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Brandon Hensley71, J. Colin Hill38,72, Adam D. Hincks73, Renee Hlozek74,73, William Holzapfel75,
Selim C. Hotinli76, Howard Hui36, Ayodeji Ibitoye77,78, Matthew Johnson79,80, Bradley R.

Johnson81, Jae Hwan Kang36, Kirit S. Karkare23,4, Lloyd Knox82, John Kovac83,28, Kenny Lau84,
Louis Legrand85, Marilena Loverde86, Philip Lubin87, Yin-Zhe Ma88, Tony Mroczkowski89,

Suvodip Mukherjee90, Moritz Münchmeyer91, Daisuke Nagai92, Johanna Nagy93,94, Michael
Niemack31, Valentine Novosad2, Yuuki Omori45, Giorgio Orlando95, Zhaodi Pan2, Laurence

Perotto96, Matthew A. Petroff28, Levon Pogosian1, Clem Pryke84, Alexandra Rahlin4,23, Marco
Raveri97,98, Christian L. Reichardt24, Mathieu Remazeilles99, Yoel Rephaeli100,101, John Ruhl102,

Emmanuel Schaan58, Sarah Shandera103, Meir Shimon100, Ahmed Soliman36, Antony A. Stark28,
Glenn D. Starkman21, Radek Stompor104,69, Ritoban Basu Thakur36, Cynthia Trendafilova15,

Matthieu Tristram70, Pranjal Trivedi105, Gregory Tucker106, Eleonora Di Valentino107, Joaquin
Vieira108,109, Abigail Vieregg45, Gensheng Wang2, Scott Watson110, Lukas Wenzl31, Edward J.

Wollack12, W.L. Kimmy Wu20, Zhilei Xu111, David Zegeye1,23, and Cheng Zhang36

1Department of Astronomy and Astrophysics, University of Chicago, 2Argonne National Laboratory, Lemont, IL 60439, USA,
3Department of Physics, Florida State University, 4Fermi National Accelerator Laboratory, 5Kavli Institute for Particle Astrophysics
and Cosmology, Stanford University, 6SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA, 7Jodrell Bank Centre for
Astrophysics at The University of Manchester, 8Centre Pierre Binétruy International Research Laboratory, CNRS, UC Berkeley and
LBNL, Berkeley, CA 94720, USA, 9UC San Diego, Department of Physics, La Jolla, CA, 92093, 10School of Physics and Astronomy,
University of Minnesota, 11Department of Physics, Princeton University, 12Goddard Space Flight Center, 13University of Chicago,
Department of Astronomy and Astrophysics, 14University of Chicago, Department of Physics, 15Department of Physics, Southern

Methodist University, Dallas, TX 75275, USA, 16Department of Physics and Astronomy, Stony Brook University, 17University of
Illinois at Urbana-Champaign, 18Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, 19Kavli

Insitute for Particle Astrophysics and Cosmology, 20SLAC National Accelerator Laboratory, 21CERCA/ISO, Department of Physics,
Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA, 22Department of Physics, Imperial College

1

ar
X

iv
:2

20
3.

07
63

8v
1 

 [a
st

ro
-p

h.
C

O
]  

15
 M

ar
 2

02
2

Submitted to the Proceedings of the US Community Study

FERMILAB-PUB-22-309-PPD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. 
Department of Energy, Office of Science, Office of High Energy Physics.



London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, United Kingdom, 23Kavli Institute for Cosmological Physics,
University of Chicago, 24School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia, 25National Institute of
Standards and Technology, 26International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy, 27Institute for

Fundamental Physics of the Universe (IFPU), Via Beirut, 2, 34151 Trieste, Italy, 28Center for Astrophysics — Harvard & Smithsonian,
29University of New Mexico, 30Cardiff University, 31Cornell University, 32Institute for Astronomy, University of Hawaii, 33Stanford
University, 34Johns Hopkins University, 35University of Cincinnati, Cincinnati, OH 45221, USA, 36California Institute of Technology,

37Jet Propulsion Laboratory, 38Department of Physics, Columbia University, 39Canadian Institute for Theoretical Astrophysics,
University of Toronto, 40Berkeley Lab, 41UC Berkeley, 42University of Ferrara, 43INFN Ferrara, 44Jodrell Bank Centre for

Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL, UK, 45University of Chicago, 46University of
Cambridge, 47Research Center for the Early Universe, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan,

48Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba, 277-8583,
49Department of Physics, Stanford University, 50Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, 10010,

New York, NY, USA, 51Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA,
52Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA, 53School of Earth and Space
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1 Introduction

The CMB is foundational to our understanding of modern physics and continues to be a
powerful tool driving our understanding of cosmology and particle physics. In this and
other whitepapers [e.g. 1–4], we outline the broad and unique impact of CMB science for
the High Energy Cosmic Frontier in the upcoming decade (∼2025–2035). We also describe
the progression of ground-based CMB experiments, which shows that the community is
prepared to develop the key capabilities and facilities needed to achieve these transforma-
tive CMB measurements. Recently, in Pathways to Discovery in Astronomy and Astrophysics
for the 2020s, the decadal survey report strongly endorsed CMB science in general and
the multitude of discoveries it can offer [5], and recommended the CMB-S4 project as one
of the top priorities for ground-based facilities. This recommendation reflects both the
tremendous impact of CMB science, and the readiness of the CMB community to carry
out this program.
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Figure 1: Some scientific cases that are revealed by different portions of the CMB temper-
ature and E/B-polarization angular power spectra. Improved measurements connect to
new constraints on high-energy physics and astrophysics, as approximately shown. The
multipole axis indicates the angular scale of the anisotropies on the sphere, left-to-right,
from hemisphere-scale to arcminute-scale fluctuations.

