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Abstract: Measuring observables to constrain models using maximum-likelihood estimation is
fundamental to many physics experiments. Wilks’ theorem provides a simple way to construct
confidence intervals on model parameters, but it only applies under certain conditions. These
conditions, such as nested hypotheses and unbounded parameters, are often violated in neutrino
oscillation measurements and other experimental scenarios. Monte Carlo methods can address these
issues, albeit at increased computational cost. In the presence of nuisance parameters, however,
the best way to implement a Monte Carlo method is ambiguous. This paper documents the method
selected by the NOvA experiment, the profile construction. It presents the toy studies that informed
the choice of method, details of its implementation, and tests performed to validate it. It also
includes some practical considerations which may be of use to others choosing to use the profile
construction.
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1 Introduction

The main goal of many physics experiments is to make measurements of the properties of Nature
in the form of parameters of a model. Often, those parameters cannot be observed directly, and
must instead be inferred from a likelihood function, L(𝒙 |𝜽), which describes the probability of
the observed data, 𝒙, for a given set of parameter values, 𝜽 . In frequentist analyses, the best
estimate for the model parameters is determined using maximum likelihood estimation. Results
are usually [1] presented as one- or two-dimensional Neyman–constructed confidence intervals [2],
and Wilks’ theorem [3] is used to determine the confidence level which corresponds to a given
likelihood value. However, Wilks’ theorem is only valid if certain conditions are met, so some
experimental measurements that depend on Wilks’ theorem may fail to produce confidence intervals
with reasonable frequentist ‘coverage,’ meaning that confidence intervals determined in the same
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way in many repeated experiments would not contain the true value with the reported frequency.
In other words, the confidence intervals would have an actual significance different from what is
reported. Monte Carlo methods with various implementations [4, 5] have long been proposed as a
solution to this issue. The Unified Approach [6] is a type of Monte Carlo method which defines a
nonparametric ordering procedure for determining the critical values that define the extent of the
confidence intervals. The method is commonly known in the high energy physics community as
the ‘Feldman–Cousins’ (FC) method, after the authors who popularized it in the field.

However, the Feldman–Cousins paper does not give guidance on how to handle additional nui-
sance parameters beyond those being measured, making implementation ambiguous in experiments
where nuisance parameters are present. Ensuring reasonable coverage in the presence of nuisance
parameters is a challenge. No method can guarantee correct coverage for all possible values of
the nuisance parameters, but various approaches can give more or less accurate coverage. This
challenge is acute for long-baseline oscillation experiments like NOvA since the neutrino oscilla-
tion probabilities depend on three parameters values (|Δ𝑚2

32 |, 𝜃23, 𝛿CP) and a binary choice on the
sign of the Δ𝑚2

32, known as the neutrino mass ordering [7–10]. As a consequence, any confidence
interval drawn in one or two dimensions will have both constrained nuisance parameters (systematic
uncertainties) and unconstrained nuisance parameters (the other model parameters).

This paper presents the technique used in the neutrino oscillation measurements made by the
NOvA experiment [7–10]. Section 2 provides a brief pedagogical introduction to the Feldman-
Cousins method and the challenge presented by nuisance parameters, as well as several possible
approaches to the problem. Section 3 presents simplified toy models used to evaluate the different
methods and select the profile construction [5, 11–13] for use in NOvA. Section 4 describes the
implementation of this method in practice, including some methods used to validate its coverage,
and important features of the confidence intervals it produces.

2 Confidence Interval Construction with Nuisance Parameters

2.1 The Original Feldman–Cousins Method

A common method for creating frequentist confidence intervals is the Neyman construction [2].
Likelihood–ratio tests are performed between each point in parameter space and the best fit point,
with test statistic 𝜆 defined as:

𝜆𝑖 = −2 ln
L(𝒙 |𝜽 𝑖)
L(𝒙 |�̂�)

= ℓ(𝒙 |𝜽 𝑖) − ℓ(𝒙 |�̂�), (2.1)

where L(𝒙 |𝜽) is the likelihood function of data 𝒙 given parameter values 𝜽 , ℓ is −2 lnL, 𝜽 𝑖 is
the 𝑖th set of fixed values of the parameters being tested for potential inclusion in the confidence
interval, and �̂� is the overall maximum likelihood estimate, hereinafter referred to as ‘best fit,’ of
all parameters to the data. Point 𝑖 is included in the 𝛼-level confidence interval if the 𝑝-value from
the likelihood ratio test is less than 1 − 𝛼, or equivalently, if 𝜆𝑖 is less than a ‘critical value,’ 𝑐𝛼,
given by: ∫ 𝑐𝛼

0
𝑃(𝜆𝑖)𝑑𝜆𝑖 = 𝛼, (2.2)
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where 𝑃 is the expected distribution of the 𝜆𝑖 statistic assuming the true 𝜽 = 𝜽 𝑖 . As can be
seen from Equation 2.2, calculating the critical value requires knowledge of the distribution of the
likelihood–ratio test statistic.

If the conditions of Wilks’ theorem [3] are met, then the distribution 𝑃(𝜆) asymptotically
approaches a 𝜒2 distribution with a number of degrees of freedom equal to the number of parameters
of interest1 with deviations2 expected at the O(1/

√
𝑁) level, where 𝑁 refers to the size of the data

sample, 𝒙. This asymptotic behavior means 𝑃(𝜆) is the same for any point, 𝑖. Since the 𝜒2

distributions are well known, fixed critical values for drawing confidence intervals at common
significance levels are tabulated and readily available.

The conditions required for Wilks’ theorem to apply are: (1) the maximum likelihood estimators
of the parameters have ellipsoidal distributions, and (2) the null hypothesis is ‘nested’ within the
range of alternative hypotheses. A common way to violate assumption (1) is a physical boundary
on the possible values of a parameter applied externally (e.g., probabilities must be between 0 and
1), but it can also be violated by an effective boundary introduced by a function with a limited range
such as sin(), or degeneracies that introduce other, potentially disjoint, regions of parameter values
which are potentially consistent with the observed data.3. The specific ways the NOvA oscillation
measurement violates these assumptions is explained in more detail in Section 4.1. When the
assumptions of Wilks’ theorem are not satisfied, the significance of the hypothesis tests cannot
be reliably determined using the 𝜒2 distribution, meaning this method will not produce correct
coverage for confidence intervals at their reported significance – another method must be used to
determine suitable critical values.

The Feldman–Cousins (FC) method [6] provides a nonparametric approach to defining confi-
dence intervals with correct coverage and is commonly used in particle physics. A large number,
𝑁 , of FC pseudoexperiments are simulated at points sampling the range of parameter values where
confidence intervals will be reported. A ‘Feldman–Cousins pseudoexperiment’ represents a possi-
ble experimental observation at a given set of parameters, 𝜽 . Each pseudoexperiment is constructed
by drawing a Poisson-distributed random number for each bin of our analysis samples, with the
mean of those Poisson distributions being the predicted number of events in that bin given 𝜽 . For
each FC pseudoexperiment, 𝒙 𝑗 , the best fit of the parameter(s), �̂� 𝑗 , is also found through Maximum
Likelihood Estimation. The FC pseudoexperiments are then ordered by the difference in ℓ between
the ‘true’ value used to generate the FC pseudoexperiments and the best fit,

𝜆𝑖 𝑗 = ℓ(𝒙 𝑗 |𝜽 𝑖) − ℓ(𝒙 𝑗 |�̂� 𝑗), (2.3)

to form a distribution 𝑃(𝜆𝑖) that differs for every 𝜽 𝑖 . This procedure is called ‘nonparametric’ since
the ordering of the pseudoexperiments creates a distribution for the test statistic, 𝜆𝑖 , without knowing
in advance how it should be distributed. Then, the 𝛼-significance-level critical value for this set of

1The number of parameters of interest is equivalent to the difference in number of degrees-of-freedom between the
two likelihoods in the likelihood ratio.

