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Abstract

Primordial Black Holes (PBHs) are a viable candidate to comprise some or all of
the dark matter and provide a unique window into the high-energy physics of the
early universe. This white paper discusses the scientific motivation, current status,
and future reach of observational searches for PBHs. Future observational facilities
supported by DOE, NSF, and NASA will provide unprecedented sensitivity to PBHs.
However, devoted analysis pipelines and theoretical modeling are required to fully
leverage these novel data. The search for PBHs constitutes a low-cost, high-reward
science case with significant impact on the high energy physics community.

1 Executive Summary

The nature of dark matter and the physics of the early universe are two high priority science
cases within the Cosmic Frontier of High Energy Physics. As potentially the first density
perturbations to collapse during the early universe, primordial black holes (PBHs) present
our earliest window into the birth of the universe and energies between the QCD phase
transition and the Planck scale. The corresponding length scales (k = 107 − 1019 hMpc−1)
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are much smaller than those measured by other current and future cosmological probes.
While earlier estimates suggested that much of the PBH dark matter parameter space was
constrained, more sophisticated analyses have relaxed many of these constraints, opening up
the possibility that PBHs in certain mass ranges comprise the entirety of dark matter.

The detection of PBHs would immediately change our understanding of the physics of
the early universe. This significant reward motivates the further development of several
complementary techniques that are sensitive to PBHs and subject to fewer astrophysical
systematics, such as gravitational microlensing, gravitational wave detection, and gamma-
ray signatures of PBH evaporation. Fortunately in many cases PBH science can be done
by already well-justified (and often under construction) facilities, e.g. LIGO, LISA, Rubin,
Roman, SKA, MeV gamma-ray facilities, and imaging air Cherenkov telescopes. That said,
realising PBH science from these facilities requires both dedicated data analysis and theoret-
ical studies. In addition, it is important to more closely integrate DOE HEP science efforts
with enabling NSF and NASA facilities.

Key Opportunities:

1. Current and near-future observations can provide unprecedented sensitivity to PBH
physics. However, it is necessary to ensure that these facilities acquire their data with
a cadence and sky coverage that enables PBH searches [e.g. 1–3].

2. The sensitivity of PBH searches will be maximized by combining data sets from mul-
tiple observational facilities. Development of joint processing and analyses of Rubin
Observatory, Roman Space Telescope, and Euclid will maximize the opportunity to
detect PBHs.

3. Current and future gravitational wave facilities will provide an unparalleled opportu-
nity to detect PBHs directly through gravity. These facilities should be supported
by the HEP community and include both ground-based detectors such as LIGO and
Cosmic Explorer and space-based such as LISA and AEDGE.

4. The scale of current and near-future data sets and the complexity of PBH analyses will
benefit from collaborative scientific teams. These teams will develop the tools to per-
form rigorous and sensitive searches for PBHs in current and near-future observational
data. The computational challenges presented by these searches are well-matched to
the capabilities of HEP scientists and facilities.

5. Theoretical research will help us better understand the production mechanisms, clus-
tering, and spin properties of PBH. These characteristics will inform the expected
abundance of black hole microlensing/GW events and systematics with cosmic sur-
veys, as well as PBH connections to primordial physics. Furthermore, improved sim-
ulations of the PBH merger rate and of PBH-specific accretion rates will help inform
observational constraints.
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Figure 1: Conceptual map relating DOE/HEP early universe and dark matter science
interests to various observational probes and facilities, via primordial black holes. Shown
are the general observational techiques as well as specific facilities relying on them. Current
facilities are shown by the filled grey boxes, while planned facilities are represented by the
non-filled boxes. Specific recommendations are for scientist support and compute necessary
to turn the observational data into scientific results. For facilities we denote current U.S.
sponsors that DOE could partner with in parentheses.
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2 Introduction

2.1 Primordial Black Holes as Dark Matter

Compact objects, particularly black holes, are one of the oldest models of dark matter. PBHs
are the modern realisation of MAssive Compact Halo Objects (MACHOs), constraints on
which provided the first direct constraints on the nature of dark matter in the 1990s [4–6].
Current microlensing constraints set limits on the black hole abundance at the level of 10%
for black holes in the mass range 0.01 − 100 M� (see Figure 2) [7–10]. The science cases
detailed in this white paper thus have a rich heritage and are backed by a substantial body
of literature.