In this paper, after describing the potential of CMB science (section 2), we present
an overview of current and near-term CMB measurements (section 3). We highlight the
CMB-S4 project, a community-wide effort to extend our CMB capabilities by an order of
magnitude over the previous generation (section 4) and thus target key scientific thresh-
olds in the upcoming decade. We also discuss opportunities for CMB science in the fol-
lowing decade including the emerging CMB-HD concept (section 5). For context, we dis-
cuss complementary capabilities of future space-based and balloon observations (section
6).

2 CMB Science on the Cosmic Frontier

The CMB radiation yields insights into fundamental physics through two main mech-
anisms. First, the “primary” CMB temperature and polarization anisotropies record a
snapshot of the conditions at the time that the Universe first becomes transparent. At
degree angular scales and larger (see Fig. 1), the patterns in the CMB are generated by
physics that preceded the hot radiation-dominated era. These primordial features directly

3



Snowmass2021 Cosmic Frontier: CMB Measurements White Paper

probe the initial conditions of the Universe. At smaller scales (see Fig. 1), the CMB exhibits
patterns arising from acoustic oscillations, an exquisite tracer of the thermal evolution of
the early universe. Precision measurements of the CMB at these angular scales translate
into precision measurements of the energy composition of the early universe. The second
mechanism is the “secondary” anisotropies, where electron scattering interactions and
gravitational lensing reveal the later-developing structures in the Universe. Individually
and in concert, these mechanisms provide tools for us to constrain fundamental physics
related to inflation, neutrinos, light relic particles, dark matter, dark energy, and other
elements of beyond-the-standard-model physics.

Inflation. Cosmic inflation posits an epoch of accelerated cosmic expansion during the
very early universe that precedes the hot radiation-dominated era [1]. This relatively
simple paradigm successfully describes all of our current observations of the primordial
universe and predicts unique signals to further test and constrain the theory. A key pre-
diction of cosmic inflation is the existence of a background of primordial gravitational
waves. These tensor waves imprint a distinct pattern in the CMB polarization. Preci-
sion measurement of the CMB B-mode polarization at degree angular scales is the most
powerful experimental technique for searching for this signature. Observation of this
signal would be a watershed detection providing definitive evidence in favor of this in-
flationary epoch. Importantly, the strength of the signal, parameterized as r (the ratio of
power in tensor to scalar perturbations), depends on the underlying physics of cosmic
inflation. Many models of inflation that naturally explain the deviation from scale invari-
ance of the scalar perturbations (ns < 1), while having a characteristic scale larger than
the Planck mass, have tensor-to-scalar ratios r > 0.001, and well-motivated subclasses
have r > 0.003. (See Fig. 2.) Measuring CMB B-mode polarization to this level is a key
objective of a next-generation CMB facility [6, 7] and will have profound implications for
our understanding of physics at the highest energies and earliest moments.

While the tightest constraints are expected from observations of B-mode polarization,
the inflationary paradigm gives rise to other observables that provide avenues for study-
ing inflationary physics. One possible signal uses high-resolution polarized Sunyaev-
Zel’dovich observations in cross-correlation with galaxy surveys as an indirect probe of
low-` CMB polarization [12]. Another signal is primordial non-Gaussianities, where the
CMB provides a clean, robust observable. Alone and in combination with galaxy-survey
measurements from Rubin-LSST, DESI, and future galaxy imaging and redshift surveys,
non-detection of non-Gaussianity would be a tight constraint, potentially ruling out broad
swaths of the inflationary model space. On the other hand, a detection could demonstrate
what type of models are valid. Isocurvature fluctuations for cold dark matter, baryons, or
neutrinos must contribute less than one percent of the total power [13–18], but the discov-
ery of small isocurvature fluctuations by future CMB measurements would, for example,
probe inflation under the curvaton, axion isocurvature, or compensated isocurvature per-
turbation scenarios. Precision CMB polarization measurements significantly enhance our
ability to detect non-trivial features in the primordial power spectrum. Such features
would be signs of the physics of the inflationary epoch [19–32].
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Figure 2: Model space of the ns–r plane for inflation. Shown are the current best con-
straints from a combination of the BICEP2/Keck Array experiments and Planck [8], and
the constraining power of a Stage 4 experiment for a model with r = 0.003. Models
that naturally explain the observed departure from scale invariance separate into two vi-
able classes: monomial and plateau. The monomial models (V(φ) = µ4−pφ p) are shown
for three values of p as blue lines for 47 < N∗ < 57 (with the spread in N∗ reflecting
uncertainties in reheating, and smaller N∗ predicting lower values of ns). The simplest
realization of this class is now disfavored. The plateau models include the tanh2 form
(gray band) as an example, as this form arises in a sub-class of α-attractor models [9].
Some particular realizations of physical models in the plateau class are also shown: the
Starobinsky model [10] and Higgs inflation [11] (small and large orange filled circles, re-
spectively) and Poincaré disks. The differing choices of N∗ for Higgs and Starobinsky
reflect differing expectations for reheating efficiency.