2In practice, these deviations are quite small even for small 𝑁 when the data is Poisson-distributed [14].
3Boundaries tend to reduce freedom to find optimal fits to the data and shrink confidence intervals, while degeneracies

tend to add freedom and expand intervals, but in both cases the assumption of an ellipsoidal distribution is violated. In
some circumstances, there are variations to Wilks’ theorem that can still give asymptotic distributions in the presence of
boundaries [15].
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true parameters, 𝑐𝛼 (𝜽 𝑖) as defined in Equation 2.2, is the value which is larger than the first 𝛼𝑁
of the 𝜆𝑖 𝑗 values. This procedure is then repeated for each point being tested, and the confidence
interval at level 𝛼 is made up of the points where 𝜆𝑖 < 𝑐𝛼 (𝜽 𝑖). If the FC pseudoexperiments are
a fair representation of the data, it is straightforward to see that this procedure will give correct
coverage, 𝛼, since we have empirically determined for each point in parameter space the critical
value 𝑐𝛼 (𝜽 𝑖) which will cover 𝛼 fraction of the pseudoexperiments generated with values 𝜽 𝑖 .

2.2 The Challenge of Nuisance Parameters

While the above procedure from [6] is straightforward, it does not provide guidance on a key
question when applying it in practice: how to handle nuisance parameters. We use the term
‘nuisance parameters’ (hereinafter referred to by 𝝓 to distinguish them from the parameters of
interest, 𝜽) to refer to any model parameter that we do not wish to include in the specification of
our final confidence intervals. These can be ‘physics’ parameters the experiment is measuring, but
whose constraints are not reported in a particular interval, other parameters of the model which are
constrained by external experiments, or parameters representing systematic uncertainties, whose
exact values are uninteresting.

A common approach for handling nuisance parameters is to ‘profile’ over them [5]. That is,
at each point in the parameter space, 𝜽 𝑖 , at which the likelihood is to be evaluated, a search is
performed over all values of the nuisance parameters, and the combination of nuisance parameters
that yield the maximum likelihood (minimum ℓ),

ˆ̂𝝓𝑖 = argmin
𝝓

ℓ(𝜽 𝑖 , 𝝓), (2.4)

is adopted. ˆ̂𝝓𝑖 , which corresponds to point 𝜽 𝑖 , is marked with two hats to distinguish it from the
globally optimal nuisance parameters, �̂�, which correspond to the best estimate of the parameters
of interest, �̂� . With these parameters defined, the likelihood ratio from Equation 2.1 becomes:

𝜆𝑖 = ℓ(𝒙 |𝜽 𝑖 , ˆ̂𝝓𝑖) − ℓ(𝒙 |�̂� , �̂�). (2.5)

In the frequentist statistical philosophy each nuisance parameter possesses an (unknown) true
value. The intuition is that, absent any further information, we adopt the nuisance parameter
values most compatible with the data. This procedure contrasts with the Bayesian ‘marginalization’
procedure, where the likelihood is taken to be the likelihood integrated over all values of the nuisance
parameters, weighted by a prior probability distribution.

The coverage guarantees of the Feldman–Cousins procedure rely on our access to a collection
of FC pseudoexperiments to inspect, which have been generated at the precise points we wish to
include/exclude at a certain significance. In the presence of nuisance parameters, however, we no
longer have access to such an ensemble since the values of the nuisance parameters are not defined
a priori by the point in parameter space being tested. Nevertheless, some values must be chosen
in order to generate FC pseudoexperiments. We could ensure correct coverage by defining our
confidence intervals in a high-dimensional space containing all the nuisance parameters, but this
is impractical, both computationally and because it cannot be easily visualized. When defining a
lower-dimensional confidence interval, the values we choose for the nuisance parameters may differ
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from the true values, potentially yielding incorrect coverage. Note, the goal in choosing nuisance
parameters for the pseudoexperiments is to ensure accurate coverage; it is not intended as a method
for propagating systematic uncertainties to confidence intervals. That goal is accomplished by
including them as nuisance parameters in the original likelihood.

2.3 Approaches to Nuisance Parameters in Monte Carlo Methods

Several plausible approaches exist for generating the FC pseudoexperiments for point 𝜽 𝑖 in the
presence of nuisance parameters; the methods differ both in how practical they are to use and in the
accuracy of the coverage they achieve. We discuss the methods below, and point out those which
are impractical to apply to real-world problems. The coverage properties of the methods that are
practical to implement will be explored in Section 3.

A priori estimate Hold the nuisance parameters fixed at their a priori assumed values in the
generation of all FC pseudoexperiments, 𝝓𝑖 = 𝝓0. While straightforward, in the plausible
case that the true values of the nuisance parameters differ from their a priori values, the a
priori estimate solution ignores the information available from the data about their values
and thus can easily under- or over-cover. While not expected to perform well, this method is
straightforward to implement so we will examine its coverage properties in Section 3.

Conservative At each point in the parameter space, 𝜽 𝑖 , select the values of the nuisance parameters
that yield the most conservative (largest) critical value based on FC pseudoexperiments, and
thus the largest confidence interval, 𝝓𝑖 = argmax𝝓 𝑐𝛼,𝑖 (𝝓). By taking the most conservative
critical values, this method is guaranteed not to under-cover. However, because even nuisance
parameters highly inconsistent with the data are considered, it is likely to substantially over-
cover. Additionally, unless a closed-form estimate of the 𝑐𝛼,𝑖 (𝝓) is available, this can be
computationally infeasible for unbounded parameters or a large number of parameters.

Berger–Boos This method is philosophically similar to the conservative method, but introduces
a limiting principle for which values of nuisance parameter to consider. At each point in
parameter space, 𝜽 𝑖 , determine the range of nuisance parameters consistent with the data at
significance level 𝛽, and then calculate 𝑝-values empirically (i.e. using pseudoexperiments)
for all values of the nuisance parameters within that range.

The overall 𝑝-value for point 𝜽 𝑖 is based on the largest 𝑝-value within that set, 𝑝 =

max𝝓 𝑝(𝜽 𝑖 , 𝝓) + 𝛽. This method is named after its proposers [16]. Since the nuisance
parameters in the likelihood and the pseudoexperiments are moved together, this method
does not have the same problem of over-coverage as the Conservative method, but it is still
computationally infeasible for making confidence intervals or for a large number of nuisance
parameters. Appendix B shows the use of this method to cross-check the significance in a
single hypothesis test, which is the context in which it was originally proposed.

Highland–Cousins When generating pseudoexperiments, generate the nuisance parameters from
their a priori probability distributions, 𝝓𝑖 ∼ 𝑃𝑟 (𝝓0). This method is commonly called
the Highland–Cousins method after its proposers [17]. Being an explicitly hybrid Bayesian
approach, its coverage properties are not guaranteed, and can be difficult to interpret in a purely
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frequentist framework. In the same fashion as with the a priori estimate approach, information
about the nuisance parameters garnered from the experiment is here discarded, making
implementation straightforward, but leading to worse performance. The Highland–Cousins
method has also been shown to over-cover in circumstances where the nuisance parameter
has a true fixed value but an estimated value that can vary experiment-to-experiment [18, 19].
Since this method requires the generation of a single set of FC pseudoexperiments, it is
practical to use and its coverage properties will be investigated in Section 3.

A posteriori Highland–Cousins At each point in parameter space, generate the FC pseudoex-
periments with parameters drawn from the post-fit, or a posteriori, likelihood distribution
derived from the observed data, 𝝓𝑖 ∼ 𝑃(�̂� |𝜽 𝑖). This variant has the same issue as the regular
Highland–Cousins method, where the coverage is ensured for an ensemble of experiments
with nuisance parameter values drawn from the a posteriori distribution rather than consider-
ing their true values. This procedure can also be impractical to apply in frequentist analyses,
which do not naturally produce these a posteriori distributions. Nonetheless, by constraining
the nuisance parameter values to those most consistent with the data, the coverage for the
unknown true values is likely to be more accurate. This method will be investigated in
Section 3.

Profile Construction At each point in parameter space, 𝜽 𝑖 , generate the FC pseudoexperiments
assuming the best-fit values of the nuisance parameters, given these parameters and the
observed data, 𝝓𝑖 =

ˆ̂𝝓𝑖 , as defined in Equation 2.4. This method was introduced to HEP in
the PhyStat conference series [11–13], but can also be found in statistics textbooks [5]4. This
method depends on the profiled values of nuisance parameters5, so it can only be applied
when those values are available. For example, this method could not be applied to systematic
uncertainties implemented as bin-to-bin covariance matrices, since in that case there are no
explicit nuisance parameters in the likelihood6. This method will be investigated in Section 3.