Primordial black holes (PBHs) could form at early times from the direct gravitational
collapse of large density perturbations that originated during inflation. The same fluctuations
that lay down the seeds of galaxies, if boosted on small scales, can lead to some small areas
having a Schwarzschild mass within the horizon, which spontaneously collapse to form black
holes [11–15] (as recently confirmed with numerical relativity [16]). Non-detections of PBH
are thus also constraints on the small-scale power spectrum, as shown in Figure 3. However,
collapse of horizon-scale perturbations is not the only mechanism for PBH formation. As
detailed in Section 2.2.2, they may also be formed through collapse and fragmentation of high
energy scalar fields via isocurvature fluctuations, and may be generic in super-symmetry.

Compact object dark matter is fundamentally different from particle models; primordial
black holes cannot be created in an accelerator and can only be detected observationally.
Much of the parameter space has been constrained by existing probes, but a large window
remains where PBHs around asteroid mass (10−15 to 10−10M�) could make up the entirety of
dark matter. Primordial black holes are also a plausible source of the population of merging
black holes around 30 M� recently detected by LIGO [17–19], a mass range where PBHs may
still comprise & O(10)% of the dark matter.

Limits on the abundance and mass range of primordial black holes are necessarily ob-
servational. At order of magnitude, the black hole mass is set by the mass enclosed within
the horizon at the time of black hole collapse and thus ranges between 10−18 M� (1015 g),
below which the black hole would evaporate, and 109 M� (1042 g), above which structure
formation, Big Bang Nucleosynthesis and the formation of the microwave background would
be severely affected [20].

Observational limits on primordial black holes have evolved over time: numerous con-
straints have been proposed based on detailed modelling and then revised as the modelling
has been updated. For example, early CMB constraints on PBHs [21] were found to rely on
an overly optimistic model for the black hole accretion rate [22] and continue to be updated
as our understanding of accretion improves [23]. Similarly, uncertainty in the modelling of
the PBH merger rate has led to several revisions of the bounds from gravitational wave
events (see Section 5.1). Finally, initially strong dynamical constraints from dwarf halos
[24, 25] were revised and weakened by higher fidelity Fokker-Planck modelling [26] and then
strengthened by a combined statistical analysis [27]. Current dynamical limits appear to
rule out PBHs being all the dark matter, but strong modelling assumptions remain [26–28].

For stellar mass black holes, the gold standard for detecting compact objects is microlens-
ing. As we shall discuss later, the Vera Rubin Legacy Survey of Space and Time (LSST)
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will revolutionize microlensing, constraining the abundance of PBHs to ∼ 10−4 of the dark
matter over a wide range of masses [1, 29]. Microlensing opportunities in the next ten years
are not limited to LSST, and are in particular also provided by the Nancy Grace Roman
Space Telescope and the ground-based Extremely Large Telescopes.

2.2 Primordial Black Holes as Probes of the Early Universe

PBHs are unique amongst black holes in that they form at a high energy density in the early
universe, long before stars, galaxies or the microwave background. Constraints on their
abundance are thus also constraints on possible physics at high energies, such as inflation.
There are several possible scenarios for PBH formation that lead to different masses, spins,
and clustering properties of primordial black holes. These production scenarios can be
grouped into two classes: those that produce PBHs with masses close to the horizon mass
at the time of formation, and those that produce PBHs with subhorizon masses.