Light relics and neutrino physics. High-resolution and wide-area CMB polarization
measurements map the thermal history of the early universe in exquisite detail. From
these measurements, the CMB can determine, with precision, the composition of our early
universe including constraining the energy density in dark radiation. The dark radiation
energy density is typically paramaterized as Neff, the effective number of light species. In
the standard model, neutrinos are the only contribution to Neff with a calculated value
of NSM

eff =3.045. A robust measurement deviating from this predicted value is evidence of
new physics. Examples of non-standard model contributions to Neff include a stochastic
background of gravitational waves [33–35] generated by especially violent sources [36–
38] or thermal relics from new light degrees of freedom that are frequently predicted
in various well-motivated extensions to the standard model. With regards to the latter,
constraints on Neff have broad implications on the physics of the dark sector [2, 39] com-
plementing laboratory and astrophysical probes of dark sector physics. Sensitivity to Neff
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instrument and illustrating the power to constrain light thermal relics. The displayed
values on the right are the observational thresholds for particles with different spins and
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at a level of σ(Neff) ∼ 0.03 would constrain thermal light relics that have freeze-out tem-
peratures up to the beginning of the QCD phase transition. Sensitivity to Neff at a level of
σ(Neff) ∼ 0.01 would constrain all thermal light relics.

CMB data also enables cosmological probes of the sum of neutrino masses [3]. Mas-
sive neutrinos were relativistic at early times but contribute to the non-relativistic matter
density today. Their large thermal velocities suppress the clustering of matter on scales
smaller than their free streaming length, compared to a model containing massless neu-
trinos. CMB observations allow us to search for this suppression using measurements
of weak gravitational lensing and the evolution of the number density of galaxy clus-
ters. These measurements are complementary to other probes of cosmological structure
growth, and combining CMB surveys with galaxy surveys enables cross-correlations that
enhance the constraining power of both. Sensitivity to the summed neutrino mass at the
level of σ(Σmν) < 0.02 eV would constitute a cosmological measurement at the level of
the largest neutrino mass splittings, complementing laboratory measurements and con-
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tributing to the understanding of neutrino masses and hierarchy.

Dark Matter. CMB measurements have firmly established that a significant fraction of
the energy budget of the Universe is in the form of non-baryonic dark matter. The next
generation of CMB measurements provides the chance to probe the particle properties of
dark matter.

Dark matter–baryon scattering interactions, if present, would impart a subtle drag
force that dampens acoustic oscillations in the CMB, with the largest effects on small
scales. Such a search is promising for low-mass (sub-GeV) WIMP-like particles because
the lower mass implies a larger number of scatterers, in contrast to the GeV and higher
scales accessible by traditional nuclear recoil experiments in the lab. In this regime, the
CMB is sensitive to cross-sections above the nuclear scale.

Dark matter that interacts with any type of relativistic dark radiation at early times
suppresses growth due to the radiation pressure, and puts a signature into the CMB
acoustic oscillations. For dark matter candidates based on QCD axions or axion-like parti-
cles, the CMB also provides tools for detection and probing the physics. In the ultra-light
axion scenario, CMB power spectra measurements can constrain the density, mass scale,
and axion decay constant [e.g. 41].

CMB experiments can also constrain or discover axion-like particles by observing the
resonant conversion of CMB photons into axion-like particles in the magnetic fields of
galaxy clusters. Nearly massless pseudoscalar bosons, often generically called axions-like
particles, appear in many extensions of the standard model [42–47]. A detection would
have major implications both for particle physics and for cosmology, not least because
axion-like particles are a well-motivated dark matter candidate.

Additionally, CMB measurements can constrain or discover axion-like particles by
measuring the time-dependent CMB polarization rotation. Ultralight axion-like dark-
matter fields that couple to photons via gaγ cause a time-dependent photon birefringence
effect which manifests as a temporal oscillation of the local CMB polarization angle (i.e.,
a local Q ↔ U oscillation in time) [48]. This rotation effect is in-phase across the sky,
and the oscillation period is fixed by the mass of the axion-like particle (a fundamental
physics parameter) to be at observable timescales of ∼months to ∼hours for masses in
the range 10−21 eV . ma . 10−18 eV. Since the effect is a time-dependent oscillation of
the observed CMB polarization pattern, searches for this effect are not limited by cosmic
variance.

CMB lensing can enable the measurement of the small-scale matter power spectrum
from weak gravitational lensing using the primordial CMB as a backlight. This measure-
ment is a direct probe of the dark matter distribution, free of the use of baryonic tracers.
Lensing will greatly limit the allowed model-space for dark matter [49–51], constraining
ultra-light axions, warm dark matter, self-interacting dark matter, and any other dark
matter model that alters the matter power spectrum on small scales [49–53].

Dark Energy. Dark energy becomes prominent in the late Universe, much later than
the imprinting of the primordial CMB fluctuations, but its effect on the expansion his-
tory sets the angular scale for the fluctuations we observe. Observables of the secondary
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anisotropies are sensitive to the impact of dark energy on observables of the growth of
structure, chiefly the weak lensing field, counts of Sunyaev-Zel’dovich galaxy clusters,
and the kinematic-Sunyaev-Zel’dovich velocity field. An early-time component or type
of dark energy could alter the expansion rate before recombination, decreasing the phys-
ical sound horizon, and thus decreasing our inferred distance to the CMB and increasing
our inferred Hubble constant, an effect that could potentially resolve the discrepancy be-
tween CMB and local supernova H0 measurements [54]. The presence of an early dark
energy component is constrained by a combination of CMB and large-scale structure data.