3 Toy Models

The computational cost of many of these methods makes comparing them in situ in the full analysis
prohibitive. In order to choose the best method to use in our oscillation measurements, we developed
a toy model that captures the key features of the NOvA oscillation measurement which violate Wilks’
theorem. It only includes an unconstrained ‘physics’ nuisance parameter since these were found to
be the primary source of non-Wilks’ behavior, and adding constrained ‘systematic’ parameters foils
the analytical calculations which make running the toy experiments computationally tractable. We
developed a second toy model focused specifically on the behavior in the presence of constrained

4The examples in [5] focused on simple cases where the probability distribution of the likelihood ratio does not
depend on the nuisance parameter or where the dependence can be calculated analytically. Determining the distribution
via Monte Carlo methods is only suggested by the more recent literature

5The profiled nuisance parameter values are sometimes called ‘pull terms.’
6It is possible to implement hybrid versions if different parameters are treated differently. For example, in the

sterile neutrino search presented in [20, 21], the profile construction is applied when choosing physics parameters
for pseudoexperiments, but the systematic values are thrown randomly per Highland-Cousins since no pull values are
available in the method used.
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Figure 1. The number of events expected in the toy model as a function of the continuous 𝛿 parameter
(𝑥-axis) and sign of 𝐶 term (positive sign blue, negative sign red). A hypothetical observation of a particular
number of events is shown in black.

systematic uncertainties, but with a simpler linear signal and background model. This second study
demonstrates how the treatment of nuisance parameters can impact the coverage, even without
explicit violations of Wilks’ theorem.

Source code reproducing both toy models is publicly available in [23].

3.1 NOvA-like Toy Model

The toy consists of the measurement of a single number – the number of events observed. We take
the expected number to be given by

𝑁exp = 𝐴 − 𝐵 sin 𝛿 ± 𝐶, (3.1)

where 𝐴, 𝐵, and𝐶 are fixed constants and the expectation, 𝑁exp depends on a 2 unknown parameters:
a continuous, cyclic parameter, 𝛿, and a binary parameter corresponding to a positive or negative
sign for the 𝐶 term.

We choose values for the constants:

𝐴 = 80,
𝐵 = 15,
𝐶 = 10,

so that the toy model has event counts similar to current rates from the NOvA experiment [10].
Figure 1 illustrates this function, along with a hypothetical measurement that we would want to
interpret. The experiment consists of making a single measurement of the number of events
observed, 𝑁obs, comparing to the expected number of events 𝑁exp, and using that to generate
confidence regions in 𝛿 or determine the sign of the 𝐶 term.

Constraining ourselves for the moment to the case where the sign of 𝐶 is already known (we
have external information telling us for certain which sign to pick) one derives a confidence interval
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by first finding the value 𝛿 that provides the best match to the observed data (the best fit given 𝑁obs),
and then computing:

𝜆(𝛿) = ℓ(𝛿) − ℓ(𝛿) (3.2)

for each value of 𝛿 under consideration.
For the purposes of keeping this toy minimal, and to avoid discontinuities arising from discrete

event counts7, we will assume 𝑁obs is normally distributed with mean 𝑁exp and standard deviation√︁
𝑁exp, and thus:

ℓ(𝛿) =

(
𝑁exp(𝛿) − 𝑁obs

)2

𝑁exp(𝛿)
. (3.3)

To determine confidence intervals, one then compares 𝜆(𝛿) to 𝑐𝛼 and accepts all values of 𝛿 having
a lower 𝜆. According to Wilks’ theorem, 𝜆 ∼ 𝜒2

𝑘=1, and one should therefore use 𝑐𝛼 = 1 to achieve
68.27% coverage.

This Wilks’ procedure over-covers significantly, even when the sign of 𝐶 is known in advance.
The over-coverage comes from two sources. The first is a degeneracy affecting all true values of 𝛿:
any observation, 𝑁exp, within the expected model range 𝐴 − 𝐵 +𝐶 < 𝑁exp < 𝐴 + 𝐵 +𝐶 for positive
𝐶, is consistent with two different values of 𝛿 due to the periodic nature of the 𝑁exp function. The
second occurs in cases where, through random chance, the observed data might be outside the
model range. When that occurs, the 𝑁exp is not perfectly compatible with any 𝛿 and the minimum
ℓ(𝛿) will always be found at the extreme of the function range, making ℓ(𝛿) larger than it would be
without constraints, and causing a larger region of the 𝛿 space to have a value of 𝜆 below 1. This
‘physical boundary’ effect is expected to be largest when the true value of 𝛿 is near 𝜋/2 or 3𝜋/2,
where such a fluctuation is expected to occur 50% of the time. Figure 2 shows this over-coverage
vs. the true value of 𝛿. We evaluate coverage by generating a series of statistically fluctuated toy
experiments at each true value of 𝛿, determining the best fit and confidence interval that would be
obtained for each, using 𝑐68% = 1, and counting the fraction of these toy experiments in which the
true 𝛿 value is included in the confidence interval.

In this circumstance where the sign of 𝐶 is known, the Feldman–Cousins procedure can be
followed to produce perfect coverage for any value of 𝛿. Figure 3 shows how the critical value,
𝑐68%, varies as a function of 𝛿, with substantially lower critical values in the regions nearest the
physical boundary to account for the effect described above. Using these critical values to evaluate
the coverage of an independent set of mock experiments yields ideal coverage, as would be expected
in this case since the FC pseudoexperiments were generated in exactly the same way.

In the full experiment, we do not know the true sign of 𝐶. One common approach is to
present the results for both possible choices of the binary parameter. However, if the results for
the parameter 𝛿 are desired irrespective of that choice, another common frequentist procedure is to
profile over the sign of the parameter,

ℓ(𝛿) = min
(
ℓ+(𝛿), ℓ− (𝛿)

)
, (3.4)

7Typical physics analyses have many bins and continuous parameters. But the first NOvA electron neutrino appearance
data, with only a handful of events in each bin, caused discontinuities to appear. An example of this type of discontinuity
caused by integer event counts can be seen in Fig. 4 of [22].

– 8 –



δTrue 

40

60

80

100

C
ov

er
ag

e 
(%

)

0
2
π π

2
π3 π2

Sign of C known

Wilks: true +C

C−Wilks: true 

Target coverage
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Figure 6. The coverage obtained using critical values
using the Highland–Cousins procedure (light blue)
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model, where the true sign of 𝐶 is unknown at fit
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sign (solid) and true negative sign (dashed). In both
cases the coverage averaged over 𝛿 and sign is cor-
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occur. Also shown is the a posteriori Highland-
Cousins method (here labeled ‘Posterior HC’ and
drawn in pink) which can be considered as an inter-
mediate option between Highland–Cousins and the
profile construction, and yields an intermediate per-
formance.

where ℓ+ is evaluated using the values of 𝑁exp based on the positive sign for 𝐶, and similarly for
ℓ−. We can replicate this procedure in the fits performed on the FC pseudoexperiments, but we are
still left with the question of how to generate the FC pseudoexperiments. We will obtain different
critical values if we generate all the FC pseudoexperiments with positive vs. negative sign, as shown
by the solid and dashed lines in Figure 4, because the boundaries on possible values of 𝑁exp are
now wider (𝐴 − 𝐵 − 𝐶 < 𝑁exp < 𝐴 + 𝐵 + 𝐶), and FC pseudoexperiments generated assuming a
particular sign will only run up against one boundary. The previous example where the sign was
known (Figure 3) showed large downward deviations in the critical value at both 𝜋/2 and 3𝜋/2
since both were boundaries on 𝑁exp, but now there is only a large deviation at 3𝜋/2 for the positive
sign, where it runs into the high-side boundary on 𝑁exp, and at 𝜋/2 for the negative sign where it
runs into the low-side boundary. In the intermediate regions around 0, 𝜋, and 2𝜋, where the event
counts in the pseudoexperiments will typically be far from the overall upper and lower limits no
matter which sign we assume when generating them, the critical values closely follow each other.

The consequences of this behavior for the coverage of confidence intervals are shown in
Figure 5, which compares the coverage vs. true values of 𝛿 and sign of 𝐶 (solid/dashed for pos-
itive/negative) from Wilks’ theorem (black) and from the Feldman–Cousins procedure where we
arbitrarily choose to generate FC pseudoexperiments assuming the positive sign. As in Figure 2,
Wilks’ theorem shows over-coverage everywhere, but it is substantially worse when the true values
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lie near the boundaries on 𝑁exp (+𝐶, 𝛿 = 3𝜋/2 or −𝐶, 𝛿 = 𝜋/2). The Feldman–Cousins method
yields ideal coverage in the +𝐶 case, but large deviations in the case of true −𝐶, where the FC
pseudoexperiments have incorrectly encountered a physical boundary (at 3𝜋/2) or missed one (at
𝜋/2). The results for experiments generated assuming negative sign show the same qualitative
behaviour, but with the roles of 𝛿 = 𝜋

2 and 𝛿 = 3𝜋
2 reversed.