2.2.1 Formation of horizon-mass PBHs

If inflationary dynamics were to enhance primordial density fluctuations on scales much
smaller than those probed by the CMB, entire horizon-sized regions can collapse into black
holes once the perturbation re-enters the horizon. The PBH mass in these scenarios is
proportional to the horizon size at formation; thus lower mass PBHs probe higher energies.
Since these PBHs form directly from the primordial density fluctuations, a measurement
of their abundance would directly constrain the amplitude of density fluctuations [11, 12].
These constraints probe small scales between k = 107−1019 h/Mpc, much smaller than those
measured by other current and future probes [45]. Because these scales are highly non-linear
in the late-time universe, there is no other possible constraint; the information present at
early times has been washed away by gravitational evolution.

The typical curvature perturbations from inflation are expected to be nearly scale invari-
ant and are constrained by the CMB at large scales. Formation of PBHs in these classes of
models requires dramatically enhancing the perturbations on some smaller scale, by hybrid
inflation [14], introducing new features within the inflaton potential [46–50], or through in-
homogeneous baryogenesis [51–54]. Vacuum bubbles formed during inflation can appear to
the outside observer as PBHs [55–58]. Figure 3 shows constraints from PBHs on the power
spectrum, compared to those from the CMB, stochastic background constraints from pulsar
timing arrays and constraints from µ-distortions. Constraints are taken from [45, 59]. PBH
constraints are shown in gold, as they still depend on several modelling assumptions.

Reflecting the need to enhance the power spectrum, current constraints are several orders
of magnitude weaker than constant extrapolations from the microwave background to these
scales. However, PBH constraints are able to constrain higher derivatives of the power
spectrum, and thus higher order inflationary slow-roll parameters. In particular they provide
the best current limit on the third derivative of the inflationary power spectrum [60]. As
shown in Figure 3, this technically rules out the maximum likelihood Planck power spectrum
(although the tension is within the 1− σ error bars).

Enhanced small-scale density fluctuations may also produce detectable GWs, through
second-order perturbations [61–66] or non-Gaussianity [67]. A power spectrum with Pζ ∼
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Figure 2: Current constraints on dark matter fraction composed of compact objects of a
given mass (blue and gray) and selected projections for future gamma-ray and microlens-
ing probes (gold). The blue and gray regions denote constraints based on more and less
conservative assumptions, respectively. Forecast projections for Rubin or Roman dedi-
cated microlensing surveys of M31 from Ref. [1] and for MeV gamma ray facilities from
Ref. [30] are displayed. The existing constraints are from M31 microlensing (M31ML) [31],
MACHO/EROS microlensing (MWML) [7–10], supernovae lensing (LSN) [32], Eridanus II
dwarf galaxy (EII) [33, 34], wide binary stars (WB) [35, 36], dwarf galaxy dynamical heating
(DH) [37–39], x-ray binaries (XB) [40], CMB distortions from accreting plasma by PBHs
in early universe (CMB) [41, 42], and disk stability (DS) constraints [43]. Note that recent
work by [44] suggests that it is challenging to extend the Rubin microlensing probes beyond
103M�.
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Figure 3: Evidence for or against primordial black holes enables the constraint of the primor-
dial power spectrum to much higher k (i.e., earlier times) than any other probe. Observations
from the CMB power spectrum bound the primordial power spectrum to be P(k) ∼ 10−9 at
10−4 . k . 101 Mpc−1 (black region). However, at smaller scales, current PBH upper limits
from the Pulsar Timing Array (PTA), CMB µ-distortions, and searches for PBHs set signif-
icantly weaker constraints. Based on figures from [45, 59] and references therein. Light grey
band shows the power spectrum expected by extrapolating the best-fit CMB power spectrum
using a model with higher derivatives Ps(k) = As(k/k∗)

ns−1+ 1
2
αs ln(k/k∗)+ 1

6
βs ln(k/k∗)2 . The large

range of scales probed by PBHs allow for the best constraints on the highest order derivative
[60]. These higher order derivatives correspond to higher orders of the inflationary slow-roll
parameters, and so non-zero values are generic in inflationary models.
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O(10−2) on small scales produces induced GWs with an energy density ΩGWh
2 ' O(10−8) at

