 𝑓 𝑇𝑧 𝑓𝑇 . (13)

The 3sDir method consists of drawing values of these three sets of
coefficients with three Dirichlet functions. In this way, it is possi-
ble to include a redshift-dependent variance while conserving the
expected value of 𝑓𝑧𝑐 .

The validation of the 3sDir method has been carried out in
Myles & Alarcon et al. (2020), applied to the weak lensing source
sample. The only difference with this work stands in the fact we
are performing the 3sDir estimation independently for each tomo-
graphic bin, due to their definition.

As reported in Table 4, this uncertainty is dominant, both on
the mean and width values of the n(z) distributions, computed from
the ensemble of realisations provided by the 3sDir method.

4.1.2 SOMPZ Method Uncertainty

The SOMPZ method relies on the discretisation on the color space
spanned by our deep field sample, and this is an approximation
that can lead to small biases or additional uncertainties. In order to
estimate these, we compute our SOMPZ n(z) a large number of times
in the Buzzard simulations. In order to factor out sample variance,
each time we randomly select patches of the Buzzard footprint to
construct the mock deep fields. In this way, by averaging over all
the final n(z) realisations, we can produce an estimate of the n(z)
only minimally biased by sample variance, and test the agreement
with the true n(z) . Due to the computational cost of the SOMPZ
pipeline, we decided to produce 300 n(z) replicas. To perform this
test, we assumed that the redshift sample would only be limited to
one of our four fields, of the size of COSMOS.

We computed the mean redshift offset of the ensemble with
respect to the true value, for each tomographic bin. As reported in
Table 4, these values are smaller than the effect of sample variance.
These values are incorporated into our final n(z) ensemble using
the PIT method described in the following section, by additionally
shifting each probability integral transform (used to correct for the
zeropoint uncertainties) by a value drawn from a Gaussian centered
at zero with standard deviation equal to the root-mean-square of the
aforementioned mean offset values.

4.1.3 Deep Fields Photometric Calibration Uncertainty

Although the uncertainty in the photometry of each individual
galaxy is implicitly accounted for in the SOM training, the uncer-
tainty on the photometric calibrations as a whole must be evaluated
by testing how the measured 𝑛(𝑧) are affected by changes in the
photometric zeropoint in each band. This is relevant for the deep
fields, where the relatively precise fluxes are key to constraining
reliable 𝑝(𝑧) in parts of parameter space that are not subject to
selection biases. Ideally, this would be tested by rerunning the full
analysis for an ensemble of perturbations of the photometric zero-
point according to the zeropoint uncertainty, but the computational
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Mean
Uncertainty Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6

z ∈ [0.2, 0.4] z ∈ [0.4, 0.55] z ∈ [0.55, 0.7] z ∈ [0.7, 0.85] z ∈ [0.85, 0.95] z ∈ [0.95, 1.05]
Sample Variance & shot noise 0.015 0.010 0.010 0.008 0.009 0.009
SOMPZ method 0.004 0.003 0.005 0.001 0.007 0.005
Redshift samples 0.009 0.001 0.006 0.003 0.004 0.007
Zeropoint 0.008 0.007 0.004 0.005 0.005 0.005
SOMPZ 0.315 ± 0.015 0.445 ± 0.010 0.630 ± 0.010 0.776 ± 0.008 0.895 ± 0.009 0.983 ± 0.012
SOMPZ+WZ 0.316 ± 0.014 0.456 ± 0.008 0.632 ± 0.008 0.780 ± 0.007 0.893 ± 0.008 0.985 ± 0.010
SOMPZ (with all unc) 0.317 ± 0.020 0.447 ± 0.012 0.634 ± 0.013 0.778 ± 0.010 0.897 ± 0.011 0.988 ± 0.013
SOMPZ+WZ (with all unc) 0.315 ± 0.016 0.463 ± 0.010 0.633 ± 0.009 0.781 ± 0.008 0.893 ± 0.009 0.990 ± 0.012

Width
Sample variance & shot noise 0.007 0.005 0.003 0.003 0.004 0.009
SOMPZ method 0.003 0.003 0.0007 0.0003 0.002 0.0001
Redshift samples 0.001 0.005 0.0007 0.0006 0.0003 0.001
Zeropoint 0.003 0.004 0.001 0.0004 0.001 0.001
SOMPZ 0.077 ± 0.007 0.093 ± 0.007 0.065 ± 0.004 0.081 ± 0.004 0.071 ± 0.004 0.096 ± 0.009
SOMPZ + WZ 0.080 ± 0.004 0.089 ± 0.004 0.060 ± 0.002 0.077 ± 0.003 0.074 ± 0.004 0.105 ± 0.006
SOMPZ (with all unc) 0.081 ± 0.008 0.096 ± 0.007 0.067 ± 0.005 0.081 ± 0.004 0.073 ± 0.005 0.098 ± 0.009
SOMPZ + WZ (with all unc) 0.080 ± 0.005 0.081 ± 0.005 0.060 ± 0.002 0.073 ± 0.003 0.074 ± 0.004 0.101 ± 0.007

Table 4. Summary of values for systematic uncertainties and center values for mean (top panel) and width (bottom panel) for the n(z) distributions. The various
components are computed as described in section 4 and as they are not completely independent it is not expected that they sum up to the total value. The values
related to SOMPZ and SOMPZ+WZ refer to Figure 5, and include only the 3sDir uncertainty due to sample variance and shot noise (and the redshift samples
uncertainty), because it was logistically not possible to add the SOMPZ method and the zeropoint sources of uncertainty before the combination with WZ. As
a comparison, the “SOMPZ (with all unc)” includes all uncertainties. The final n(z) which has been used in the cosmological analysis is the bottom line.

requirements of the Balrog injection procedure make this infeasi-
ble. Instead, we produce an analogous ensemble of realizations in
simulations, where the Balrog mock photometric survey is reduced
to a computationally simpler procedure of adding Gaussian noise to
true magnitudes. For each realization of this ensemble, we perturb
all deep field magnitudes by a draw from a Gaussian whose width
is determined by the photometric zeropoint uncertainty in the Y3
deep fields catalog in a specified band, as computed in Hartley et al.
(2022). We then “inject” these perturbed deep field fluxes with a
mock Balrog procedure to generate wide field realizations of the
galaxies and measure the corresponding 𝑛(𝑧). In this way we gen-
erate a full ensemble of 𝑛(𝑧) realisations reflecting the uncertainty
in our redshift calibration due to the photometric calibration. We
apply Probability Integral Transforms (PITs) as in Myles & Alarcon
et al. (2020) to transfer the variation encoded in the ensemble from
simulated 𝑛(𝑧) to our fiducial data result. Essentially, this process
involves calculating the inverse cumulative distribution function
(CDF) for each simulated realization 𝑛𝑖 (𝑧) in the ensemble. The
PIT is then obtained by computing the difference between the CDF
of each realization and the average CDF of the entire ensemble. To
apply these transformations to the data, the PIT value is added to the
inverse CDF of the fiducial data 𝑛(𝑧). The PIT resulting from a sin-
gle draw of zero-point offsets is determined and collectively applied
to all tomographic bins. More details on this new implementation
of the PIT can be found in Myles et al. (2023).

4.1.4 Redshift Sample uncertainty

As mentioned in Section 2.5, we decided to choose three different
catalogs to infer our redshift distributions from: a collection of spec-
troscopic surveys galaxies (Gschwend et al. 2018), PAU+COSMOS
redshift as in Alarcon et al. (2021), and COSMOS30 photometric
redshifts (Laigle et al. 2016). The reason for availing ourselves of
more than one catalog lies in the fact neither of these are exempt
from systematic uncertainties: each survey uses different photome-

try, different model assumptions, and can be affected systematically
by selection effects, incorrect templates, photometric outliers, etc.
Since there is a considerable overlap in the number of galaxies be-
longing to more than one of the redshift catalogs selected for this
work, to account for the intrinsic biases we decided to build three
samples which are combinations of the aforementioned catalogs.
We ranked the redshift catalogs differently for each sample: if a
galaxy has information from multiple origins, we assign the red-
shift from the highest ranked catalog. The three redshift samples
SPC, PC, SC, are described in Section 2.5.

For each of these, we will perform the complete pipeline, and
the final set of realisation will be constructed by an equal fraction
𝑝(𝑅) = 1/3 from each survey. By placing equal prior probability
to each sample, this is equivalent as saying that we do not believe
any of the samples is more likely to be correct. But note that for
galaxies from which we have information from only one catalog,
we are assuming that information to be true, and this is a caveat of
this approach.

4.1.5 Transfer function uncertainty

One of the key points in this redshift calibration is the transfer func-
tion 𝑝(𝑐 |𝑐), the intermediate step necessary to assign redshifts from
deep field galaxies to the whole wide field. If the transfer function
is inaccurate, regardless of how a precise the color/redshift charac-
terisation is in the deep SOM, it can bias the final n(z) distributions.
𝑝(𝑐 |𝑐) depends on the observation conditions in that location, de-
termining if the galaxy is detected or not. Observing conditions
vary across the wide field, but for our analysis we are interested
in redshift distributions estimated across all the footprint. Balrog
injects the same deep galaxies in random wide tiles, and despite
these covering only around ∼ 20% of the DES footprint, in Myles
& Alarcon et al. (2020) was verified that Balrog is adequately sam-
pling the observing conditions in the wide field. They boostrapped
the sample by the injected position and recomputed 1000 different
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Figure 3. Uncertainty on the mean redshift represented by the number counts
of the three redshift samples: SPC (prioritizes spectra, than PAU photo-z,
then COSMOS30), PC (prioritizes PAU photo-z, then COSMOS30) and SC
(prioritizes spectra, then COSMOS30). In red the total uncertainty given by
their combination.

transfer functions. They concluded that the dispersion in the final
n(z) mean redshift from repeating the analysis using each time a
different transfer function was completely negligible. Here we re-
peated that test, since our deep field sample has less galaxies and
might impact differently the transfer function.We found that this is
also negligible for our case, with variations on the n(z) mean < 10−3

in each tomographic bin, and therefore decided not to propagate this
in the final n(z) estimate.