For the present toy experiment, the Highland–Cousins procedure consists of splitting the
difference by generating the FC pseudoexperiments equally from each sign (assuming a 50:50 prior
expectation). This has the predictable effect of yielding critical values intermediate between the
FC expectations from the two signs (light blue line in Figure 4) and coverage (light blue lines in
Figure 6) intermediate between the ‘right’ and ‘wrong’ FC coverage (red lines, solid and dashed
respectively, in Figure 5). This is certainly an improvement from the FC+ (or FC−) case – the
‘average’ coverage is correct, and there is no longer a large difference in behaviour depending on
the true sign.

The profile construction achieves better results than any of these methods by using information
from the observed data itself. If we observe a large number of events, say ≳ 85, we know it is more
likely that the critical value evaluated under the +𝐶 hypothesis will provide the right coverage, and
similarly a small number of observed events, ≲ 70, suggests the −𝐶 hypothesis is more likely to
provide correct coverage. If we observe an intermediate number of events (values close to 80), then
we have gained no information about the true sign of 𝐶, but in that case the critical values are very
similar either way.

In this case, for each toy experiment contributing to the coverage evaluation, for each value
of 𝛿 whose membership in the confidence interval we need to determine, we evaluate which sign
gives the best match (lowest ℓ) to the data, and generate the FC pseudoexperiments from which the
critical value will be derived assuming that sign. For a continuous nuisance parameter, we would
generate experiments assuming the best-fit value.

The blue lines in Figure 6 show the coverage obtained by this procedure. Deviations still
occur in the regions where the two critical values differ, but the magnitude is substantially reduced
compared to Highland–Cousins. The remaining mis-coverage is due to those cases where a statistical
fluctuation produces a number of events more compatible with positive sign, despite the true sign
being negative, or vice versa.

The Posterior Highland–Cousins approach – generating the FC pseudoexperiments distributed
between the two signs based on the posterior distribution – represents an intermediate point between
Highland–Cousins (generating pseudoexperiments equally from the two signs) and our profiling
method (generating pseudoexperiments from the best-fit sign). Unsurprisingly, for these toy exper-
iments it yields intermediate coverage properties – better than Highland–Cousins but not as good
as the profile construction.

3.2 Toy Model with Constrained Systematic Uncertainties

A second toy model was developed to study the coverage properties of the profile construction,
Highland-Cousins, and Wilks’ theorem in the presence of constrained nuisance parameters, a
common method for implementing systematic uncertainties. In order to make the calculations
tractable, the model itself is simpler than the NOvA-like case above. Here, we take the expected
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number of observed events, 𝑁exp, to be:

𝑁exp = 𝑆 + 𝐵 (3.5)

where 𝑆 refers to signal and 𝐵 refers to background, where 𝐵 has been externally constrained to a
value 𝐵0 with uncertainty 𝜎syst. As above, we will assume that the data is normally distributed (and
we use large enough numbers in the concrete examples below for this to be a good approximation),
so the log-likelihood function is:

ℓ(𝑆, 𝐵|𝑁data) =
(𝑁data − 𝑆 − 𝐵)2

𝑁
+ (𝐵 − 𝐵0)2

𝜎2
syst

(3.6)

ℓ(𝑆 |𝑁data) = min
𝐵

ℓ(𝑆, 𝐵|𝑁data) (3.7)

= ℓ(𝑆, �̂�(𝑆 |𝑁data) |𝑁data) (3.8)

where the second ℓ function has profiled over the nuisance parameter, 𝐵. In this simple example,
�̂� can be calculated analytically given the other parameters defined above and an observed 𝑁databy
finding the root of the derivative of ℓ with respect to 𝐵:

�̂�(𝑆 |𝑁data) =
𝑁data𝐵0 + (𝑁data − 𝑆)𝜎2

syst

𝑁 + 𝜎2
syst

, (3.9)

and the maximum likelihood estimate (or best fit point) for the signal, 𝑆 will be at the point where
both terms in the ℓ equal 0:

𝑆 = 𝑁data − 𝐵0. (3.10)

The coverage accuracy was estimated by testing every possible integer value of 𝑁databetween
±5.5𝜎stat on 𝑁data = 𝑆 + 𝐵, weighted by the likelihood of having drawn that particular value of
𝑁datafrom a normal distribution centered on 𝑆 + 𝐵8. The coverage accuracy for a 𝑝-value is defined
as:

Coverage Accuracy =
𝐶 − (1 − 𝑝)

𝑝
, (3.11)

where 𝐶 is the observed frequency at which the true value 𝑆 is included in the confidence intervals
in the weighted toy experiments; perfect coverage is achieved when𝐶 = 1− 𝑝. 𝐶 is calculated with:

𝐶 =

∑
𝑖 𝑤𝑖Θ(𝑝𝑖 − 𝑝)∑

𝑖 𝑤𝑖

, (3.12)

where 𝑖 steps through the possible values of 𝑁data, Θ() is the Heaviside step function that is 1 if its
argument is 0 or greater and 0 otherwise, 𝑝𝑖 is the 𝑝-value calculated for the true value of 𝑆 for toy
experiment 𝑖 for a given method, and 𝑤𝑖 is the weight for that experiment. The weight is defined as:

𝑤𝑖 =

N
(
𝑁𝑖 | 𝑆 + 𝐵,

√
𝑆 + 𝐵

)
N

(
𝑁0 | 𝑆 + 𝐵,

√
𝑆 + 𝐵

) (3.13)

8Equivalent results, but with more noise, are obtained by randomly drawing 𝑁datavalues from a Poisson distribution
with rate 𝜆 = 𝑆 + 𝐵.
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Figure 7. These plots show the accuracy of coverage of 1-, 2-, and 3-𝜎 confidence intervals for the
the profile construction (blue), Highland-Cousins (green), and Wilks’ Theorem (red) methods, plotted vs.
the relative size of the systematic and statistical error on the measured parameter, 𝑆. A range of different
signal:background balances and systematic uncertainty sizes were tested, and the mean and standard deviation
across those different tests are plotted here, showing that the ratio on the x-axis is the key independent variable.

where N is the PDF of the normal distribution, 𝑁𝑖 is the value of 𝑁dataand the denominator is the
value of the smallest (i.e. least probable) 𝑁data. This weight function assigns a weight of 1 to 𝑁0

and weights up other experiments by how much more frequently they should be sampled relative to
𝑁0.

For this toy model, it is straightforward to test the coverage of the profile construction, Wilks’
theorem, and Highland-Cousins methods given some specific values for the parameters above9.
After testing a variety of possible choices, we determined that the key parameters defining the
coverage behavior were the size of the systematic uncertainty, 𝜎systrelative to the size of the
statistical error on 𝑆,

𝑟 = 𝜎syst/𝜎stat (3.14)
= 𝜎syst/

√
𝑆 + 2𝐵 (3.15)

and the bias in the external estimate of the nuisance parameter 𝐵0, relative to 𝜎syst:

𝑏 =
𝐵0 − 𝐵true

𝜎syst
. (3.16)

With those ratios held fixed, changing the specific number values of 𝑆 and 𝐵 did not affect the
coverage accuracy, as long as the numbers chosen were large enough to avoid significant deviations
between the normal and Poisson distributions. For all experiments shown here, an 𝑆 = 350 was
used. Figure 7 shows the results for 𝐵 = {50, 150, 250, 350} and 𝜎syst = {5%, 10%, 15%, 20%,

25%, 30%, 35%, 40%, 45%}, where the lines represent the mean and the shaded region shows the
standard deviation across these different combinations of values. The narrow size of the standard
deviation shows that the ratio 𝑟 above is the key independent variable driving behavior.

9For the Highland-Cousins and profile construction methods, 100,000 pseudo experiments were generated. For HC,
this only needs to be done once for each set of parameters, while for the profile construction, the pseudoexperiments are
thrown for each possible value of 𝑁data.
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Figure 8. These plots show the accuracy of coverage of 1-, 2-, and 3-𝜎 confidence intervals for the the
profile construction (blue), Highland-Cousins (green), and Wilks’ Theorem (red) methods, plotted vs. the
bias in the estimate of the background parameter 𝐵0 in units of 𝜎syst, for 3 different values of the relative
size of the systematic and statistical error on the measured parameter, 𝑆. For biases below 1𝜎systand
relative systematic uncertainties of 20% or below, all the methods give reasonably accurate coverage. As
the systematic uncertainties and biases increase, all the methods have worse coverage accuracy, with none
performing obviously better in these challenging scenarios.