Other beyond-the-standard-model physics. CMB experiments are also sensitive to po-
tential parity-violating physics that could arise from fields not included in the standard
model of particle physics. A scalar field that couples to photons via a Chern-Simons
term in the Lagrangian would rotate the linear polarization of the CMB light as it trav-
els over cosmological distances. That cosmic birefringence rotation converts some of the
even parity E-type polarization pattern to an odd-parity B-type pattern, and induces TB
and EB correlations that are not present without the parity violating mechanism. These
can be measured in CMB data with 2- and 4-point statistics. In a similar way, primor-
dial magnetic fields partially convert (by Faraday rotation) the E polarization to B, and
can be detected by similar means. The measurement of cosmic birefringence constrains
very light axion-like particles of ma . 10−28 eV [55–59], the axion string network [60], ax-
ion dark matter [61], general Lorentz-violating physics in the context of Standard Model
extensions [62], and primordial magnetic fields (PMFs) through the Faraday rotation [63–
65].

These types of measurements can be used to bolster the science cases listed above. For
example, the measurement of scale-invariant inflationary magnetic fields via measure-
ments of anisotropic birefringence [66] provides an alternate path to probing inflation. If
the detected amplitude is above 0.1 nG on Mpc scales, then the origin of magnetic fields
observed in galaxies today must be from inflation. This would be compelling evidence
for inflation itself, since only an inflationary mechanism could generate such a strong,
scale-invariant magnetic field on Mpc scales.

3 Current and Upcoming Facilities

The CMB anisotropy and its polarization are measured through repeated observations of
the sky using mm-wave telescopes. Typical campaigns with ground-based instruments
span multiple years. Because the CMB is a diffuse signal with features at large angular
scales, CMB telescopes have been developed to include significant baffling and shield-
ing providing tight control and mitigation of systematic effects. The angular resolution
of a CMB measurement is fundamentally limited by diffraction and, for single-moded
systems, scales with the size of the telescope aperture. Smaller resolution requires larger
telescopes, and commensurate increase in the associated shielding and baffling. The mm-
wave cameras for CMB experiments are sub-Kelvin radiometers equipped with cryogenic
optics, internal baffling and superconducting detectors and readout. The detectors are
typically single-moded bolometers with an optical bandwidth of ∼25%. The dominant
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noise for an individual CMB detector is the shot noise of the absorbed photons which
come from the cryostat, the sky signal, and, for terrestrial observations, the atmosphere.
These photon fluctuations fundamentally limit additional improvements of individual
detector sensitivity—increasing the sensitivity for a CMB instrument requires increasing
the number of detectors. This connection between the size of the detector payload and
the overall instrument sensitivity provides a general framework for categorizing CMB
experiments. Over the past decade, the community has classified ground-based instru-
ments into “Stage 2” (O(1000) detectors), “Stage 3” (O(10,000) detectors) and “Stage 4”
(O(100,000) detectors) experiments. Figure 4 illustrates the connection between the size
of the experiment and its scientific reach.

Currently, the field of ground-based CMB is in “Stage 3” and transitioning to “Stage
4.” In this section, we review the present-day landscape of CMB-experiments and then
the facilities coming online in the next few years. Figure 5 presents a current timeline
for CMB experiments from 2020–2040 and shows, for ground-based instruments, the in-
creasing experiment and collaboration size and the corresponding consolidation of the
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SOUTH POLE OBS

Figure 5: Timeline of current and future ground-based CMB experiments. For context,
the timeline also includes a few sub-orbital and satellite experiments.

experimental landscape.

3.1 Current Ground-based Measurements (“Stage 3”)

The current generation of ground-based experiments (either taking data or under con-
struction) are “Stage 3” experiments. To minimize the contribution from spectral lines in
the atmosphere between 30-300 GHz (e.g. from water vapor), these experiments operate
from one of two sites: the South Pole and the Atacama Desert in Chile, which are among
the driest deserts on Earth.

Experiments like the 10-m South Pole Telescope (SPT) [67] and the 6-m Atacama Cos-
mology Telescope (ACT) [68] use large aperture telescopes that provide arcminute angu-
lar resolution, enabling measurements of the small-scale CMB power spectrum, gravita-
tional lensing, galaxy clusters and other astrophysical objects. These experiments have
similar science goals, but recently have used survey strategies that take advantage of the
natural conditions of each site. The sky at the South Pole never sets, but instead rotates
around the Earth’s axis. SPT thus focuses on observing smaller, always-visible patches,
to a more-sensitive observing depth. ACT is at mid-latitude (23◦ S), so it can access large
areas of the sky. ACT thus focuses on observing relatively larger areas of the sky to shal-
lower depths. These optimized strategies enable SPT to measure the CMB temperature,
polarization, and lensing modes to lower noise levels, and find smaller galaxy clusters
and fainter point sources. Meanwhile, ACT can measure more CMB and lensing modes,
reducing the cosmic variance on the measurements, find a larger number of large and
bright but rare clusters and sources, and have significant overlap with a number of opti-
cal surveys.
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Figure 6: Recent measurements of the power spectra from Planck and selected “Stage
3” ground-based experiments [70, 72–77]. The solid black lines show the CMB angu-
lar power spectra for the best-fit ΛCDM model while the black dashed line shows the
primordial gravitational wave contribution corresponding to a tensor-to-scalar ratio pa-
rameter of r = 0.01.