4.2 WZ Uncertainties

The WZ systematic uncertainties have been identified and charac-
terised in detail for the WL sample in Gatti & Giannini et al. (2022).
Namely, the systematic budget was found to be dominated by our
lack of prior knowledge of the redshift evolution of the galaxy-matter
bias of the unknown sample. This is also expected to be the case
for the MagLim sample, although the amplitude of the effect might
differ from the WL sample (ideally, since the MagLim redshift dis-
tributions are narrower, we might expect a smaller impact due to
systematics slowly varying with redshift like the galaxy-matter bias
of the unknown sample).

Similarly to Gatti & Giannini et al. (2022), we model our
systematics by means of a flexible function, Sys(s), which mostly
captures the redshift evolution of the galaxy-matter of the unknown
sample. The Sys(s) function is parameterized by s = {𝑠1, 𝑠2, . . .}
that we will marginalize over and is given by:

log[Sys (𝑧, s)] =
𝑀∑︁
𝑘=0

√
2𝑘 + 1
0.85

𝑠𝑘𝑃𝑘 (𝑢), (14)

𝑢 ≡ 0.85
𝑧 − 0.5(𝑧max + 𝑧min)
(𝑧max − 𝑧min)/2

, (15)

with 𝑃𝑘 (𝑧𝑖) being the 𝑘-th Legendre polynomial and 𝑀 = 6 is

the maximum order. In this work, we set the prior 𝑝(s) to be
a simple diagonal normal distribution, with the standard devia-
tions {𝜎𝑠0, . . . , 𝜎𝑠𝑀 } and means informed by the measured auto-
correlation of the MagLim sample.

In Gatti & Giannini et al. (2022), such a systematic function
was let to vary by the typical amplitude of the redshift evolution of
the galaxy-matter bias of the WL sample we measured in simula-
tions. In practice, this was achieved by imposing a Gaussian prior
with zero mean 𝑝(s) on the coefficients s of the systematic function.

In the case of the MagLim sample, we can use a more infor-
mative prior 𝑝(s) that uses the information we have from the data
about the galaxy-matter bias evolution of the sample. In particular,
we rely on the fact that the MagLim sample has good per-galaxy
redshift estimates, which allows us to divide the sample in relatively
small bins and measure the auto-correlation of such bins. This was
not possible for WL sample, due to the poor per-galaxy redshift
accuracy.

To this aim, we use DNF 1-point estimates 𝑧mean to further
divide the MagLim sample in bins of width of Δ𝑧 = 0.02, and
we measure the auto-correlation of each bin. We note that the true
width of each bin will be much larger than Δ𝑧 = 0.02, as the
DNF photo-𝑧 are uncertain. Under the approximation of negligible
redshift evolution of the galaxy-matter bias of the MagLim sample
over each thin bin, the measured autocorrelaton can be related to the
galaxy-matter bias by knowing how broad the true 𝑛(𝑧) distribution
of each bin is (Gatti et al. 2018; Cawthon et al. 2022):

𝑤uu (𝑧𝑖) = 𝑏2
u (𝑧𝑖)𝑤DM (𝑧𝑖)

∫
𝑑𝑧′𝑛2

u,i (𝑧
′), (16)

where 𝑛u,i (𝑧′) is indeed the true distribution of the thin bin MagLim
sample. Such a quantity is estimated using the PDF estimate from
DNF 𝑧PDF.

From this measurement performed in data we can then retrieve
the galaxy bias 𝑏u (𝑧) by inverting Eq. 16. We fit the Sys(s) function
presented in Eq. 14 to the measured 𝑏u (𝑧) and obtain best-fit s
values, which we show in Figure 4. These best-fit coefficients are
then used as the mean value of the Gaussian prior 𝑝(s). The best
fitting Sys(s) function to the data is shown in the right panel of Fig.
4.

To estimate the width of the prior p(s) we took a different
approach. First, we estimate the bias evolution in simulations by
dividing galaxies into thin redshift bins using: (i) the true red-
shifts from the simulation; and (ii) the photo-z estimated from the
DNF code. When dividing the galaxies with the photo-z from DNF,
we further correct the measured auto-correlation using Equation
16. These measurements are shown in the left panel of Figure 4.
The discrepancy between the measured bias evolution from photo-z
(equivalent to the application with real data) relative to the mea-
sured bias evolution with true redshifts (equivalent to the truth) is a
systematic bias. We use the sum in quadrature of this difference with
the statistical uncertainty of the bias measurement as the prior width
of 𝑠0. For the higher order parameters we estimate the standard de-
viation of the prior by summing in quadrature the ratio between the
two biases and the statistical uncertainty from the bias measurement
in data. This allows to best capture the RMS variations of the bias
function itself. As can be seen in Figure 4, the 68% confidence
interval spanned by the Sys(s) function both brackets the ideal and
real world measurements. The values for the mean and width of the
prior are displayed in Table 5. Both the width of the prior on the
0-th and higher order coefficients are much tighter than in Myles &
Alarcon et al. (2020), where 𝑠0 = 0.6 and 𝑠1..4 = 0.15. As already
explained, the difference lies in the initial accuracy of the photo-z
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Figure 4. Left panel: galaxy-matter bias of Bin 1 or the MagLim sample (0.2 < z < 0.4) as estimated in simulation following the methodology outlined in
Section 4.2. The green points are obtained by dividing the sample into thin bins using the true redshifts, while the orange ones are obtained by binning the
sample using the DNF redshift estimates. The grey band encompasses the 68% confidence interval of the Sys(s) function. Right panel: galaxy-matter bias of
Bin 1 of the MagLim sample (0.2 < z < 0.4) as measured from the data (orange points); the blue line shows the best-fitting Sys(s) function, and the grey band
encompasses its 68% confidence interval.

Mean
Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6

< 𝑠0 > -0.028 -0.085 -0.319 -2.630 -0.119 -2.249
< 𝑠1 > 0.186 0.559 0.007 1.161 -1.660 0.819
< 𝑠2 > 0.046 0.139 -0.120 0.202 0.134 0.033
< 𝑠3 > 0.035 0.105 -0.130 0.314 0.293 0.174
< 𝑠4 > 0.037 0.111 -0.112 -0.197 0.211 0.279
< 𝑠5 > -0.062 -0.189 -0.203 -0.210 1.408 0.569

Width
Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6

𝜎𝑠0 0.107 0.216 0.123 0.072 0.067 0.198
𝜎𝑠1..5 0.029 0.053 0.041 0.052 0.081 0.044

Table 5. Means and widths of the Gaussian prior function 𝑝 (s) appearing
in Eq. 18.

estimates, that enables the measurement of the auto-correlation of
the galaxy sample in thin redshift bins. For the weak lensing source
sample such information was not available, and therefore a more
conservative prior was deemed appropriate. In the MagLim sample
case instead, the greater accuracy on its photo-z allows to extract
more information from the auto-correlation.

Last, we mention that an additional source of uncertainties for
the WZ measurement is related to the impact of magnification. We
do model magnification effects, but the accuracy of that model is
limited by our knowledge of the magnification coefficients for the
two samples. In particular, we do not have any prior knowledge of
such a coefficients for the BOSS/eBOSS sample. Those coefficients
are set to 0 for our fiducial analysis (on the contrary, estimates for
the magnification coefficient of the MagLim sample are available).
We expect magnification to have a small impact, based on tests per-
formed in Gatti & Giannini et al. (2022), but we nonetheless test in
the following section the impact of having a non null magnification
coefficient for the BOSS/eBOSS sample.

4.3 Combination of SOMPZ and WZ

In order to combine SOMPZ and WZ constraints, we follow Gatti &
Giannini et al. (2022) and write the clustering likelihood by forward
modelling the full clustering signal as a function of the SOMPZ
redshift distributions estimates 𝑛(𝑧)pz. Moreover, we include the

systematic function Sys(s) introduced in the previous section, which
describes the uncertainties on the WZ measurement, mostly driven
by the lack of knowledge of 𝑏u and its redshift dependence:

�̂�ur (𝑧𝑖) = 𝑛(𝑧)pz (𝑧𝑖)𝑏r (𝑧𝑖)𝑤DM (𝑧𝑖) × 𝑆𝑦𝑠(𝑧𝑖 , s)+
𝑀 (𝛼u, 𝛼r, 𝑏u, 𝑛(𝑧)pz). (17)

In the above equation, the quantities 𝛼u (𝑧𝑖) and 𝛼r (𝑧𝑖) are the mag-
nification coefficients for the unknown and reference samples. See
Gatti & Giannini et al. 2022 for full description of the magnification
term 𝑀 . The clustering of dark matter 𝑤DM (𝑧𝑖) is estimated from
theory assuming fixed cosmology. We tested that varying cosmol-
ogy has a negligible impact on our methodology.