Figure 7 shows that coverage performance is better at low significances and where systematic
uncertainties are small relative to statistical uncertainties across all methods. For systematic
uncertainties below 20% of the statistical error, all the methods give reasonably good coverage
accuracy. At the 1𝜎 and 2𝜎 significance levels, the profile construction gives the most accurate
coverage among the 3 methods tested across a range of systematic uncertainty sizes. At 3𝜎
significance, all 3 methods have equivalent coverage performance.

Based on these results, the study of the bias, 𝑏, in the systematic estimate shown in Figure 8
was only performed at 𝐵 = 150 and the 𝜎syst = 10%, 20%, 45%. The three methods show very
similar behavior when systematic uncertainties are small relative to statistical errors (first two
rows), with all methods under-covering for very large positive biases in the estimated background,
𝐵0. When systematics are large (third row) and biases are large, accurate coverage becomes similarly
challenging for all methods.
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4 Implementation in the NOvA Analysis

The primary goal of a neutrino oscillation experiment like NOvA is to measure the parameters
which govern neutrino oscillations, namely the mixing angles and phase from the PMNS mixing
matrix as well as the differences between the neutrino masses [10]. Additionally, certain ‘binary’
questions can be addressed: whether the ordering of the neutrino masses is ‘normal’ or ‘inverted,’
i.e., whether 𝑚3 is larger or smaller than 𝑚1, or whether the mixing angle 𝜃23 is larger or smaller
than 45◦, referred to as the upper and lower ‘octant’ of that angle. The parameters of the toy
experiments in the previous section correspond to some of these parameters: 𝛿 plays the role of the
PMNS phase, 𝛿CP, while the sign of 𝐶 could refer to either of the mass ordering or the octant.

These parameters, as described above, cannot be observed directly. Instead, the experiment uses
a beam of muon (anti)neutrinos [24] and measures the rate of disappearance of muon (anti)neutrinos
and the rate of appearance of electron (anti)neutrinos as a function of their estimated energy. Since
the parameters of interest govern these disappearance and appearance rates, they can be estimated
from the observed energy spectra via Maximum Likelihood Estimation [1]. The confidence intervals
describing the uncertainty on these parameters are then determined using the methods described
here.

After some concrete illustrations of how Wilks’ conditions are not satisfied, this section
describes some key technical details in the implementation of the profile construction in the NOvA
oscillation analysis. Substantially more details on the optimization of this method to run on High
Performance Computing platforms will be available in an upcoming paper.

4.1 Violations of Wilks’ theorem assumptions in NOvA’s neutrino oscillation analysis

Feldman and Cousins first introduced the FC method in the context of a neutrino experiment [25]
where the conditions for Wilks’ theorem, described in Section 2.1 were not met. The NOvA 3-flavor
oscillation analysis violates these three conditions as follows:

(1) Effective boundaries: Many of the parameters of the oscillation model have effective
boundaries of some kind. One example can be seen with the 2-flavor approximation of the survival
probability for neutrino flavor 𝜈𝛼:

𝑃(𝜈𝛼 → 𝜈𝛼) = 1 − sin2(2𝜃) sin2
(
Δ𝑚2𝐿

4𝐸

)
, (4.1)

where 𝐿 is the constant distance, 𝐸 is the neutrino energy, and Δ𝑚2 and 𝜃 are the independent
parameters being measured. While the angle 𝜃 is unconstrained, the impact it has on the observable
(the survival probability) is constrained by unitarity: if 𝜃 = 𝜋/4, either increasing or decreasing 𝜃

will lead to a reduction in the oscillation probability. This effect can be see on the right side of
Figure 9. Similarly, the CP-violating phase 𝛿CP is cyclic and not well constrained, so it also easily
runs up against effective ‘boundaries’ in its possible impact.

(2) Nested hypotheses: The nested hypothesis assumption is not violated for all measurements,
but it is clearly violated for binary questions. When there are only 2 possible disjoint outcomes
(e.g. mass ordering is normal vs. inverted or upper vs. lower octant of 𝜃23), whichever is chosen
as the null cannot be a special case of the alternate. In practice, confidence intervals showing both
(or all 4) choices are presented where possible, but profiling over the octant is necessary when
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determining the mass hierarchy significance (discussed in detail in Section 4.4) and is used for
some other significance plots as well.

The procedure followed by NOvA is presented next.

4.2 Fitting the data

NOvA measures the energy spectra of disappearing muon (anti)neutrinos and appearing electron
(anti)neutrinos in order to constrain parameters of the neutrino oscillation model: the mixing angle
𝜃23, the mass splitting Δ𝑚2

32, in particular its sign, equivalent to determining the neutrino mass
ordering, and the CP–violating phase 𝛿CP. The candidate neutrino interactions are divided into
different categories (based on energy resolution and particle identification criteria) to optimize
the measurement’s sensitivity. The relative compatibility between model predictions given sets of
parameter values and some data is quantified with a likelihood function L. The best fit is found by
maximizing L, or minimizing ℓ = −2 lnL. Since the data is structured as a histogram (meaning
a set of counts of independent events), the likelihood function for Poisson–distributed data [1] is
used10:

ℓ𝑠𝑡𝑎𝑡 = 2
∑︁
𝑖

(
𝑒𝑖 (𝜽) − 𝑜𝑖 + 𝑜𝑖 ln

𝑜𝑖

𝑒𝑖 (𝜽)

)
, (4.2)

where 𝑒𝑖 (𝜽) is the expected number of events in bin 𝑖 given parameter values 𝜽 , and 𝑜𝑖 is the
observed number of events in that same bin. The 𝑒𝑖 (𝜽)’s are calculated by extrapolating the muon
(anti)neutrino energy spectrum measured in NOvA’s near detector to its far detector assuming a set
of neutrino oscillation parameters, taking into account known differences in flux and acceptance
between the detectors. In addition to the oscillation parameters, around 50 systematic uncertainties
are included in the fit as nuisance parameters, with penalty terms added to the likelihood in
Equation 4.2:

ℓ = ℓ𝑠𝑡𝑎𝑡 +
∑︁
𝑘

𝜙2
𝑘

𝜎2
𝑘

, (4.3)

where 𝜎𝑘 is the prior uncertainty on the 𝑘 th nuisance parameter 𝜙𝑘 . The sources of uncertainty vary
from parameter to parameter. For example, some uncertainties are based on the uncertainties quoted
by external measurements, some are based on the level of agreement between data and simulation
within the experiment, and some are based on comparisons between alternative theoretical models.
The values of sin2 𝜃23, Δ𝑚2

32, and 𝛿CP which minimize ℓ (i.e., the Maximum Likelihood Estimate
or best fit point) are found using the Minuit2 minimizer [26]. This best fit point is the basis from
which the confidence intervals and significances, the main topic of this paper and main results of
the oscillation analysis, are constructed.