The BICEP/Keck [69] series of experiments at the South Pole, the POLARBEAR/Simons
Array [70] series of experiments in the Atacama, and the ABS/CLASS [71] series of ex-
periments in the Atacama, focus on larger angular scales to search for inflationary B-
modes, but differ in important respects. The BICEP/KECK telescopes are refractors,
while POLARBEAR/Simons Array and ABS/CLASS are reflectors. Both BICEP/KECK
and POLARBEAR/Simons Array search in the multipole range of the recombination
bump (` ∼ 80) in the B-mode power spectrum as did ABS during its operation (2012-
2014). CLASS searches at larger angular scales (` < 10) for the reionization bump in the
B-mode power spectrum. CLASS also seeks to improve constraints on the reionization
optical depth.

Figure 6 shows the recent measurements from the “Stage 3” experiments, and how
well they are fit by the temperature, E-mode, and B-mode lensing spectra of a six-parameter
ΛCDM model.
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3.2 South Pole Observatory and Simons Observatory

Current experiments are sited at the best observing locations on Earth, and their detectors
are photon-noise limited. Thus improved measurements cannot be achieved through bet-
ter detector sensitivity, but with more detectors. The need for increasing detector counts
has led to collaboration and consolidation among the experimental groups since detec-
tors drive the costs of new instruments. (Fig. 4). In the search for B-mode polarization
from primordial inflation, at the sensitivities afforded by “Stage 3” experiments, it also
becomes important to characterize and remove (or “delens”) B-modes generated from
E-mode polarization via gravitational lensing by large scale structure [7]. The need for
delensing motivates coordinated observing between small and large-aperture telescopes.

By combining the well-controlled systematics of small-aperture telescopes with the
delensing capabilities of the large-aperture telescopes, the South Pole Observatory and
Simons Observatory [78] use the strengths of each telescope type to improve measure-
ments of the tensor-to-scalar ratio. In each project, detectors will number ∼50k-60k, an
increase over the ∼10k in the individual “Stage 3” projects. The South Pole Observatory
will combine measurements from the BICEP Array [79] and SPT-3G experiments [80]
operating at the South Pole. The Simons Observatory will field newly designed and con-
structed small and large-aperture instruments at Cerro Toco in the Atacama Desert, the
same site as current and previous CMB experiments in the Atacama [78].

4 CMB-S4

CMB-S4 is a “Stage 4” CMB experiment with a rich and diverse set of scientific goals
across four major themes [81, 82]: primordial gravitational waves and inflation, the dark
Universe, mapping matter in the cosmos, and the time-variable millimeter-wave sky. The
CMB-S4 project aims to cross science-driven thresholds for inflation science and light
relics. These goals are captured by two of the Project’s top-level science requirements:

• CMB-S4 shall test models of inflation by putting an upper limit on r of r ≤ 0.001 at
95% confidence if r = 0, or by measuring r at a 5σ level if r > 0.003. (Fig. 2.)

• CMB-S4 shall determine Neff with an uncertainty≤ 0.06 at the 95% confidence level.

Coupled with further science requirements on galaxy clusters and mm-wave transients,
CMB-S4 will provide broad insights for high energy physics, cosmology and astrophysics.

CMB-S4 will also measure of the sum of neutrino masses using multiple means, no-
tably through measurements of gravitational lensing of the CMB and the abundance
of SZ-detected galaxy clusters. When combined with baryon acoustic oscillations from
DESI [83], and the current measurement of the optical depth to reionization from Planck [84],
CMB-S4 measurements of the lensing power spectrum will provide a constraint on the
sum of neutrino masses of σ(∑ mν) = 24 meV, and this would improve to σ(∑ mν) =
14 meV with better measurements of the optical depth (either from space-based or balloon-
borne experiments, or through measurements of the kSZ signal by CMB-S4 [85]). Mea-
surements of cluster abundances with CMB-S4 will provide similar constraining power,
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and taking the two measurements together enables a robust cross-check on the measure-
ment of neutrino mass. Furthermore, cluster abundance measurements with CMB-S4 will
allow for a simultaneous measurement of neutrino mass and the dark energy equation of
state (see Figure 9). In addition to measurements of neutrino mass and dark energy, CMB-
S4 will constrain various properties of dark matter [4].

The CMB-S4 science requirements drive the project design. CMB-S4 will conduct
a combination of ultra-deep and deep-wide surveys, employing both low-systematics
and high-resolution telescope facilities. The CMB-S4 detector payload will contain over
500,000 detectors, providing an order of magnitude more sensitivity than the previous
generation. CMB-S4 will be the first CMB experiment to represent a very large, community-
wide effort. The formal CMB-S4 collaboration was established in 2018 with the ratification
of the by-laws and election of the various officers including the collaboration Executive
Team and Governing Board. As of spring 2022 the collaboration has 320 members, 76 of
whom hold positions within the organizational structure. These members represent 114
institutions in 19 countries on 6 continents, including 27 US states.