The likelihood of the WZ data conditioned on the target n(z)
and all the systematic parameters reads as:

L [WZ|𝑛u (𝑧), 𝑏r (𝑧), 𝛼r (𝑧), 𝑤DM (𝑧)] ∝∫
𝑑s 𝑑p exp

[
−1

2
(𝑤ur − �̂�ur)𝑇Σ−1

𝑤 (𝑤ur − �̂�ur)
]
𝑝(s)𝑝(p),

(18)

were Σ𝑤 is the clustering covariance, estimated through jackknife,
and p = 𝑏u, 𝛼u. We implemented a Hamiltonian Monte Carlo sam-
pler (HMC) that simultaneously samples the SOMPZ and WZ like-
lihood. The HMC does directly take as input the SOMs output of
the sample variance estimation (described in 4.1.1), and it perturbs
selectively the number counts in the SOMs in such a way to pro-
duce realisations that are already more likely to match the clustering
redshift data.

5 RESULTS IN DATA

In this section, we present the final redshift distributions for
the MagLim sample as obtained in data. We also compare the
SOMPZ+WZ redshift distributions with the fiducial DNF+WZ es-
timates used for the same sample and adopted in the cosmological
analysis presented in Porredon et al. (2021a). A complete validation
of the method in simulations is presented in Appendix B.

We first compare in Figure 5 the redshift estimates obtained
using the 3sDir method and the estimates obtained including the
WZ information as described in section 4. Due to logistics, the
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Figure 5. 3sDir distributions before (lighter shades) and after the com-
bination with clustering-z (solid shades), and after the combination with
clustering-z but using a broader prior on the parameters of the galaxy-
matter bias function Sys(s)(the same values of the width of the prior 𝑝 (s)
that were used in Gatti et al. 2022). In the top row we have bins 1 and 4, in
the middle row bins 2 and 5, and in the bottom rows bin 3 and 6. The bands
represent the 1𝜎 error from the central value. Note how the combination
with WZ tightens the constraint on the shape of the n(z).

combination of the two methods was performed before incorporat-
ing the SOMPZ and zeropoint errors. As here we are just displaying
the effect of the combination, we are showing only how the 3sDir
uncertainty from sample variance and shot noise (from the three
redshift samples) varies once we add the information from WZ.
The combination of the two methods result in stronger constraints
on the shape of the n(z), thanks to the complementarity in the in-
formation provided by each SOMPZ and WZ. Particularly, the WZ
signal strongly correlates across adjacent bins, excluding large por-
tions of possible n(z) shapes allowed by the SOMPZ likelihood
alone, which are affected by sample variance fluctuations from the
small calibration fields, and resulting in a smoother distribution.
The improvement on the uncertainty on the mean is more modest,
but not null, as reported in Table 4. Usually, WZ data provides
limited information on the mean redshift, especially compared to
SOMPZ, as the systematic uncertainty on the galaxy bias evolution
of the target sample is large and directly degenerate with the mean
redshift, as is the case in Gatti & Giannini et al. (2022). However,
in this work we have included a tighter prior on the Sys(s) function
describing the galaxy bias evolution uncertainty by measuring it
directly from the MagLim auto-correlation function. The addition
of the WZ information has a modest impact on the values of the
mean and width of the redshift distributions, at most at the 1𝜎 level
(see Table 4); this is somewhat expected, as the WZ and SOMPZ
information are independent, but consistent with each other.

5.1 Comparison with DNF

We find it interesting to compare the final SOMPZ+WZ redshift
distributions with the fiducial ones used for DES Y3, obtained us-
ing DNF photometric estimates and clustering constraints (hereafter
DNF+WZ). Since the two sets of distributions have been obtained

with two different methods, we also briefly discuss the major dif-
ferences between the two pipelines. The DNF code presented in
2.2.1 produces per-galaxy redshift estimates; these are stacked to
produce the redshift distributions for the lens samples. Then, fol-
lowing Cawthon et al. (2022), a clustering redshift measurement is
performed, using BOSS/eBOSS galaxies as reference sample, sim-
ilarly to this work. The DNF n(z) are matched to the WZ-estimated
n(z) through a chi-square fitting; in particular, the DNF n(z) are
allowed to shift and stretch to improve the 𝜒2. The maximum-a-
posteriori values of the shift and stretch and related uncertainties
obtained through this matching procedure are used as a prior for the
DNF n(z) shift and stretch used in the cosmological inference.

Despite the DNF+WZ and SOMPZ+WZ methods using the
same photometric and clustering measurements, the methodologies
differ in a number of aspects:

(i) SOMPZ vs DNF uncertainties: SOMPZ and DNF are both
machine learning methods, but they are substantially different in
spirit and implementation. DNF is a traditional supervised machine
learning code where the likelihood (directional neighborhood) be-
tween wide field magnitudes/colors and redshift is learned from
training with a subsample of galaxies with both reliable redshift in-
formation and measured wide field photometry. On the other hand,
in SOMPZ machine learning is only used in an unsupervised fash-
ion (without knowledge of redshift), to group self-similar parts of
wide field magnitude/color space together. Then, these groups (wide
SOM cells) are probabilistically related using Bayes theorem to the
color-redshift relation measured empirically in the calibration deep
fields, where much better information is available. The likelihood
between each set of wide and deep field photometry is also mea-
sured empirically by injecting galaxies of the latter into images of
the former. Furthermore, SOMPZ provides a comprehensive list of
statistical as well as systematic uncertainties affecting the calibra-
tion samples which are rigorously propagated through the n(z). On
the other hand, DNF only describes statistical uncertainties related
to the residual differences to the closest training neighbors to the
fitted hyperplane of the target galaxies.

(ii) Combination: The clustering information is included and
combined with the photometric estimates in a substantially different
way. In this work, SOMPZ and WZ are combined by sampling from
the joint posterior using the HMC method. No approximation is
performed when combining the two likelihoods. On the other hand,
matching DNF n(z) to the WZ measurements it has been implicitly
assumed that the DNF n(z) estimates can only be biased at the
level of their mean and width, and that inaccuracies in the higher
order moments of the n(z) can be neglected (or do not affect the
matching procedure with the WZ measurements). However, if the
DNF and WZ n(z) estimates are substantially different beyond their
first two moments, the matching might cause biases (Gatti et al.
2018) also in the first and second moments. Furthermore, in the
combination of the fiducial method, the DNF shape is only allowed
to be modified by shifting and stretching it. Therefore the shift and
stretch parameters are centered at the WZ values. This means that the
photo-z priors for the cosmological inference only carry uncertainty
from the WZ measurement, as this method does not propagate any
systematic uncertainties related to uncertainty from the accuracy of
DNF or the quality of its training sample photometry. In comparison,
SOMPZ+WZ properly combines the statistical significance from
SOMPZ and WZ yielding a final uncertainty that truly combines the
information from each of them separately. Finally, the SOMPZ+WZ
n(z) samples also capture the uncertainties in the higher moments
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of the redshift distributions, whereas the DNF+WZ uncertainties
are only relative to the mean and width.

(iii) WZ distribution tails: The WZ measurements used to cal-
ibrate the DNF n(z) have clipped tails, since the measurements were
performed in a restricted redshift window to avoid biases related
to un-modelled magnification effects in the tails of the redshift
distribution. On the other hand, in this work, when combining the
clustering information with SOMPZ estimates, we use the WZ mea-
surements over all the redshift range, since we also marginalise over
magnification effects.

(iv) WZ galaxy-matter bias: The WZ measurements used in
the DNF+WZ estimates are corrected for the redshift evolution of
the galaxy-matter bias of the MagLim sample computed from auto-
correlations measurements following Eq. 16 (Cawthon et al. 2022).
As for this work we use the forward modelling approach described
in Section 4.2, we instead do not correct directly for the bias, but
from the MagLim auto-correlations we determine prior values of
the parameters of our Sys(s), and then marginalise over possible
bias functions in the sampling from the joint likelihood. We are
therefore assuming an uncertainty on the galaxy-matter bias and
validating the central value using SOMPZ data.

We must highlight that in Cawthon et al. (2022); Porredon
et al. (2021a) several tests were performed to test the robustness of
the DNF+WZ method. In particular, Cawthon et al. (2022) tested
the performance of the clustering measurements in simulations,
whereas Porredon et al. (2021a) tested that matching DNF n(z) to
the WZ measurements was not introducing biases in the cosmo-
logical constraints, and that modelling only the uncertainties in the
mean and width of the distributions was sufficient for the DES Y3
cosmological analysis. These tests should cover potential worries
raised in points ii), iii) and iv) above for the DNF+WZ method.
Having said this, any discrepancy between the SOMPZ+WZ n(z)
and the DNF+WZ n(z) should boil down to the points listed above.

In Figure 6, the shapes and uncertainties of the two methodolo-
gies are compared, before and after the inclusion of WZ information,
respectively in the left and right panel. Visually the DNF+WZ n(z)
look very similar to the SOMPZ+WZ ones, although some dis-
crepancies can be noticed (e.g., in the second bin). We report in
Table 6 the redshift means and widths of the two sets of distribu-
tions, and their agreement. The means and widths are also visually
compared in Figure 7. The agreement is computed assuming the
uncertainties of the two methods to be uncorrelated, which is likely
not true; therefore, the reported agreements are optimistic. Comput-
ing the level of correlation between the two redshift estimates is not
trivial. The DNF+WZ estimates and uncertainties are driven only
by the WZ measurements in the range where WZ measurements
are available and magnification effects are negligible; the tails of
the distribution, on the other hand, are described by the DNF esti-
mates. The SOMPZ+WZ estimates receive contributions from both
SOMPZ and WZ; if the SOMPZ method was to completely drive
our estimates, then the SOMPZ+WZ and the DNF+WZ estimates
could be assumed to be independent. This is likely the case for the
mean redshift estimates, as we have seen that WZ is not particularly
constraining on the mean redshift (see Figure 7). The width esti-
mates are inferred more by the WZ measurements, and this might
indicate that our tensions are under estimated, because we know
that the two calibration methods share part of the WZ information.
With this in mind, large tensions between means/widths of the two
methods might indicate that either that the DNF+WZ uncertainties
are under estimated, or there are some real differences between the
two methods (one or both are biased). The reported values in Table

6 does not point to dramatic differences between the two methods:
the most extreme statistical distance is 2.7𝜎 between means of Bin
2, and 2.3𝜎 between widths of Bin 6.