4.3 Building 1-dimensional and 2-dimensional confidence intervals

To build 1-dimensional or 2-dimensional maps of the significance, we need to sample the oscillation
parameter space finely enough to catch possible local features, while also being limited by the
computational costs the Profiled Feldman–Cousins approach entails. In practice, this means that
the significance is evaluated at 60 points evenly distributed across the range of parameter values

10Or more accurately ℓ = −2 lnL/L0, where L0 is the likelihood when 𝑜𝑖 = 𝑒𝑖
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when building 1-dimensional significance maps. These one-dimensional plots can be constructed
with the parameters constrained in one mass ordering, one 𝜃23 octant11, or a combination of both.
In two dimensions, we report confidence intervals (i.e., contours) for sin2 𝜃23 vs. 𝛿CP (estimated in
a 30×30 grid) and Δ𝑚2

32 vs. sin2 𝜃23 (in a 20×20 grid), for both orderings.
As explained earlier, we chose to profile the nuisance parameters. The first step is therefore to fit

the data with the parameters of interest fixed at each grid point, 𝜽 𝑖 , and find ˆ̂𝝓𝑖 , the set of nuisance
parameters minimizing ℓ per Equation 2.4. This process can be conveniently run on standard
distributed computing resources and serves as an input to the more computationally intensive
generation and fitting of millions of Feldman–Cousins pseudoexperiments in a High Performance
Computing environment. From that first step, we can already obtain maps of the significance
under Wilks’ theorem, which provides a good first approximation of the final significance. The
Feldman–Cousins procedure then modifies those maps, increasing or decreasing the significance
depending on the distribution of the underlying test statistic, which is why this procedure can
be considered a correction. We can also take advantage of those approximated significances to
estimate the number of FC pseudoexperiments that need to be generated at each point of the
parameter space, 𝜽 𝑖 , to reach a desired statistical accuracy when measuring the 𝑝-values from the
empirical 𝜆 distributions. Working backwards from the formulation of the binomial uncertainty,
the number of pseudoexperiments, 𝑁𝑃𝑆𝐸 , required to reach an uncertainty 𝑢 can be expressed as:

𝑁𝑃𝑆𝐸 =

[
𝑢2

(
𝑄

(
𝑛𝑑𝑜 𝑓

2
,
𝜆𝑊𝑖𝑙𝑘𝑠

2

)
− 1

) (
𝑄

(
𝑛𝑑𝑜 𝑓

2
,
𝜆𝑊𝑖𝑙𝑘𝑠

2

))]−1
, (4.4)

where 𝜆𝑊𝑖𝑙𝑘𝑠 is estimated from the data under Wilks’ conditions, 𝑛𝑑𝑜 𝑓 is the number of degrees of
freedom, and𝑄 is the regularized incomplete gamma function. In practice, we require a relative un-
certainty on the p-value no greater than 5%, which translates to a few thousand pseudoexperiments.
This uncertainty is chosen to be negligible compared to the other measurement’s uncertainties.
The number of pseudoexperiments is capped at 5,000 for a single point of the parameter space be-
cause of computational constraints, which means 3-sigma regions could be described with a lesser
accuracy, albeit still not constituting the dominating source of uncertainty. For each 𝜽 𝑖 , the FC
pseudoexperiments are constructed by generating Poisson–fluctuated neutrino energy spectra from
the predictions made at (𝜽 𝑖 , ˆ̂𝝓𝑖) determined above. For each FC pseudoexperiment, 𝑗 , generated at
point 𝑖, a likelihood ratio is estimated:

𝜆𝑖 𝑗 = ℓconstrained − ℓunconstrained

= ℓ(𝒙 𝑗 |𝜽 𝑖 , ˆ̂𝝓𝑖 𝑗) − ℓ(𝒙 𝑗 |�̂� 𝑗 , �̂� 𝑗).
(4.5)

Both likelihoods are evaluated on the FC pseudoexperiment spectrum, 𝒙 𝑗 , at parameter values
which minimize the likelihood function, ℓ, but they differ in which parameters are allowed to vary
in the minimization. The first likelihood is evaluated after a constrained fit where the parameters of
interest are fixed to the values used to generate the pseudoexperiment, 𝜽 = 𝜽 𝑖 , and only the nuisance
parameters are varied, denoted by 𝝓 = ˆ̂𝝓𝑖 𝑗 , analogous to how ˆ̂𝝓𝑖 is determined in the fit to the real
data. The second likelihood is evaluated after an unconstrained fit in which both 𝜽 and 𝝓 are varied
in order to find the global minimum of ℓ(𝒙 𝑗), denoted, (�̂� 𝑗 , �̂� 𝑗).

11𝜃23 < 45◦ is commonly referred to as the lower octant, while 𝜃23 > 45◦ is the upper octant.
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The neutrino oscillation parameter space can be degenerate, in particular for 𝛿CP and nuisance
parameters like 𝜃13, or for values of 𝜃23 mirrored around the value which produces maximal 𝜈𝜇
disappearance. In order to avoid biases towards a particular region of parameter space, we run
multiple fits with different seed values for each FC pseudoexperiment and then take the result with
the lowest ℓ.

Between 1000 and 5000 FC pseudoexperiments are generated at each 𝜽 𝑖 , where more FC
pseudoexperiments are required for the most extreme 𝑝-values. Furthermore, given the very large
number of FC pseudoexperiments that are required in the 3-sigma (and above) regions in order
to accurately measure the corresponding small 𝑝-values, we choose to only perform the profile
construction in regions where

√
𝜆Wilks < 20 for 1-dimensional constraints and

√
𝜆Wilks < 12 for

2-dimensional constraints.
The 𝜆𝑖 𝑗 distributions are then used to build empirical test statistic distributions for each 𝜽 𝑖 . For

1-dimensional significance plots, a 𝑝-value is first determined at each grid point by counting the
fraction of FC pseudoexperiments with a 𝜆𝑖 𝑗 larger than that of the data at that same 𝜽 𝑖 . The 𝑝-value
is then converted to a significance via 𝜎 =

√
2 erfc−1(𝑝). The resulting collection of significances

is then interpolated and smoothed taking care to preserve real discontinuous features (discussed
more in Section 4.6). Figure 9 illustrates how significances for one or two parameters of interest
can be represented. For most regions of the parameter space, we expect the underlying likelihood
surface to be well–behaved but the existence of boundaries and local, nearly degenerate minima
can skew the test statistic distributions, resulting in jump of significances between neighboring grid
points, as illustrated in Section 4.6.

The procedure to establish 2-dimensional contours of isosignificance is slightly different. We
first start by evaluating the standard likelihood of the data at each point 𝜽 𝑖 of the grid used to
sample the parameter space. We then evaluate the critical likelihood corresponding to each of
the significance levels of interest, namely 1𝜎, 2𝜎, and 3𝜎, from the set of Feldman–Cousins
pseudoexperiments, again, at each grid point. Each map of critical profile construction values is
then subtracted from the map of standard likelihood obtained from the data. The intersection of
the resulting surfaces with the plane 0 (or, for the inverted ordering, with the plane 𝜆𝐼𝐻 , which is
the difference between the likelihoods of the best fit point in the Inverted Ordering and the overall
best fit point) represents the contours of isosignificance. A kernel smoothing procedure is finally
applied to the 2-dimensional contours, taking care to consider points near 𝛿CP = 0 and 𝛿CP = 2𝜋 as
neighbors (due to its cyclical nature) in the sin2 𝜃23 vs. 𝛿CP contours.

4.4 Hypothesis tests

In addition to 1-dimensional and 2-dimensional constraints on oscillation parameters, we can
perform hypothesis tests for the mass ordering, the 𝜃23 octant, or a combination of both. A key
benefit of the profile construction is that the procedure can naturally address these binary tests (or
discrete choices in general) since when applied to a single point the procedure becomes a classic
likelihood ratio test with Monte Carlo used to determine the 𝑝-value. Similar procedures have
been shown in the literature for some time, generally focused on questions of sensitivty of future
experiments, for example [27]. In our procedure, FC pseudoexperiments are generated with the
parameter being tested held fixed and all other parameters set to their profiled values given that
constraint. For example, if the overall best fit is in the normal ordering, the test would be for rejecting
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Figure 9. Comparisons between Wilks’ theorem (dashed) and the profile construction (solid) for two results
from [10]. Left: Significance of the data for different values of 𝛿CP and mass ordering. Right: Contour plot
showing the 1-𝜎 domain of isosignificance in the normal ordering forΔ𝑚2

32 vs. sin2 𝜃32. The right additionally
includes a color scale that shows the size of the change in the 1-𝜎 critical value at that point in parameter
space. The contour ‘pinches’ around sin2 𝜃23 = 0.51 since that is the point of maximal disappearance, an
effective ‘boundary’ in the impact of this parameter.

the inverted ordering, so the FC pseudoexperiments would be generated in the inverted ordering
with all other parameters set to the best fit to the data in that ordering. Since this procedure is only
done at one point of the parameter space for each hypothesis test, we can afford to generate more
FC pseudoexperiments (tens of thousands) and reach more accurate measurements of the 𝑝-values
and significances than for 1D and 2D confidence intervals. The result of the procedure is, again, an
empirical collection of 𝜆 = ℓconstrained-ℓunconstrained which can be used to determine the fraction of FC
pseudoexperiments that yield a 𝜆 less compatible with the null hypothesis than the data, equating to
a 𝑝-value. This likelihood–ratio test statistic slightly differs from the one defined in Equation 2.5:
all parameters are still free to vary in the unconstrained fit, but in the constrained fit, the parameters
of interest are allowed to take values within the limits defined by the hypothesis being tested. This
procedure is the only correct one for the estimation of our level of preference (or rejection) for a
given hypothesis; it cannot be done by reading the minima of the 1-dimensional or 2-dimensional
confidence intervals, as explained in more detail in Section 4.6. The profile construction can also be
extended in a straightforward way to also calculate a CLs significance, see Appendix A for details.