The CMB community’s advocacy for a single comprehensive experiment was endorsed
by the 2014 report of the Particle Physics Project Prioritization Panel (P5) Building for Dis-
covery and the 2015 NAS/NRC report A Strategic Vision for NSF Investments in Antarctic
and Southern Ocean Research. Most recently, CMB-S4 was strongly recommended by the
2020 Decadal Survey report Pathways to Discovery in Astronomy and Astrophysics for the
2020s.[5] The Technical, Risk, and Cost Evaluation (TRACE) ranked the project risk as
medium-low. The Decadal Survey recommendation reads “The National Science Foun-
dation and the Department of Energy should jointly pursue the design and implemen-
tation of the next generation ground-based cosmic microwave background experiment
(CMB-S4).”

The CMB-S4 project is designed as a unified, single project that integrates the complex
organization, policies, procedures, and support from the Department of Energy/Office of
Science (DOE/SC/OHEP) and the National Science Foundation (NSF/AST/PHY/OPP).
In August 2020, the DOE selected Lawrence Berkeley National Laboratory (LBNL) to
carry out the DOE roles and responsibilities in developing and executing the project.
DOE has awarded CD-0, Approval of Mission Need, and is currently funding conceptual
design studies and research and development. NSF awarded the University of Chicago
an MSRI-1 grant to perform preliminary design work in preparation to become a can-
didate for a Major Research Equipment and Facilities Construction (MREFC) award, in
addition to a Mid-Scale Innovations Program (MSIP) award for preliminary design of a
Large Aperture Telescope (LAT). The project has developed the scope and a single Work
Breakdown Structure (WBS), Organization, and Risk Registry for the entire project.

The timely completion of the project construction and robust support of experimen-
tal operations are important for the successful pursuit of the science case. Also vital is
preparatory support to the build up the analysis effort, so that it is ready for the flood of
data that will arrive when operations commence.
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5 CMB-HD

CMB-HD is a proposed future CMB experiment that would have three times the total
number of detectors as CMB-S4 and ∼ 6 times the resolution of current and planned
high-resolution CMB telescopes [6], opening a new regime for mm-wave science. CMB-
HD would cross important thresholds for improving our understanding of fundamental
physics, including the nature of dark matter, the light particle content of the Universe, the
mechanism of inflation, and whether there is new physics in the early Universe beyond
the Standard Model, as suggested by recent H0 measurements [54]. The combination of
CMB-HD with contemporary ground and space-based experiments would also provide
countless powerful synergies.

The concept for the CMB-HD instrument would consist of two new 30-meter-class off-
axis crossed Dragone telescopes to be located on Cerro Toco in the Atacama Desert [86].
Each telescope would host 800,000 detectors (200,000 pixels), for a total of 1.6 million
detectors. The CMB-HD survey would cover half the sky over 7.5 years. This would
result in an ultra-deep, ultra-high-resolution millimeter-wave survey over half the sky
with 0.5 µK-arcmin instrument noise in temperature (0.7 µK-arcmin in polarization) in
combined 90 and 150 GHz channels and 15-arcsecond resolution at 150 GHz. CMB-HD
would also observe at seven different frequencies between 30 and 350 GHz to mitigate
foreground contamination. The key science targets of CMB-HD for fundamental physics
are depicted in Figures 7,8,9.

Figure 7: Left: Dark Matter: CMB-HD would generate via gravitational lensing a high-
resolution map, out to k ∼ 10 hMpc−1, of the projected dark matter distribution over
half the sky, and use that to probe the particle properties of dark matter. Figure credit: Hồ
Nam Nguyễn. Right: Axion-like Particles: Shown are forecasted constraints on axion-like
particles (ALPs) from the resonant conversion of CMB photons into ALPs in the magnetic
fields of galaxy clusters, from oscillation of the local CMB polarization angle, and from
the kinetic SZ Ostriker-Vishniac (kSZ-OV) effect (the latter comparable to constraints from
Lyman-α forest). Figure credit: Suvodip Mukherjee, Michael Fedderke, Sayan Mandal, Gerrit
Farren, and Daniel Grin.
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Figure 8: Left: Light Relic Particles: CMB-HD would achieve σ(Neff) = 0.014, which
would cross the critical threshold of 0.027. Original figure from [39, 87]; modified with addi-
tion of CMB-HD forecast. Right: Inflation: CMB-HD could measure inflationary magnetic
fields with an uncertainty of σ(B) = 0.036 nG, crossing the critical threshold of 0.1 nG on
Mpc scales [66]. Figure credit: Sayan Mandal.

Further details on the key science goals motivating the CMB-HD survey and the flow-
down to measurement and instrument requirements are given in the Astro2020 Science
White Paper [90], Astro2020 CMB-HD APC [86], Astro2020 CMB-HD RFI [91], and the
Snowmass2021 CMB-HD White Paper [12]. For further details see https://cmb-hd.org.

6 Space and Balloon Initiatives

As these ground-based efforts develop, it is important to provide the context of space-
based and balloon-borne CMB efforts. These instruments have synergies and comple-
mentarities to those on the ground [5]. Furthermore, the systematics that prove difficult
for each type of experiment may be different, which makes cross-correlating them pow-
erful.

On the ground, telescope apertures can be larger than can affordably be launched,
providing higher resolution. Ground experiments may focus their sensitivity on a small
portion of the sky for a long duration. The ground provides instrument accessibility, a
practical benefit that means the project lifetime is not limited by unreplenishable cryogens
or fuel, and ground projects can be built in phases and easily upgraded.