From Table 6 we note that SOMPZ+WZ uncertainties on the
mean are larger than the DNF+WZ ones, while uncertainties on the
widths are comparable. This is due to the fact that the uncertainties
in the mean redshifts for the SOMPZ estimates are very sensitive
to contributions from outliers at high redshift. The DNF+WZ mean
redshift estimates (and uncertainties), on the other hand, are driven
by the match with the WZ measurements with clipped tails, i.e.,
they do not take into account uncertainties in the tails, and are
therefore smaller. The fact that the modelling of the tails is different
between the two methodologies is also responsible for the slightly
higher mean redshifts of the SOMPZ+WZ estimates compared to
the DNF+WZ estimates. If we restrict the comparison of the afore-
mentioned quantities in redshift intervals that exclude the tails of
the distributions, the match between SOMPZ+WZ and DNF+WZ
improves (Figure 7). We further investigate the importance of the
tails on the cosmological constraints in Appendix D1, finding that,
despite them being important, they do not drive the main difference
between the SOMPZ+WZ and DNF+WZ constraints.

5.1.1 Galaxy-matter bias prior from WZ auto-correlation

We tested the impact on the ΛCDM cosmological parameters of
using the same broad prior on the Sys(s) function describing the
galaxy-matter bias as was done for the WL sample (Gatti et al. 2022).
In this work we used more informative values computed from the
clustering auto-correlation of the MagLim sample, the application
of which is explained in more detail in Section 4.2. It is particularly
interesting to look at the shape of distributions, especially for bin
2. Figure 5 shows in grey the 1-sigma bands for the case without
using the auto-correlation, and leaving a much broader prior. While
in most bins the difference is not appreciable, and the grey bands
are very similar to the solid bands, in bin 2 there is an evident
difference. It is therefore suggested that this implementation of the
auto-correlation information used as priors in the SOMPZ+WZ
combination is able to help us constraining the galaxy-matter bias
value, in a way that otherwise would not have been possible with
traditional methods. In figure 7 is shown the comparison over mean
redshift and width of the distributions between SOMPZ+WZ with
the more informative prior from the auto-correlation, against the
broad prior (labelled as “SOMPZ+WZ (broad prior)”). The means
and widths are well compatible with the standard SOMPZ+WZ
results, and for bins 2 and 3 they are slightly closer to the DNF+WZ
results. Even in bin 2, where the shape of the n(z) is substantially
different, the values of mean and width do not differ greatly from
the standard case, reinforcing the notion that mean and width alone
are not sufficient to fully characterise redshift distributions of a lens
sample.

6 COSMOLOGICAL RESULTS

In this section, we show the constraints on cosmological and nui-
sance parameters obtained using the DES Y3 measurements for
galaxy-galaxy lensing and galaxy clustering (Prat et al. 2022;
Rodríguez-Monroy et al. 2022) (a.k.a. 2x2pt), and the n(z) from
this paper. As in Porredon et al. (2021a), we also include in our
analysis an additional likelihood constructed with the Shear Ratio
(SR) measurements (Sánchez et al. 2022). This exploits galaxy-
galaxy lensing signal at small scales (< 6 Mpc/h) to provide further
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Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6
z ∈ [0.2, 0.4] z ∈ [0.4, 0.55] z ∈ [0.55, 0.7] z ∈ [0.7, 0.85] z ∈ [0.85, 0.95] z ∈ [0.95, 1.05]

<z> SOMPZ+WZ 0.315 ± 0.016 0.463 ± 0.010 0.633 ± 0.009 0.781 ± 0.008 0.893 ± 0.009 0.990 ± 0.012
DNF+WZ 0.292 ± 0.007 0.422 ± 0.011 0.616 ± 0.006 0.762 ± 0.006 0.887 ± 0.007 0.969 ± 0.008
Δ<𝑧> 1.3 2.7 1.7 1.9 0.5 1.5

𝜎𝑧 SOMPZ+WZ 0.080 ± 0.005 0.081 ± 0.005 0.060 ± 0.002 0.073 ± 0.003 0.074 ± 0.004 0.102 ± 0.007
DNF+WZ 0.078 ± 0.005 0.094 ± 0.007 0.055 ± 0.003 0.062 ± 0.003 0.075 ± 0.004 0.080 ± 0.007

Δ𝜎𝑧 0.2 1.6 1.3 2.2 0.3 2.3

Table 6. Values of mean and width of the SOMPZ+WZ final ensemble of distributions and the DNF estimate. The statistical difference Δ<𝑧> is computed by
considering the uncertainties of both methods summed in quadrature, as in Δ<z> = (< z >SOMPZ − < z >DNF )/

√︁
𝜎 (< z >SOMPZ )2 + 𝜎 (< z >DNF )2. We

refer to these as are lower limits. Because the WZ measurement is very similar in the two cases, and the uncertainties summed in quadrature are correlated and
therefore we are likely underestimating Δ<𝑧> .
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Figure 6. Left panel) Final n(z) realisations obtained from the SOMPZ methodology alone compared to the fiducial DNF distribution for MagLim (in black).
Right panel) Final n(z) realisations obtained from both SOMPZ and WZ methodology compared to the fiducial DNF distribution for MagLim (grey bands)
after shifting and stretching them to fit WZ measurement. Since in the inference the shift and stretch values are marginalised over, the uncertainties of the gray
bands are obtained by sampling over the allowed ranges of shift and stretch defined by the prior, and applied respectively to the DNF estimate. Note that for a
fairer comparison of the methods, the two remaining uncertainties were applied to the SOMPZ ensemble (zeropoint and SOMPZ intrinsic), to include all the
SOMPZ-related uncertainties. For both plots, in the top row we have bins 1 and 4, in the middle row bins 2 and 5, and in the bottom row bins 3 and 6. .

constraint to the redshift distributions and intrinsic alignment pa-
rameters. The ratio of a galaxy-galaxy lensing signal of each lens
sample redshift bin computed with respect to two source sample
bins results in a primarily geometric measurement, which has been
proven a powerful method for constraining systematics and nuisance
parameters. This adds independent information from SOMPZ and
WZ to the source redshift calibration.
The posterior distribution obtained follows the Bayes theorem:

𝑃(𝑝 |𝐷, 𝑀) ∝ L(𝐷, 𝑝, 𝑀)Π(𝑝 |𝑀), (19)

where Π(𝑝 |𝑀) is the prior distribution for all the parameters of
the model 𝑀 . For the cosmological inference we use the CosmoSIS
pipeline (Zuntz et al. 2015), and we sample the parameter posteriors
using the PolyChord sampler (Handley et al. 2015a,b).

Our data vector 𝐷 = {𝑤(𝜃), 𝛾𝑡 (𝜃)} is compared to theoretical
predictions 𝑇 (𝑝) = {𝑤(𝜃, 𝑝), 𝛾𝑡 (𝜃, 𝑝)} in a Bayesian fashion, and
the posterior of the parameters conditional on the data is evaluated
by assuming a Gaussian likelihood for the data:

logL ∝ −1
2
(𝐷 − 𝑇 (𝑝))𝑇𝐶−1 (𝐷 − 𝑇 (𝑝)), (20)

where 𝐶 is the measurement covariance. In our analysis, we vary
5 (or 6) cosmological parameters assuming a ΛCDM (or wCDM)
cosmology:Ωm,𝜎8, 𝑛𝑠 ,Ωb, ℎ100, and 𝑤 for the wCDM case. More-
over, we also marginalise over “astrophysical” nuisance parameters
(describing intrinsic alignment effects and the galaxy-matter bias of
the lens sample), and calibration parameters (redshift uncertainties,
shear measurement uncertainties). In short, our setup (covariance,
parameters varied, prior ranges, etc.) is the same as the one adopted
in Porredon et al. (2021a), except for the redshift 𝑛(𝑧) and uncer-
tainties priors of the lens sample, where the ones obtained in this
work have been assumed, and other minor changes that we describe
below. All modelling and analysis choices, together with the calcu-
lations of the theoretical two-point functions, are described in detail
in Krause et al. (2021).

Our analyses were not "blinded", since this work occurred
after the "unblinding" of the DES Y3 3x2pt results. We did not per-
form any cosmological analysis until the redshift distributions were
frozen; no changes to the redshift distributions (and uncertainties
prior) have been performed after looking at the cosmological con-
straints. To ensure the robustness of our final estimates, we adopted
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Figure 7. Visual representation of the uncertainties on mean (above) and width (below) of the redshift distributions estimated using the SOMPZ (square
markers) and DNF (round markers) methods, before and after including the WZ information, for each tomographic bin. Below the dashed line is the comparison
of the values computed in the redshift range used for the 𝜒2 fit of the DNF estimate with the smoothed WZ n(z).

a 𝑝-value criteria on the best-fitting models to our data vector.
Following Porredon et al. (2021a), we required the goodness-of-
fit 𝑝−value on unblinded data vectors was larger than 1 per cent.
The goodness-of-fit has been computed using the Predictive Poste-
rior Distribution (PPD, Doux et al. 2021) and adopted in the main
DES Y3 3x2pt analysis. The PPD methodology derives a calibrated
probability-to-exceed 𝑝; in the case of goodness-of-fit tests, this is
achieved by drawing realisations of the data vector for parameters
drawn from the posterior under study which are then compared to
actual observations. The distance metric (𝜒2) is computed in data
space, which is then used to compute the 𝑝-value.