the peak frequency. For PBHs with ∼ 30M�, in the LIGO/Virgo range, the peak frequency
is ∼ 10−9 Hz, slightly smaller than the frequencies constrained by current pulsar timing
array experiments (PPTA, EPTA, NANOGrav) [68, 69]. However, PBHs in the currently
unconstrained mass range∼ 10−16−10−10M� have a peak frequency around∼ 10−4−10−1 Hz,
at an amplitude detectable by space-based gravitational wave detectors such as LISA or
AEDGE/DECIGO [70–72]. This induced GW signal provides a constraint on the shape of
the small-scale power spectrum, and so may in future provide constraints on inflation.

Primordial black holes are thus a probe of primordial density fluctuations in a range that
is inaccessible to other techniques [73–75]. These curvature fluctuations are imprinted on
space-time hypersurfaces during inflation, at extremely high energies, beyond those currently
accessible by terrestrial and cosmic accelerators. Our understanding of the universe at these
high energies, of order 1015 GeV and above, comes predominantly from extrapolations of
known physics at the electroweak scale. Measurements of the primordial density fluctuations
via the abundance of primordial black holes would provide unique insights into physics at
these ultra-high energies.

2.2.2 Formation of subhorizon-mass PBHs

The overdensity needed for formation of a black hole in the early universe does not have to
come from the same source as the primordial fluctuations that lead to large-scale structure.
Scalar fields (such as the Higgs boson or the scalar fields predicted by supersymmetry) are
known to have instabilities caused by scalar self-interaction, which could typically [76] be
much stronger than the force of gravity on short scales [77, 78]. Such instabilities can cause
formation of field lumps that become the building blocks of PBHs [79–82]. From the point of
view of field theory, the scalar lumps could be non-topological solitons known as Q-balls [83],
long-lived metastable objects known as oscillons [84, 85], or confined heavy quarks [86]. Once
formed, the lumps redshift like matter and can come to dominate the energy density of the
Universe, at which point gravitational instability can lead to formation of PBHs [79–82].

Another possibility is that the density perturbations grow due to attractive interactions
other than gravity, such as the scalar interactions which act as “long-range” forces on the
length scales smaller than the Compton wavelength of the scalar particle. Since the scalar
interactions may be stronger than gravity at these high energies, the rapid growth of isocur-
vature perturbations is possible even during the radiation dominated era [87–89]. While
the small clusters of particles formed this way could virialize and exist indefinitely in the
absence of dissipation [88], the very same scalar interactions that cause the clusters to form
provide a dissipation channel via emission of the scalar waves [89]. A simple system with
a heavy fermion and a scalar interacting via the Yukawa coupling can lead to enough PBH
formation to account for all dark matter [89, 90]. The dark matter abundance in this case
is related to the baryon asymmetry of the universe, which offers a potential explanation for
the “coincidence problem”, that is, why the densities of dark matter and ordinary matter
are within one order of magnitude of each other [89, 90].

It is intriguing that supersymmetry, which is widely considered a plausible candidate for
new physics, provides all the conditions for dark matter in the form of primordial black holes.
Supersymmetric generalizations of the standard model predict a large number of scalar “flat
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directions” in the potential. The fields parameterizing the flat directions develop a large
expectation value during inflation. The subsequent evolution of the field generically leads to
fragmentation of the scalar condensate into lumps, which can collapse into PBHs. The mass
scale of the resulting black holes, (M 3

Planck/Λ
2
SUSY) ∼ 1023 g, naturally falls in the allowed

range for dark matter [82, 90].