In space, above the atmosphere, instruments have 5 to 10 times lower detector noise
than on the ground, and they have access to the full frequency range of interest; they are
not limited by atmospheric windows, nor by the atmospheric opacity and noise which
are prohibitive above ∼ 300 GHz. The excellent thermal stability at the L2 Lagrange
point provides datasets that are more stable and less prone to thermal drifts, which re-
sults in stronger systematic error mitigation. Space missions can observe the entire sky,
which is not possible from any single location on the Earth. This gives them the abil-
ity to absolutely calibrate their data using the orbital-motion Doppler shift in the CMB-

15

https://cmb-hd.org


Snowmass2021 Cosmic Frontier: CMB Measurements White Paper

0.0133
0.0281
0.0455

−0.1 0.0 0.1 0.2∑
mν [eV]

−1.04

−1.00

−0.96

w
0

−1.04 −1.00 −0.96

w0

0.0051
0.0117
0.0187

CMB-HD

S4-WIDE

S4-ULTRA DEEP

100 101 102 103

L

10−6

10−5

10−4

10−3

10−2

10−1

L
(L

+
1)
C
α
α

L
/2
π

[d
eg

2
]

ACTPol (Namikawa et al. 2020)
/ SPTpol (Bianchini et al. 2020)

Advanced ACT

Simons Observatory

LiteBIRD

CMB-S4

CMB-HD

Figure 9: Left: Dark Energy and Neutrino Mass: Marginalized constraints on the dark
energy equation of state parameter, w0, and the sum of the neutrino masses, ∑ mν, com-
bining primary CMB power spectra (TT/EE/TE) with cluster abundance measurements,
and assuming a Planck-like τre prior of σ(τre) = 0.007[88, 89]. Figure credit: Srinivasan
Raghunathan. Right: Beyond Standard Model: Forecasted 68% CL bounds on anisotropic
cosmic birefringence. Figure credit: Toshiya Namikawa.

dipole. Thus previous space missions like WMAP and Planck have often been used to
provide the crucial, overall calibration for ground based experiments. Finally, future all-
sky, low-noise measurements of polarization from space/balloon will allow, in practice,
for ground based instruments to calibrate directly on polarization, bypassing tempera-
ture altogether. The absolute calibration of the space polarization data can be linked to
the dipole at sub-percent levels through a number of independent avenues, both directly
and through cosmological temperature–polarization cross correlations.

6.1 LiteBIRD

The Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic
background Radiation Detection, or LiteBIRD, was selected by the Japan Aerospace Ex-
ploration Agency (JAXA) as a strategic large-class mission [92]. Following a late-2020s
launch to the L2 Sun-Earth Lagrange point, LiteBIRD will map the sky for a three-year
mission, covering the frequency range 34–448 GHz with 15 bands. The resolution is 0.5◦

at 100 GHz. With these capabilities, LiteBIRD can detect B-modes or alternatively set an
upper limit of r < 0.002 at 95 percent confidence.

6.2 NASA space and balloon missions

Pathways to Discovery in Astronomy and Astrophysics for the 2020s has endorsed only three
Probe-scale missions; one of them is a future CMB Probe. Probes are $1-billion-class mis-
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sions. The report recommended preparatory work this decade with a possible implemen-
tation in the 2030s [5]. This work can lead to a competition for a Probe-class CMB mission
design to be selected at the end of the decade. A subpanel estimated that appropriate
amount to spend over that decade on technology development is order $100 million.

Groups have been considering potential designs for both imaging experiments, like
PICO [93, 94], and spectrometers to examine spectral distortions, like PIXIE [95].

The PICO team was competitively selected by NASA in 2018 to produce a probe mis-
sion concept. The concept report [94], which was endorsed by more than 200 scientists,
presents an instrument with 1.4 m entrance aperture, two-mirror telescope coupled to a
0.1 K focal plane with 13,000 bolometric detectors spread over 21 frequency bands be-
tween 20 and 800 GHz. The resolution is between 1 and 38 arcminutes. Within the pri-
mary mission lifetime of 5-years PICO will conduct 10 redundant full sky surveys and
give a required depth of 0.87 µK arcmin (the estimated actual depth is 0.61 µK arcmin).
Being equivalent to between 3300 and 6400 Planck missions, PICO will place 95% con-
fidence limit of r < 0.0002 and provide a 5σ detection for r = 0.0005, lowering r limits
by ∼ 5 times compared to other existing or proposed projects. It is the only instrument
that can measure the optical depth to reionization, Neff, and the sum of neutrino masses
with precision not surpassed by any foreseeable instrument, all within the same single
data set. The mission’s deep polarization maps between 20 and 800 GHz will be used in
many other astrophysical studies including for Galactic, Sunyaev-Zel’dovich, and Cosmic
infrared background science.

PIXIE would measure the large-scale B-mode signal to limits r < 0.003 (95% CL) while
providing a definitive full-sky map of the polarized diffuse dust cirrus on two-degree an-
gular scale. Measurements of spectral distortions provide a unique window to the early
universe, characterizing the amplitude of primordial density perturbations on physical
scales 3 orders of magnitude beyond those accessible to CMB anisotropy. Such measure-
ments provide important constraints on primordial black holes and open a broad window
of discovery for dark matter interactions.