Concerning the redshift uncertainties, as it is the primary goal
of this work, we proceeded using the fiducial DES Y3 methodology:
we parametrize the redshift uncertainties with two parameters for
each tomographic bin, that modify a fiducial n(z) distribution with
a shift on the mean and a stretch on the width. The fiducial n(z)
is estimated by averaging the SOMPZ+WZ 𝑛(𝑧) realisations. The
Gaussian priors on the mean and stretch parameters are centered at
the mean and width of the fiducial n(z), while the Gaussian priors
width are measured from the variance in the mean and width of the
n(z) ensemble. This parametrization can be compared directly to the
fiducial DES Y3 2x2pt analysis (Porredon et al. 2021a). In Appendix
D we describe an alternative marginalisation of the redshift uncer-
tainties, by marginalising over the full sets of n(z) realisations pro-
vided by the SOMPZ+WZ method. In principle, this latter method
describes better the redshift uncertainties of our method. However,
we find that the currently available techniques that marginalise over
the full ensemble of realisations during cosmology inference are
prohibitively computationally expensive. Therefore we defer its ap-
plication to future work.

Besides the different n(z), we also ran a few analyses where
we marginalised over magnification parameters of the lens samples

over wide priors. This is different from Porredon et al. (2021a),
where magnification parameters have been fixed.

For the fiducial DES Y3 2x2pt analysis, the p-value from the
data-model 𝜒2 using all six bins of MagLim was not sufficient to
pass the 1 per cent criteria. After a series of tests the consensus was
that the two highest redshift tomographic bins were responsible for
worsening the fit. Therefore the analysis in Porredon et al. (2021a)
included only the first 4 MagLim bins. Here, we perform the analy-
ses using all the 6 bins of the MagLim sample, but also using only
the first 4 bins, to verify if the same applies also to this work using
different redshift distributions.

In particular, we consider the following scenarios:

• ΛCDM (𝑤CDM); 4 and 6 lens bins, fixed magnification. This
is the fiducial analysis that mirrors the one presented in Porredon
et al. (2021a). Five (six) cosmological parameters are varied, in-
cluding Ωm, 𝜎8, 𝑛s, Ωb, ℎ100 (and 𝑤 for the 𝑤CDM case). Intrinsic
alignment, shear measurement and redshift uncertainties parame-
ters (of both lenses and sources) and galaxy-matter linear biases of
the lenses also are marginalised over. The magnification coefficients
of the lens sample, however, are fixed to the values estimated from
Balrog (Everett et al. 2022). Uncertainties in the redshift distribu-
tions of the lens sample are modelled as a shift and stretch in the
distributions.

• ΛCDM (𝑤CDM); 4 and 6 lens bins, free magnification. Same
parameters as the ones above, but magnification parameters are
marginalised over using Gaussian priors. This is an additional setup
considered only after analysing the results from the aforementioned
fixed magnification setup.

In what follows, we will also quote results in terms of the 𝑆8
parameter, defined as 𝑆8 ≡ 𝜎8 (Ωm/0.3)0.5. In Table 7 we sum-
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marise the best fit values of 𝑆8, Ω𝑚, 𝜎8, 𝑤, and the computed PPD
goodness-of-fit p-value for all the different analyses.

6.1 ΛCDM results

6.1.1 Fiducial results: 4 bins, fixed magnification and
comparison with DNF results

The first cosmological constraints we analyse are the ones obtained
assuming a ΛCDM cosmology, using 4 lens bins and fixed mag-
nification parameters. The decision on which set of results will be
quoted as ”fiducial” for this work had to be made before conduct-
ing any cosmological analysis on data. We initially planned to only
run the fiducial analyses with fixed magnification, as in Porredon
et al. (2021b). The choice between 4 or 6 lens bins would depend
on the 𝑝-value criteria: if the ΛCDM, 6 bins, fixed magnification
scenario were to yield a 𝑝-value above the specified threshold, then
we would favour that configuration. This analysis though did not
fulfil our 𝑝-value criteria (𝑝-value = 0.008, see Table 7), similarly
as for the analysis ran with the same settings but using the fidu-
cial redshift distributions from DNF; hence, we do not show those
results here. We then chose as fiducial the ΛCDM, 4 bins, fixed
magnification analysis, which is equivalent to the ”fiducial” setup
assumed in Porredon et al. (2021b), which also allows us to compare
our results directly to the ones obtained using the DNF+WZ n(z).
The posterior on the cosmological parameters Ωm, and 𝑆8 is shown
in the left panel of Fig. 8; the marginalised mean values of 𝑆8, Ωm,
and 𝜎8, along with the 68% confidence intervals, are:

Ωm = 0.30 ± 0.04, (21)
𝜎8 = 0.81 ± 0.07, (22)
𝑆8 = 0.81 ± 0.04. (23)

The PPD goodness-of-fit test for this analysis results into
𝑝−value=0.029, well above our threshold (see also Table 7). In
the left panel of Fig. 8 we also compare our results with the con-
straints obtained using the fiducial DNF+WZ n(z). The size of the
posteriors is similar for the two cases, but the two posteriors are
slightly shifted; the distance between the posteriors’ peaks in the
2D Ωm − 𝑆8 plane is 𝑑 ∼ 0.4𝜎. In DES Y3 we impose a 0.3𝜎
threshold for differences in the Ωm − 𝑆8 plane induced by differ-
ent analysis choices, as larger statistical distances would indicate
the presence of systematic uncertainties unaccounted for; these re-
sults would apparently violate this criteria. We note, however, that
the (arbitrary) 0.3𝜎 threshold adopted by DES refers to differences
in the Ωm − 𝑆8 plane when noiseless theory data vectors are as-
sumed. In the presence of noisy data vectors these differences can
become larger, without invalidating our criteria. Having said this, a
𝑑 ∼ 0.4𝜎 difference nonetheless show the large impact a different
redshift calibration of the lens sample can have on the cosmological
constraints. This is somewhat different from the results obtained for
the source sample 𝑛(𝑧) (Amon et al. 2022), where uncertainties in
the redshift calibration had a negligible impact on the cosmological
constraints.

In Section 4.2 we explained how for the combination of the
two methods we marginalise over possible functional forms of the
unknown galaxy-matter bias of the MagLim sample, by means of
the systematic function Sys(s) in our clustering model. The prior
on the parameters s is inferred from the clustering auto-correlation.
We tested the impact on the redshift distributions of using a broader
prior (the same used in Myles & Alarcon et al. 2020) in Section 5.
We have tested the impact of using these n(z) for the cosmological
inference, and found that there is no change in constraining power

and no shift for Ωm, but there is a shift on 𝑆8 such to overlap
with the fiducial results from DNF+WZ. Therefore it is clear that
the information carried by the auto-correlation is crucial in our
cosmological analysis.

6.1.2 4 and 6 bins, free magnification

As supplementary analyses, we then proceed to relax the fixed priors
on the magnification parameters for the lens sample. Instead of fix-
ing them to the values estimated from Elvin-Poole et al. (2021) (as
done in the previous section), we leave them as free parameters, us-
ing Gaussian priors. In short, Elvin-Poole et al. (2021) estimate the
magnification parameters using Balrog, by injecting fake galaxies
into the wide field with and without applying a small magnification;
the difference between the number of galaxies passing the selection
in the two cases is then used to estimate the magnification parame-
ters of the sample. These parameters come with a small uncertainty,
which is however ignored in the fiducial analysis, as the magni-
fication parameters are assumed to be fixed to the mean Balrog

value. The central values and the uncertainties are reported in Table
C1 in Appendix C. One of the main reasons the DES Y3 fiducial
analysis did not vary the magnification parameters was merely com-
putational, as 4 (or 6) additional parameters lengthen the parameter
inference process. In principle there is no reason to doubt these
estimates. Differences might be caused by the fact that the Balrog
injections do not completely sample the full DES Y3 footprint, or in
case our injections were not fully representative of the DES sample
we are analysing.

When varying these parameters in our analyses, we find that
the 𝑝−value computed using PPD indicates a good fit of the model
to the data not only for the 4 bins case, but also for 6 bins case
(see Table 7). Adding the last 2 lens bins significantly improves the
constraining power on Ωm by 30% compared to the 4 bins case,
whereas the constraints on 𝑆8 are 20% tighter.

6.2 wCDM Results

We then proceed to analyse the results obtained with 𝑤CDM, for all
four cases: 4 and 6 bins, fixed and free magnification, as described
in the previous section. Parameter posteriors are shown in Fig. 9,
whereas p-values and parameters constraints are reported in Table
7. All the reported p-values are above our 𝑝 = 0.01 threshold.

In general, the 2x2pt constraints on 𝑤 are loose and affected by
the prior (−2 < 𝑤 < −0.3), but compatible with a ΛCDM scenario.
With respect to ΛCDM 4 bins case, freeing 𝑤 loosens the constraint
on 𝑆8 (both with fixed and with free magnification) by ∼ 30%,
while leaves it unvaried for Ω𝑚. For the 6 bins, we are unable to
directly compare to the fixed magnification case, but for the free
magnification the constraint on 𝑆8 is ∼ 25% looser, while, similarly
to the 4 bins case, it is unvaried for Ωm.

Passing from the 4 bins to the 6 bins configuration, besides
increasing the constraints on 𝑆8, also the constraints on 𝑤 improves
(by ∼20%), although part of the improvement is due to the posterior
partially hitting the prior edge.