4.5 Validation

When considering any frequentist statistical procedure, a key step is to evaluate the coverage
properties of that procedure for the problem at hand. The goal of the profile construction is to
produce confidence intervals with coverage as close as possible to the stated level 𝛼. The examples
in Section 3 show that none of the procedures considered produce perfect coverage when certain
truth quantities are unknown, but in those examples, the profile construction comes the closest.

Here we give an in-situ demonstration of achieving these coverage properties with NOvA
simulation by generating validation pseudoexperiments at known true values, and evaluating how
often those true values would be contained within confidence intervals drawn with the profile
construction as well as Wilks’ theorem for comparison. In the ideal case, we would expect the
50% confidence intervals to cover the true point in 50% of the validation pseudoexperiments. Two
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true test points were chosen: the overall best fit point from [10], which is far from boundaries,
leading to little expected impact from the profile construction on the significance, and the preferred
point if the CP–violating phase was 𝛿CP = 0 where larger deviations are expected due to parameter
degeneracies.12

We perform the test with one-dimensional confidence intervals in Δ𝑚2
32, though any parameter

(or set of parameters) would work. At each true point, 1000 validation pseudoexperiments are
generated. For each pseudoexperiment, 𝑖, we must determine whether the true parameter value used
to generate the pseudoexperiments, 𝜽0, would be included within the confidence interval drawn at
significance 𝛼. For both methods, the first step is to perform two fits to determine both the overall
best fit point, (�̂� 𝑖 , �̂�𝑖), as well as the preferred set of nuisance parameters when 𝜽 is constrained to
the true value the validation pseudoexperiments were generated at, (𝜽0,

ˆ̂𝝓0𝑖) 13. The log-likelihood
ratio between these two points is then calculated:

𝜆𝑖 = ℓ(𝜽0,
ˆ̂𝝓0𝑖) − ℓ(�̂� 𝑖 , �̂�𝑖). (4.6)

For Wilks’ theorem, determining if the true point would be included in confidence interval 𝛼 is
a simple check if 𝜆𝑖 is less than the pre-tabulated critical values, 𝑐𝛼,Wilks, which are the same for
every validation pseudoexperiment. For the profile construction, the critical values, 𝑐𝛼,𝑖 , must
be found individually for each validation pseudoexperiment, 𝑖, using 1000 FC pseudoexperiments
generated at (𝜽0,

ˆ̂𝝓0𝑖), true value being tested along with the experiment-by-experiment preferred
nuisance parameters per the profile construction. The true value would be included within the
profile construction confidence interval if 𝜆𝑖 < 𝑐𝛼,𝑖. For both methods, the effective coverage at
level 𝛼 is defined as the fraction of experiments where 𝜽0 would be included, i.e. 𝜆𝑖 is less than the
respective critical value.

Note that without nuisance parameters, this test would be tautological: the validation pseu-
doexperiments and the FC pseudoexperiments being used to determine if the test point would be
inside the profile construction confidence interval would all be drawn based solely on 𝜽0, and so
the coverage must be correct. In the presence of nuisance parameters, however, the validation
pseudoexperiments are drawn based on (𝜽0, 𝝓0) while the FC pseudoexperiments are drawn from
(𝜽0,

ˆ̂𝝓0𝑖). Figure 10 shows how the coverages obtained under Wilks’ theorem and the Profiled
Feldman–Cousins approach vary for different intended coverages at the two points of parameter
space considered above. Wilks’ theorem generates widely different results depending on the re-
gion of the parameter space and can significantly deviate from the ideal coverage. The Profiled
Feldman–Cousins method provides us with a more consistently accurate estimation of the desired
coverage. Figure 10 hints that the magnitude of the corrections might decrease in the most extreme
significance levels. This is not a general property and is further investigated in Section 4.6. We
also performed a cross-check of the significance of our mass ordering determination using an alter-
native (and more conservative) method of handling nuisance parameters developed by Berger and
Boos [16]. That procedure did not uncover a larger 𝑝-value than the one reported from the profile

12While this test could be done at any points, these points from the fit to NOvA data were chosen to give concrete,
relevant examples.

13In this study the nuisance parameters just include other oscillation parameters; we did not include systematic
uncertainties.
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Figure 10. The left figure shows the coverages obtained with Wilks’ theorem (blue) and the profile
construction (red) at our overall best fit point, while the right figure shows those coverages at our best
fit if 𝛿CP = 0. On the left, Wilks’ theorem shows a good approximate coverage, while on the right, it
produces a significant under-coverage, which would have the effect to artificially disfavor 𝛿CP = 0. The
coverage obtained with the Profiled Feldman–Cousins approach is consistently more accurate. The error bars
represent the statistical uncertainty on the binomial confidence interval obtained from 1000 fake experiments.

construction, and so is consistent with that result. The details of this cross-check can be found in
Appendix B.

4.6 Limitations and Features

The nominal output of the Feldman–Cousins method is a single confidence interval or region with
reasonable coverage. However, it is straightforward and convenient to apply a Feldman–Cousins
correction to a whole likelihood surface: each point has a likelihood, from that likelihood a 𝑝-value
can be determined based on the distribution of FC pseudoexperiments at that point, and then from
that 𝑝-value work backwards to an equivalent likelihood. This ‘Wilks’ Surface’ is quite practical to
work with since contours at any significance can be drawn using the Wilks’ critical values. However,
while the Wilks’ Surface superficially resembles an actual likelihood, it does not have the properties
of a likelihood. Notably, it cannot be ‘profiled’ to reduce its dimensionality: a two-dimensional
likelihood surface and its associated FC pseudoexperiments cannot be used to find one-dimensional
confidence intervals.

The determination of the mass ordering in the most recent NOvA results provides a clear
demonstration of this phenomenon [10]. The lowest significance for the Inverted Ordering has
several different values in different projections of the significance: 0.6𝜎 vs. sin2 𝜃23 and 0.5𝜎
vs. Δ𝑚2

32 or 𝛿CP. Mechanically, these differ since each projection is determined with different sets
of experiments generated at different assumed true values. They are not expected to correspond in
principle because assigning the likelihood of the Inverted Ordering as a whole to the lowest value of
the likelihood when projected against another variable is an example of profiling, which is not a valid
operation on these Wilks’ Surfaces. The correct procedure is to generate FC pseudoexperiments
specific to each question being asked, in this case a hypothesis test to determine the ordering. A
benefit of the FC approach is that it can naturally accommodate binary questions like the neutrino
mass ordering where the number of degrees of freedom for the Wilks’ theorem approach is not
well-defined, typically producing stronger constraints than applying Wilks’ theorem with 1 degree
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Figure 11. (a) The quoted significance vs. 𝛿CP is discontinuous around 𝛿CP = 𝜋
10 . This is due to the

discontinuity in the profiled value of sin2 𝜃23 as a function of 𝛿CP. (b) sin2 𝜃23 transitions from maximal
mixing to upper octant at this point. The FC pseudoexperiments are therefore generated at different points
in parameter space. (c) The very similar values of 𝜆 in the data are assigned different p-values due to
being compared to different empirical distributions. The 𝑝-value is obtained by integrating the empirical
test-statistic distribution, 𝑃(𝜆), from a lower bound, shown here on the x-axis, to +∞.

of freedom. In this case, the significance calculated directly for rejecting in the Inverted Ordering
is 1.0𝜎.

With this method, it is also possible for discontinuities in the corrected significance plot
to emerge even if the underlying likelihood surface is smooth. An example of one of such a
discontinuity can be found in Figure 11a around 0.1𝜋 in the plot of significance vs. 𝛿CP in the
normal ordering, upper octant. This occurs because of a discontinuity in the profile construction
corrections, caused by a discontinuous change in the value of the nuisance parameters14. In this
particular case, the global minimum moves from maximal mixing to the upper octant at this
particular value of 𝛿CP, as shown in Figure 11b, leading to a change in the underlying 𝜆 distributions
on either side of the discontinuity which then translates to different 𝑝-values for a given critical
value, shown in Figure 11c.