NASA’s investment in the development of space missions includes the support of
the scientific ballooning program. Sub-orbital missions supported through that program
have played an important part in developing detector technologies, testing instruments
in remote conditions and near-space environments, and in training of future scientists.
They have made some of the most successful measurements of the CMB anisotropy. The
scientific balloon platform represents a unique capability that enables measurements in
two categories: (1) observations at frequencies above ∼ 220 GHz and (2) measurements
probing the largest angular scales. These frequencies and angular scales are more diffi-
cult to access from the ground than from the stratosphere due to atmospheric contamina-
tion. Past missions, including MAXIMA, Boomerang, Archeops, Arcade, MAXIPOL, and
Spider have published measurements of the CMB temperature and polarization derived
from data more similar to that of space-based missions than ground based telescopes. Fu-
ture missions, such as PIPER and Taurus, promise to extend polarization measurements
of both the CMB and Galactic foregrounds, to the largest angular scales and to frequen-
cies well above the peak of the CMB spectrum. These high frequencies are critical for
characterizing Galactic dust emission. The high instantaneous sensitivity of the detectors
and negligible impact of atmospheric emission that characterize the balloon borne instru-
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ments result in data for which the dominant systematic effects are distinct from those of
ground-based telescopes.

6.3 European efforts

The European Space Agency (ESA) organized a consultation of the scientific community
to define its scientific priorities for 2035-2050. This “Voyage 2050” process defined the
science themes for the next three large-class (L-class, ∼ 1 billion Euro) missions, but did
not yet define the specific mission concepts. A coordinated series of whitepapers pro-
posed science themes on spectral distortions [96], on using the CMB as a backlight for
mapping structures and their baryon content [97], on cosmology via probing structure
evolution across cosmic times with line-intensity mapping [98], and on an L-class mis-
sion to target them all, with compromises to be made between the different science cases
[99]. The Final recommendations from the Voyage 2050 Senior Committee [100] selected “New
Physical Probes of the Early Universe” as one of the science themes, and recommended “a
Large mission deploying gravitational wave detectors or precision microwave spectrom-
eters to explore the early Universe at large redshifts.” The same report mentions both the
“backlight” and line-intensity mapping science cases as potential medium-class missions
(M-class, ∼ 0.5 billion Euro), which perhaps could be implemented together in a single
mission.

In December 2021, ESA issued a new call for an M-class mission for launch in 2037.
Groups submitted three CMB-related proposals along similar science themes to the Voy-
age 2050 process.

• LISZT, a mission to probe structures at 2.1 ≤ z ≤ 5.3 with [C-II] line-intensity map-
ping and observe Sunyaev-Zel’dovich effect and dust polarization at frequencies
> 300 GHz, complementary to ground-based observations at lower frequencies.

• FOSSIL, a mission to target CMB spectral distortions within ΛCDM and beyond
[96] with a design that is similar to PIXIE but without polarization sensitivity and at
slightly enhanced sensitivity.

• A request for ESA partipation to LiteBIRD.

In the M-class competition, ESA will make phase-1 selections around April 2022. The
phase-2 deadline is July 15, 2022. ESA is moving quickly in an attempt to make final
selections by the end of 2022.

Proposed European balloon missions, such as BISOU [101] and OLIMPO, plan to ex-
ploit the balloon platform to measure spectral distortions in the CMB and to measure the
Sunyaev-Zeldovich effect.
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J. González-Nuevo, K. M. Górski, S. Gratton, A. Gruppuso, J. E. Gudmundsson,
J. Hamann, W. Handley, F. K. Hansen, D. Herranz, E. Hivon, Z. Huang, A. H. Jaffe,
W. C. Jones, E. Keihänen, R. Keskitalo, K. Kiiveri, J. Kim, T. S. Kisner, N. Krachmal-
nicoff, M. Kunz, H. Kurki-Suonio, G. Lagache, J. M. Lamarre, A. Lasenby, M. Lat-
tanzi, C. R. Lawrence, M. Le Jeune, F. Levrier, A. Lewis, M. Liguori, P. B. Lilje,
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gante, A. Moss, P. Natoli, H. U. Nørgaard-Nielsen, L. Pagano, D. Paoletti, B. Par-
tridge, G. Patanchon, H. V. Peiris, F. Perrotta, V. Pettorino, F. Piacentini, L. Polas-
tri, G. Polenta, J. L. Puget, J. P. Rachen, M. Reinecke, M. Remazeilles, A. Renzi,
G. Rocha, C. Rosset, G. Roudier, J. A. Rubiño-Martı́n, B. Ruiz-Granados, L. Salvati,
M. Sandri, M. Savelainen, D. Scott, E. P. S. Shellard, C. Sirignano, G. Sirri, L. D.
Spencer, R. Sunyaev, A. S. Suur-Uski, J. A. Tauber, D. Tavagnacco, M. Tenti, L. Tof-
folatti, M. Tomasi, T. Trombetti, L. Valenziano, J. Valiviita, B. Van Tent, L. Vibert,
P. Vielva, F. Villa, N. Vittorio, B. D. Wandelt, I. K. Wehus, M. White, S. D. M. White,

32



Snowmass2021 Cosmic Frontier: CMB Measurements White Paper

A. Zacchei, and A. Zonca. Planck 2018 results. VI. Cosmological parameters. A&A,
641:A6, September 2020.

[85] Simone Ferraro and Kendrick M. Smith. Characterizing the epoch of reioniza-
tion with the small-scale CMB: Constraints on the optical depth and duration.
Phys. Rev. D, 98(12):123519, December 2018.

[86] Neelima Sehgal, Simone Aiola, Yashar Akrami, Kaustuv Basu, Michael Boylan-
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