Freeing the magnification parameters slightly shifts 𝑤 towards
the upper edge of the prior (𝑤 = −0.3), and 𝑆8 slightly towards
higher values, due to a degeneracy between 𝑤, 𝑆8, and the mag-
nification parameters of the two highest lens bins, which are now
fairly broad (see Table C1). Such a shift is not present in the case
of 4 bins, as the Gaussian priors used for the first 4 magnification
parameters are much tighter.
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Figure 8. Left panel: Posterior distributions of the cosmological parameters Ωm, and 𝑆8 for the ΛCDM analysis involving 4 bins and fixed magnification
parameters. The “fiducial” posteriors have been obtained using the DNF+WZ redshift distributions, and they are compared to the ones obtained using the
SOMPZ+WZ redshift distributions. Right panel: Posterior distributions of the cosmological parameters Ωm, and 𝑆8 for the ΛCDM analysis for three different
cases: 1) 4 bins and fixed magnification parameters (the blue contours in the two plots share the same analysis choices); 2) 4 bins and marginalised over
magnification parameters (in solid green); 3) 6 bins and marginalising over magnification parameters (in solid red). The 2D marginalised contours in both of
these figures show the 68 per cent and 95 per cent confidence levels.

Table 7. Constraints on the cosmological parameters Ωm, 𝑆8, and 𝜎8. For each parameter we report the mean of the posterior and the 68 per cent confidence
interval. We also report the PPD goodness-of-fit 𝑝-value and the probability of the parameter difference (computed over the full parameter space) between the
analyses considered in this work and Planck TTTEEE0 lowl lowE (Aghanim et al. 2020). The fiducial results from this work is reported in bold in the first row,
while the official, fiducial results of DES Y3 are reported in bold in the second to last row.

n(z) Model bins Magnif. Ωm 𝑆8 𝜎8 𝑤 𝑝-value Planck
SOMPZ+WZ ΛCDM 4 Fixed 0.30 ± 0.04 0.81 ± 0.04 0.81 ± 0.07 − 0.029 1.15𝜎

SOMPZ
(broad prior) ΛCDM 4 Fixed 0.31 ± 0.04 0.76 ± 0.06 0.76 ± 0.09 - 0.037 -
SOMPZ+WZ ΛCDM 4 Gauss. 0.29 ± 0.04 0.81 ± 0.04 0.83 ± 0.08 - 0.035 1.11𝜎
SOMPZ+WZ ΛCDM 6 Fixed - - - - 0.008 -
SOMPZ+WZ ΛCDM 6 Gauss. 0.28 ± 0.03 0.79 ± 0.03 0.82 ± 0.06 - 0.065 2.41𝜎
SOMPZ+WZ 𝑤CDM 4 Fixed 0.29 ± 0.04 0.79 ± 0.06 0.81 ± 0.08 −1.2 ± 0.3 0.032 0.46𝜎
SOMPZ+WZ 𝑤CDM 4 Gauss. 0.29 ± 0.04 0.79 ± 0.06 0.81 ± 0.07 −1.0 ± 0.3 0.035 0.46𝜎
SOMPZ+WZ 𝑤CDM 6 Fixed 0.30 ± 0.04 0.78 ± 0.04 0.78 ± 0.06 −0.9 ± 0.3 0.012 2.29𝜎
SOMPZ+WZ 𝑤CDM 6 Gauss. 0.31 ± 0.03 0.83 ± 0.04 0.82 ± 0.05 −0.7 ± 0.2 0.059 2.21𝜎

DNF+WZ ΛCDM 4 Fixed 0.32 ± 0.04 0.78 ± 0.04 0.76 ± 0.07 - 0.019 1.0𝜎
DNF+WZ 𝑤CDM 4 Fixed 0.32 ± 0.05 0.78 ± 0.05 0.76 ± 0.07 −1.0 ± 0.3 0.024 -

6.3 Statistical distance to Planck

We compute here the statistical distances between our cosmological
constraints and the early Universe ones from the Planck satellite
(Aghanim et al. 2020). To this aim, we used the algorithm presented
in Raveri & Doux (2021), which estimates the probability of tension
between parameters via Monte Carlo approximation. In particular,
the probability of tension between parameters can be expressed as
follows:

P(Δ𝜃) =
∫
𝑉𝑝

P𝐴(𝜃)P𝐵 (𝜃 − Δ𝜃)𝑑𝜃, (24)

where 𝑉𝑝 represents the prior volume, while P𝐴 and P𝐵 represent
two posterior parameter distributions under study. The probability
of having a shift in the parameter space is described by the parameter

shifts density:

Δ =

∫
P(Δ𝜃 )>P(0)

P(Δ𝜃) 𝑑Δ𝜃, (25)

This refers to the posterior portion beyond the constant probability
contour for no shift,Δ𝜃 = 0. The integration in Eq. (25) is performed
via Monte Carlo techniques.

The comparison between the results has been performed con-
sidering all the parameters shared by our analyses and Planck. The
values are reported in the last column of Table 7; we find no sign of
significant tension (< 3𝜎) in any of the analysis setups considered.
In particular, we find that for the 4 bins case for ΛCDM (both fixed
and free magnification) there is good agreement (1.15𝜎, 1.11𝜎),
similarly for wCDM with 4 bins we have 0.46𝜎 for both fixed
and free magnification. For the 6 bins cases the values are larger
(2.2 − 2.4𝜎), but still below the 3𝜎 threshold.
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Figure 9. Posterior distributions of the cosmological parameters Ωm, and
𝑆8 and 𝑤 for four different cases: 1) wCDM, 4 bins and fixed magnifica-
tion parameters; 2) wCDM, 6 bins and fixed magnification parameters, 3)
wCDM, 4 bins and free magnification parameters; 4) wCDM, 6 bins and
free magnification parameters. The 2D marginalised contours in these fig-
ures show the 68 per cent and 95 per cent confidence levels. We note that
the posteriors of 𝑤 for the 6 bins cases are partially affected by the prior
edge (𝑤 ∈ [−2, −0.33], Table C1); see text for more details.

7 CONCLUSIONS

In this paper, we presented an alternative calibration of the MagLim
lens sample redshift distributions from the Dark Energy Survey
(DES) first three years of data (Y3). This new method, which has
already been applied to the DES Y3 weak lensing sample (Myles &
Alarcon et al. 2020), is based on a combination of a Self-Organising
Maps (SOMPZ) based scheme and clustering redshifts (WZ) to es-
timate redshift distributions and inherent uncertainties. The origi-
nal redshift calibration of the MagLim sample (and cosmological
results obtained adopting that calibration) have been originally pre-
sented in Porredon et al. (2021a), and has been based on the photo-𝑧
code DNF (De Vicente et al. 2016) and WZ constraints (Cawthon
et al. 2022). The methodology presented in this paper is meant to
be more accurate than the original one. First, the SOMPZ method
allows a better control over all the potential sources of uncertainties
affecting the estimates compared to DNF; second, the clustering
constraints (WZ) are incorporated through a rigorous joint likeli-
hood framework which allows to draw n(z) samples conditioned on
both clustering and photometric measurements, improving the n(z)
estimates (e.g., the final “SOMPZ+WZ” n(z) have a smaller scatter,
or uncertainty, compared to the SOMPZ ones, see Figure 5).

We described in detail the methodology followed to produce
the alternative MagLim n(z) based on the SOMPZ+WZ approach,
together with a detailed report on the main systematics dominating
our calibration error budget. Our redshift uncertainties, in particu-
lar, are dominated by the impact of sample variance on the SOMPZ
estimate (due to the limited area spanned by the deep field sample
used in the calibration) and by the effect of the redshift evolution

of the galaxy-matter bias of the MagLim sample on the WZ con-
straints. We then compared our SOMPZ+WZ n(z) with the fiducial
DNF+WZ n(z) estimates; the means and widths of the 6 MagLim to-
mographic bins show moderate statistical distances, with the largest
deviation of 2.7𝜎 in bin 2 (see Table 6). We also found the uncer-
tainties on mean of the redshift distributions of the SOMPZ+WZ
method to be slightly larger than the ones of the DNF+WZ method,
due to a more conservative calibration of the tails of the redshift
distributions. On the other hand, we found the two methods to have
a similar constraining power on the widths of the distributions.

We then proceeded investigating the impact on the cosmolog-
ical constraints of our new redshift calibration. In particular, we
used the DES Y3 galaxy-galaxy lensing and galaxy clustering mea-
surements (Prat et al. 2022; Rodríguez-Monroy et al. 2022) (a.k.a.
2x2pt), and the n(z) from this work, and compared to the results
from Porredon et al. (2021a). In the “fiducial” configuration, which
involves using the first 4 lens bins and assuming a ΛCDM cosmol-
ogy, we obtained as marginalised mean values Ωm = 0.30 ± 0.04,
𝜎8 = 0.81 ± 0.07 and 𝑆8 = 0.81 ± 0.04. We noted a ∼ 0.4𝜎 shift in
the Ω − 𝑆8 plane compared to the Porredon et al. (2021a) results,
but no change in terms of constraining power. The shift indicates
that the redshift calibration of the lens sample plays a key role
on cosmological constraints from the 2x2pt analysis, contrary to
the redshift calibration of the source sample (Amon et al. 2022).
Subsequently, we explored different analysis setups; we tested the
case where all the 6 MagLim redshift bins were included, a sce-
nario where the magnification coefficients of the lens sample were
marginalised during the inference, and last, we assumed a 𝑤CDM
cosmology. We found that the inclusion of the last two redshift bins
of the MagLim sample help improving the constraints on Ωm by
∼ 25%, and on 𝑆8 by ∼ 20%.

We also compared our results to the cosmological constraints
from Planck (Aghanim et al. 2020), finding a no-tension of 1.15𝜎
between the results when 4 lens bins where considered. We did find
a statistical distance of 2.41𝜎 in ΛCDM with free magnification
coefficients when including in the analysis the two high redshift
bins (𝑧 > 0.85), which have not been included in the fiducial DES
Y3 analysis (Porredon et al. 2021a).