A drawback of this method is its computation cost. We explored how the size of profile
construction corrections depend on the significance for which the correction is being computed.
It would be convenient if the size of corrections became smaller as significance increases since
corrections require more FC pseudoexperiments and get progressively more expensive to calculate
at higher significance. We explored this question using the three plots which tested significance
for different true values of 𝛿CP, sin2 𝜃23, and Δ𝑚2

32, and the results are shown in Figure 12. While
the sizes of corrections clearly change as a function of significance, and for some true values the
corrections converge towards zero, this is not true in general: the sizes of corrections at 4𝜎 can be as
large as the corrections at 2𝜎. In these examples, the relative size of the correction does decrease as
the absolute significance gets larger, but we leave it to the reader to decide if the difference between
3.5𝜎 and 4𝜎 is more or less important than the difference between 1.5𝜎 and 2𝜎.

Another limitation is that it is not possible to combine the corrected likelihoods from two
separate experiments to produce a combined likelihood surface from a joint analysis. While it is
possible to combine experiments using FC corrections, doing so requires more detailed information

14Discontinuous changes in the nuisance parameters when testing a continuous set of values of a parameter of interest
are quite common and typically not a problem. Without FC corrections, these changes can cause a discontinuous change
in the derivative of the likelihood, but do not make the value of the likelihood discontinuous.
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Figure 12. The change in significance vs. the significance level at which the correction occurs for different
values of, from left to right, 𝛿CP, sin2 𝜃23, and Δ𝑚2

32. The colors represent different true values of the
parameter in question being tested.

than is captured in just the likelihood and corrections [28].

5 Conclusions

The Feldman–Cousins method provides a method for handling the common challenges that ex-
periments encounter when Wilks’ theorem cannot be relied upon, but the lack of a prescription
for handling nuisance parameters complicates its adoption in practice. The NOvA experiment has
adopted the profile construction for its oscillation measurements [7–10], which offers a straight-
forward prescription for handling nuisance parameters. Toy studies inspired by these oscillation
measurements show the method achieves more accurate coverage when the true parameters of the
underlying model are unknown compared to other plausible methods, and toy studies with con-
strained systematic uncertainties show similar performance to other methods. In-situ tests in the
NOvA analysis further validate the accuracy of the reported confidence intervals and significances.
The most significant challenge to making use of profile construction (and Feldman–Cousins in
general) is the large computational cost associated with generating and fitting the required FC pseu-
doexperiments. Our approach takes advantage of available High Performance Computing resources,
but other approaches to improve the efficiency of this method are also being explored [29, 30].
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A CLs Mass Ordering Significance

The CLS method [31–33] was introduced as an alternative to traditional 𝑝-value calculations to
address situations where an experiment might potentially make a claim of ‘discovery’ well beyond
its sensitivity. In a nutshell, the method takes a ratio between the 𝑝-value for the null hypothesis,
H0, and the potential discovery hypothesis, H1. In a true discovery, 𝑝(H0) ≪ 𝑝(H1), and the
CLS value will be small, while in a spurious claim, the data will be a poor fit to both hypotheses, so
even though 𝑝(H0) might be small, CLS will be of order 1.

In the particular case of binary questions, the profile construction can be naturally extended
so the same FC pseudoexperiments can be re-used for the CLS method . A mass ordering test is
presented here, but the method is generic. Two modifications are needed. First, rather than evalu-
ating ℓconstrained and ℓunconstrained, ℓNO and ℓIO are evaluated, but they can be readily re-interpreted:
ℓconstrained corresponds to the ℓ for the hypothesis being tested and ℓunconstrained corresponds to
whichever ℓ is lower15. Second, FC pseudoexperiments need to be generated for both possible
hypotheses, but given the relatively low computational cost of this test, this is a minor overall ad-
ditional cost. Where the profile construction only reports the fraction of FC pseudoexperiments in
the hypothesis being tested with 𝜆 larger than that observed in data, CLS also requires the ‘inverse’:
the fraction of FC pseudoexperiments generated under the hypothesis favored by the data with 𝜆

lower than that observed in the data, as shown in Figure 13. A small overlap of the two distributions
would signify a strong discrimination power towards the mass ordering. Our data suggests a slight
preference for the Normal Ordering.

B Validation of Significance in Mass Ordering Determination

In the case of binary questions, like the choice of ordering, the situation is better thought of as a
hypothesis test than a confidence interval, though they are closely related as described in Section 2.
For these cases, there is an alternative approach to handling nuisance parameters developed by
Berger and Boos [16]. In this procedure, the 𝑝-value of a set of parameter values being tested, 𝜽 , is
redefined as:

𝑝BB(𝜽) = max
𝝓

𝑝(𝜽 , 𝝓) + 𝛽, (B.1)

where the max represents the largest 𝑝-value over all values of the nuisance parameters, 𝝓, allowed
at the 𝛽 confidence level based on a fit to the data. By contrast, the Profiled Feldman–Cousins
approach simply uses the 𝑝-value at ˆ̂𝝓, the maximum likelihood estimate of the nuisance parameters
given 𝜽:

𝑝FC(𝜽) = 𝑝(𝜽 , ˆ̂𝝓), (B.2)

15Since FC pseudoexperiments generated in the Normal Ordering may have a better fit in the Inverted Ordering, and
vice versa, these two ℓ’s may be the same or not.
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more compatible with the null hypothesis than the data is smaller in the case of the NO, which suggests a
preference for the latter. The resulting CLS factor is 0.620.
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Figure 14. The maximum 𝑝-values for the tested choices of nuisance parameters in the Berger–Boos test.
All points in the full 3-dimensional space were tested, but only the largest 𝑝-value for each pair of values of
the nuisance parameters is shown. All values are below 𝑝 = 0.30, the maximum of the color scale and the
significance of rejecting the inverted ordering at the best fit point, shown with a small square.

effectively assuming that the nuisance parameters which give the largest likelihood value (and thus
the largest 𝑝-value under Wilks’ theorem) will also have the largest 𝑝-value with the pseudoexperiment–
calculated critical values. The Berger–Boos method is more conservative since it allows for the
possibility that a seemingly non-optimal set of nuisance parameters will produce a ‘favorable’ change
in the critical value and thus produce a larger effective 𝑝-value, but it is commensurately more costly
to calculate since pseudoexperiments must be produced for a range of nuisance parameters.

In practice, it is not possible to test ‘all’ values in a multi-dimensional parameter space without
an analytic form, so the possible choices of nuisance parameters must be sampled in a fashion

– 25 –



which covers the possible space, and for each sampled set of nuisance parameters, a set of FC
pseudoexperiments must be generated and used to calculate a new 𝑝-value. In this case, we are
testing the 𝑝-value for rejecting the IO from the fit to data, 𝑝 = 0.30 [10], so are taking a 𝛽 of 0.005
which would not qualitatively alter the interpretation of the original 𝑝-value. This value of 𝛽 then
defines the ranges over which values of the nuisance parameters need to be sampled: a range in
Δ𝑚2

32 of [−2.623,−2.241] × 10−3 eV2, a range in sin2 𝜃23 of [0.397, 0.633] and all values of 𝛿CP.
Then, 1331 choices of nuisance parameters were tested (11 values in each dimension), sampled
uniformly from the possible space, and 𝑝-values were calculated for those choices. In order to save
computational costs, pseudoexperiments were only generated for points where Feldman–Cousins
corrections could plausibly raise it above the original 𝑝-value. The threshold chosen was 𝜆 < 2.8,
which corresponds to 𝑝Wilks > 0.094 assuming one degree-of-freedom. A total of 54 points fell
below that threshold.

The largest 𝑝-value found was 𝑝 = 0.151 at Δ𝑚2
32 = −2.43 × 10−3 eV2, sin2 𝜃23 = 0.562, and

𝛿CP = 1.64𝜋, which is below the 𝑝 = 0.30 at the best fit point, so the original 𝑝-value is still
the largest. This point had a 𝜆 = 1.10, which would give 𝑝Wilks = 0.295 assuming one degree-
of-freedom. This behavior was typical of most points for which FC pseudoexperiments were
generated: 𝑝-values decreased (i.e., significances increased) since a binary question effectively
has fewer degrees of freedom than one continuous parameter. Only 2 of the 54 points tested had
𝑝 > 𝑝Wilks, namely 𝑝 = 0.150 and 𝑝 = 0.134. The plots in Figure 14 show the largest 𝑝-values for
rejecting the inverted ordering for different choices of the nuisance parameters.
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