As a final comment, despite the SOMPZ+WZ method’s ability
to produce n(z) samples capturing the redshift uncertainties of our
estimates, we could not efficiently marginalise over these realisa-
tion during the cosmological inference, due to computational con-
straints. Our marginalisation strategy followed the one adopted in
Porredon et al. (2021a): we adopted the mean of the SOMPZ+WZ
samples as our fiducial n(z), and marginalised over a shift in the
mean and a stretch of the width of the distribution, using as pri-
ors the variances in the mean and widths of the SOMPZ+WZ n(z)
samples. While this strategy was deemed sufficient for this current
work, we plan to implement the full marginalisation scheme for
subsequent analyses of the lens samples with DES Y6 data.
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APPENDIX A: MagLim SAMPLE IN SIMULATIONS

Due to the small but existing differences in magnitude/color space
between the Buzzard simulation and the DES data (DeRose et al.
2019), we expect the simulated sample to not be a perfect copy of
the data sample, although we do not expect this to have a sensible
impact on any of the conclusions drawn in this work. The direct
application of the fiducial MagLim selection (Eq. 1) to the Buzzard
catalog leads to slightly different number densities and color distri-
butions with respect to data. We therefore re-define a more adequate
MagLim selection for Buzzard, with the goal of achieving the same
number density as the data sample. The new Buzzard MagLim se-
lection is a piece-wise linear selection in redshift and magnitude,
similar to Eq. 1 but with coefficients re-defined by minimising the
quadratic sum of the difference in number density with the values in
data, for each tomographic bin, in order to avoid discontinuities in
the selection. Such a re-defined selection guarantees similar number
densities as the data sample. We then ensure similar color distribu-
tions by an additional re-weighting procedure of the mock catalog,
so as to resemble the color distributions of the data sample. In par-
ticular, we iteratively re-weight based on 𝑖, 𝑟 magnitudes and 𝑖-𝑟
colors, with the final distributions matching closely the data ones,
as shown in Figure A1.

The new MagLim selection in Buzzard for each tomographic
bin is then the following:

• Bin 1: 𝑖 < 2.017 ∗𝑧mean + 18.882
• Bin 2: 𝑖 < 2.687 ∗𝑧mean + 18.614
• Bin 3: 𝑖 < 5.705 ∗𝑧mean + 16.954
• Bin 4: 𝑖 < 2.399 ∗𝑧mean + 19.268
• Bin 5: 𝑖 < 9.455 ∗𝑧mean + 13.271
• Bin 6: 𝑖 <-0.960 ∗𝑧mean + 23.165

We list in Table A1 the number densities of MagLim in Buz-
zard, obtained with the fiducial selection and with the adapted in
simulations.

APPENDIX B: VALIDATION IN SIMULATIONS

The validity of our methodology and pipeline has been tested in
the Buzzard N-body simulation, introduced in Section 2.8. The
measurements of redshift distributions using both phenotypes and
clustering were validated in simulations to ensure unbiased esti-
mates with respect to the true redshift distributions. The MagLim
sample has been recreated in the Buzzard simulations, as described
in Section 2. The sample selection has been altered to reproduce as
faithfully as possible the number density and color distributions of
the data.

As described in section 4.1.1, we generated 300 simulated deep
field realizations that we used to estimate the SOMPZ method un-
certainty, which we report in Table 4, and add into our overall error
budget. Here we illustrate that the uncertainty predicted by the 3sDir
and the 3sDir+WZ models is consistent with the true n(z) in one
of these simulated realizations. We start by selecting one of these
simulated realizations, which includes the four deep fields and their
corresponding Balrog and redshift samples. We then proceeded to
perform the 3sDir analytical sample variance estimation for that
one specific realisation. The geometry and resolution of the SOM
used in simulations are the same as the ones used in data. There
are two differences between our simulated scenario and real data:
1) we use the true redshifts from the Buzzard simulations; 2) we
assume all redshift information comes from one of our four deep
fields. This latter point matches the modeling assumption of 3sDir,
which also assumes that the redshift information only comes from
one out of four fields. This is a conservative choice that inflates the
modeled error due to sample variance in real data for the term p(z|c),
and it avoids modeling the highly non-trivial selection function of
spectroscopic samples coming from fields other than the COSMOS
field. We note that the sample variance contribution to the color
distribution p(c) is modeled correctly as coming from all 4 fields.
The SOMPZ redshift distributions, and their uncertainties estimated
through the 3sDir method, are in agreement with the true distribu-
tion, as shown in Figure B1. In Table B1 we summarise the mean
and width of the simulated n(z) of the SOMPZ and SOMPZ+WZ
methods in each tomographic bin, and of the true n(z), together with
the respective statistical distances from the truth.

We also repeated in simulations the same procedure as for
data also for the WZ estimates. We created a mock BOSS/eBOSS
catalog to use as a reference sample. As in data, also in simula-
tions the BOSS/eBOSS sample is divided into 50 bins spanning the
0.1 < 𝑧 < 1.1 range of the catalog (width Δ𝑧 = 0.02). Before pro-
ceeding with combining the SOMPZ and WZ information through
the combined likelihood, the compatibility between SOMPZ and
WZ was checked. This was tested by inferring the windowed means
and widths of the WZ and SOMPZ redshift estimates, following
Gatti & Giannini et al. (2022). The window has been determined
such that magnification effects related to the WZ measurements
can be neglected. As for WZ, we used a “simple” estimator for the
redshift distribution, inverting Eq. 17 and ignoring magnification
effects (this is possible as we are considering only windowed quan-
tities). The means and widths computed in this way for the two
methods were compatible within statistical (and systematic) errors,
hence the SOMPZ and WZ could be combined together.

The posterior obtained in simulations from multiplying the
two likelihoods is shown in Figure B1, in which the effect of the
combination immediately stands out: the additional information
from clustering redshifts places a tight constraint on the shape of the
n(z), while still being in agreement with the true distribution. This
larger constraining power derives from the fact that in clustering the
number density for each redshift bin correlates across neighbouring
bins, which restrains the joint likelihood to prefer smoother realisa-
tions and reject the ones with more uncorrelated values of clustering.

As the second phase of the validation process, a full 2x2pt
cosmological analysis was performed. We utilised the datavector
consisting of the two point measurements from the Buzzard simula-
tions and the redshift distributions obtained from the SOMPZ+WZ
method, obtained as described in the previous paragraph. We con-
sidered both ΛCDM and 𝑤CDM models, fixing magnification pa-
rameters and including all 6 MagLim tomographic bins. Addition-
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Figure A1. Comparison of 𝑟𝑖𝑧-band magnitudes and 𝑟 − 𝑖, 𝑧 − 𝑖 colors of the 6 bins of the MagLim sample, between data (blue) and simulations, before
(green) and after re-weighting (red). The re-weighting process has proven successful in yielding magnitude distributions that closely resemble those observed
in the actual data.

Number density Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6
Before (Fiducial MagLim selection) 1.10 0.90 1.12 0.97 0.69 0.76
After (Buzzard MagLim selection) 0.98 0.99 0.99 0.99 0.99 0.98

Table A1. Number densities of the MagLim sample in Buzzard as obtained with the fiducial MagLim selection, and with the one adapted for Buzzard.
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Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6
z ∈ [0.2, 0.4] z ∈ [0.4, 0.55] z ∈ [0.55, 0.7] z ∈ [0.7, 0.85] z ∈ [0.85, 0.95] z ∈ [0.95, 1.05]

<z> SOMPZ 0.319 ± 0.009 0.484 ± 0.007 0.623 ± 0.006 0.784 ± 0.006 0.891 ± 0.007 0.993 ± 0.010
SOMPZ+WZ 0.313 ± 0.008 0.466 ± 0.006 0.613 ± 0.005 0.774 ± 0.007 0.876 ± 0.007 0.988 ± 0.007

Δ<𝑧> SOMPZ 1.46 2.55 0.20 0.28 0.55 1.08
SOMPZ+WZ 0.83 0.42 1.81 1.28 2.49 2.10

𝜎𝑧 SOMPZ 0.075 ± 0.010 0.064 ± 0.007 0.062 ± 0.006 0.056 ± 0.005 0.060 ± 0.005 0.068 ± 0.007
SOMPZ + WZ 0.077 ± 0.005 0.057 ± 0.005 0.064 ± 0.004 0.068 ± 0.005 0.064 ± 0.005 0.060 ± 0.003

Δ𝜎𝑧 SOMPZ 0.53 0.59 1.17 1.42 0.79 0.10
SOMPZ+WZ 0.46 2.08 2.13 0.93 1.50 2.09

Table B1. SIMULATIONS: Summary of values for center values for mean (top panel) and width (bottom panel) for the n(z) distributions as measured in the
Buzzard simulations. The values related to SOMPZ and SOMPZ+WZ refer to Figure B1. Note that the uncertainties quoted here only include sample variance
and shot noise.
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Figure B1. Estimated 𝑛(𝑧) in four tomographic bins using a 12x12 cell deep
SOM and 32x32 cell wide SOM trained on Buzzard simulations. In the top
row we have bin 1 and 4, in the middle row bin 2 and 5, and in the bottom row
bin 3 and 6. The Redshift sample used here has 100000 galaxies drawn from
1.38 deg2, such that after the MagLim selection it yields ∼ 15000 unique
galaxies, which is the same order of magnitude as the redshift samples in
data, see Table 2. The deep sample is drawn from three fields of size 3.32,
3.29, and 1.94 deg2, respectively from the Buzzard simulated sky catalog.
The black dashed line marks the true value, the transparent bands are the
3sDir set of n(z) and the solid bands are the realisations once combined
with clustering redshifts. We can appreciate the effect of the combined
likelihood, resulting in distributions more constrained in terms of shape,
and still consistent with the truth.

ally, we fixed the source galaxies redshift distributions, to ensure any
deviation from the true parameter values of the simulation would
be caused by the lens n(z) alone. The mean values of 𝑆8, Ωm (and
𝑤), with their respective 68% confidence intervals, are:

• ΛCDM: 𝑆8 = 0.73 ± 0.18, Ωm = 0.31 ± 0.07;
• 𝑤CDM: 𝑆8 = 0.71 ± 0.18, Ωm = 0.30 ± 0.08, 𝑤 = -1.3 ± 0.4.

For both analyses, the posterior distributions successfully re-
covered the input parameters (see Section 2), as displayed in Figure
B2.
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Figure B2. Posterior distributions of the cosmological parameters Ωm, 𝑆8,
and 𝑤 for the ΛCDM and 𝑤CDM analyses. These have been run with 6 bins
and fixed magnification parameters.

APPENDIX C: COSMOLOGICAL PARAMETERS

In Table C1 are listed all the cosmological parameters included in
our fiducial analysis.

APPENDIX D: REDSHIFT UNCERTAINTIES SAMPLING
STRATEGY

How redshift uncertainties are propagated in the cosmological anal-
ysis can have an impact on the final result. In this section we discuss
different strategies to marginalise over the redshift uncertainties of
our sample during the cosmological inference. Because we have
can rely on a full ensemble of n(z) shapes capturing our redshift
uncertainties, we can compare three different sampling methods:

• Shift: we compress the realisations by computing their average,
and marginalise over a shift on the mean;

• Shift and stretch: we compress the realisations by computing
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Table C1. The parameters and their priors used in the fiducial MagLim
ΛCDM and 𝑤CDM analyses. The parameter 𝑤 is fixed to −1 in ΛCDM.
Square brackets denote a flat prior, while parentheses denote a Gaussian
prior of the form N(𝜇, 𝜎) .

Parameter Fiducial Prior
Cosmology

Ωm 0.3 [0.1, 0.9]
𝐴s109 2.19 [0.5, 5.0]
𝑛s 0.97 [0.87, 1.07]
𝑤 -1.0 [-2, -0.33]
Ωb 0.048 [0.03, 0.07]
ℎ0 0.69 [0.55, 0.91]

Ω𝜈ℎ
2103 0.83 [0.6, 6.44]

Linear galaxy bias
𝑏𝑖 1.5, 1.8, 1.8, 1.9, 2.3, 2.3 [0.8,3.0]

Lens magnification
𝐶1 0.43 (0.43, 0.51)
𝐶2 0.30 (0.30, 0.48)
𝐶3 1.75 (1.75, 0.39)
𝐶4 1.94 (1.94, 0.35)
𝐶5 1.56 (1.56, 0.71)
𝐶6 2.96 (2.96, 0.95)

Lens photo-z
Δ𝑧1

l 0.0 (0.0, 0.0164)
Δ𝑧2

l 0.0 (0.0, 0.0100)
Δ𝑧3

l 0.0 (0.0, 0.0085)
Δ𝑧4

l 0.0 (0.0, 0.0084)
Δ𝑧5

l 0.0 (0.0, 0.0094)
Δ𝑧6

l 0.0 (0.0, 0.0116)
𝜎𝑧1

l 1.0 (1.0, 0.0639)
𝜎𝑧2

l 1.0 (1.0, 0.0624)
𝜎𝑧3

l 1.0 (1.0, 0.0315)
𝜎𝑧4

l 1.0 (1.0, 0.0409)
𝜎𝑧5

l 1.0 (1.0, 0.0515)
𝜎𝑧6

l 1.0 (1.0, 0.0650)
Intrinsic alignment

𝑎𝑖 (𝑖 ∈ [1, 2]) 0.7, -1.36 [−5, 5 ]
𝜂𝑖 (𝑖 ∈ [1, 2]) -1.7, -2.5 [−5, 5 ]

𝑏TA 1.0 [0, 2]
𝑧0 0.62 Fixed

Source photo-z
Δ𝑧1

s 0.0 (0.0, 0.018)
Δ𝑧2

s 0.0 (0.0, 0.013)
Δ𝑧3

s 0.0 (0.0, 0.006)
Δ𝑧4

s 0.0 (0.0, 0.013)
Shear calibration

𝑚1 -0.006 (−0.006, 0.008)
𝑚2 -0.010 (−0.010, 0.013)
𝑚3 -0.026 (−0.026, 0.009)
𝑚4 -0.032 (−0.032, 0.012)

their average, and marginalise over both a shift on the mean and on
a stretch on the width;

• Full shape: we provide as input all the produced realisations
and we rank them by one of their properties using the Hyperrank
method (Cordero et al. 2022), marginalising over the full shape of
the distributions.

Using only shifts is the methodology usually adopted to model
redshift uncertainties in weak lensing sample, as the weak lensing
kernel is mostly sensitive to the mean of the redshift distributions.
On the other hand, clustering and galaxy-galaxy lensing measure-
ments are also very sensitive to the width of the lens redshift distri-
butions; therefore, the shift and stretch approach is preferred. The
full shape marginalisation, in theory, is more accurate, because it

accounts for the uncertainties in the higher order moments of the
distribution; however, depending on the science case, it might not
make a huge impact on the final constraints. The full shape marginal-
isation is implemented via hyperrank (Cordero et al. 2022), which
is an algorithm that orders realisations of the ensemble according
to a parameter, which facilitates the sampling and marginalization
over the n(z) ensemble within the cosmological likelihood Markov
chains. Hyperrank was also implemented for the WL sources, al-
though it had a negligible impact on the results. The quantity chosen
for the ranking in that case was the mean. We decided for this case it
would be more appropriate to perform the optimised ranking of the
realisation by the 68% sigma rather than the mean, and we tested it
indeed improved the performance of the sampling. To test the dif-
ferent sampling strategies, we built a synthetic noiseless data vector
based on theory predictions at fixed cosmology and we used as
n(z) the realisations average of the SOMPZ+WZ estimates in data.
We then marginalised over redshift uncertainties using the three
approaches aforementioned. We performed this test both using 4 or
6 lens bins, although here we are just going to show the posteriors
obtained with 4 bins as they are not qualitatively different from the
ones with 6 bins. The results of this test are shown in Figure D1,
where we show the posterior of 𝜎8, Ωm and for sake of simplicity,
two out of the four galaxy-matter linear biases.

Focusing on the shift and shift+stretch contours, one can no-
tice that the width of the contour in the direction perpendicular to
the degeneration axis is larger for the shift+stretch. This is related
to impact of the additional marginalisation over the width of the
distributions. One caveat is that in our marginalisation scheme (as
adopted in the main DES Y3 2x2pt analysis), we are implicitly
neglecting correlations between the uncertainties in the mean and
widths of the distributions, which usually show a certain degree
of correlation (from ∼ 10% to ∼ 30%, depending from the tomo-
graphic bin). These are neglected, which might translate in a slight
overestimation of our constraints. When marginalising over the un-
certainties using the hyperrank framework, on the other hand, such
correlations are implicitly accounted for. Indeed, one can notice
that the hyperrank posteriors are slightly tighter than the shift or
shift-stretch posteriors.

Unfortunately, we did not manage to successfully apply hyper-
rank to the data. When performing the cosmological analysis on
data using hyperrank, we found significantly less smooth posteriors
compared to our tests on simulations. A similar behaviour has also
been found when applying hyperrank to the DES Y3 source sample
Amon et al. (2022), and it has been interpreted as a consequence of
a possible larger degree of complexity of the redshift distributions
of our data compared to simulations. We attempted both to artifi-
cially smooth our n(z) and to increase the number of samples from
the SOMPZ+WZ method, without reaching a satisfactory level.
Due to the very high computational cost of running a cosmological
chain using hyperrank, we could only test a few different levels of
smoothing before deciding to abandon hyperrank for the present
work, and choose the shift+stretch as photo-𝑧 uncertainty marginal-
isation methodology. For DES Y6, we plan to apply several tools
that will speed up our cosmological inference, enabling more tests
on hyperrank, which has great potential and whose implementation
is a goal for the DES Y6 analysis.

D1 Cosmological constraints with clipped n(z) tails

Here we test whether the difference between DNF+WZ and
SOMPZ+WZ constraints (Fig. 8) were only due to the different
treatment of redshift outliers and of the tails of the redshift distri-
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Figure D1. Posterior distributions of the cosmological parameters Ωm, 𝑆8,
and two out of four of the galaxy-matter biases (𝑏2, 𝑏4) for the ΛCDM
analysis involving 4 bins and fixed magnification parameters. These analyses
have been obtained assuming a theoretical datavector and adopting different
marginalisation schemes on the redshift distribution of the lens sample.

butions. We artificially removed the tails from the DNF+WZ and
SOMPZ+WZ n(z) (i.e., we set the distributions to zero), and re-
peated our cosmological analysis. We used as definition of the tails
the same interval used to calibrate the DNF distribution with the
WZ constraints adopted in Porredon et al. (2021a). Results for the
ΛCDM case, 4 bins and fixed magnification are shown in Fig. D2.
By removing the tails, both posteriors are shifted, which means that
the calibration of the tails of the redshift distribution is important
for our cosmological analysis. Since the two posteriors are shifted
but they still do not overlap, we can assume that the differences in
the bulk of the redshift distributions inferred by two methods is also
crucially driving the differences at the constraints level seen in Fig.
8.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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