2.3 Primordial Black Holes as Supermassive Black Hole Seeds

The number of quasars observed above z = 6 has exceeded 200, with several discovered at
z > 7 [91, 92], including a z = 7.5 quasar with a 1.5×109M� black hole [93]. The mechanism
by which the super massive black holes (SMBHs) driving these quasars are assembled within
a Gyr of the Big Bang is poorly understood. A standard picture of Eddington-limited
accretion of massive Pop III seed black holes cannot reasonably produce the SMBHs seen at
high redshift, so super-Eddington growth or an increase in the mass of the black hole seeds
are often touted as potential solutions [94].

Invoking primordial black holes (PBHs) as seeds for these high redshift SMBHs can
plausibly solve the problem of early SMBH assembly, as PBHs as large as 105M� that form
relatively late have not been ruled out [54, 95–97]. While these objects are constrained from
forming all the dark matter (see Figure 2), supermassive black holes are rare objects and
only a small number density of black holes is necessary to explain them [28, 97]. There are
viable cosmological scenarios for producing PBH with masses as large as 105M� [54, 98].
Large PBHs could also form from dark matter self-interactions [99, 100]. Constraining a
primordial origin for these objects would require deep observations of high redshift quasars
[101]. Although these objects can accrete, current CMB accretion constraints allow for the
existence of enough PBHs to provide the observed high-redshift SMBH seeds [23].

3 Measurements of PBHs

Numerous observations probe the population of PBHs, constraining the mass range in which
PBHs are a viable dark matter candidate. The identification of PBHs remains valuable
even if they provide only a minimal fraction of cosmological dark matter, so as well as
closing windows for PBH dark matter, future observations will probe PBH scenarios with
much smaller abundances. Many of the existing and projected constraints are reviewed in
Refs. [102–106], and a repository of digitized constraints is publicly available [107]. PBH
observables fall broadly into a few classes: gravitational microlensing, gravitational waves,
electromagnetic signatures from evaporation and accretion and dynamical effects. Of these,
microlensing offers the most robust constraints for high mass objects, gravitational waves
offer the most discovery potential and electromagnetic signatures offer unique abilities to
constrain the lowest mass range.

3.1 Gravitational Microlensing

Gravitational microlensing, the achromatic brightening and dimming of background stars due
to the transit of a massive compact foreground object, can be used to directly detect and
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measure the properties of PBHs. The first direct constraints on the compact nature of dark
matter were set in the 1990s by the MACHO [4], OGLE [5], and EROS [6] collaborations.
Current microlensing constraints set limits on the black hole abundance at the level of 10%
for black holes in the mass range 0.01 − 10 M� (see Figure 2), and can be extended to
∼ 100 M� by combining different microlensing surveys [108].

Microlensing is highly complementary to GW probes since it can detect isolated or free-
floating black holes [109]. Gravitational microlensing results in two potentially observable
features: (1) photometric microlensing, a temporary amplification of the brightness of a
background source, which is achromatic in the case of unblended sources, and (2) astrometric
microlensing, an apparent shift in the centroid position of the source. The characteristic
photometric signal of a simple point-source, point-lens (PSPL) model as observed from the
center of the solar system is symmetric, achromatic, and has both a timescale and maximum
amplification that depend on the mass of the lens. This simple PSPL model is complicated
by astrophysical factors including the velocity distribution of sources and lenses, extinction
due to Galactic dust, blending in dense stellar fields, stellar and planetary companions, and
the shift in perspective resulting from viewing a microlensing event while the Earth revolves
around the Sun. Fortunately, these complications can be addressed and disentangled to
arrive at the mass of the gravitational lens and a detection of dark matter via microlensing
[110, 111]. One particularly powerful feature for long-duration microlensing events results
from the change in the geometric configuration of the source-lens-observer system as the
Earth orbits the Sun. The change in viewing angle and distance results in a parallax effect
that imposes a 1-year periodicity on top of an otherwise symmetric microlensing light curve.

Ref. [112] identified a promising new means of detecting black holes with masses & 1M�.
They found that black holes & 1M� preferentially lie within a unique region of microlensing
phase space, see Figure 4, and that by measuring both the duration (tE, which scales like
the square root of the lens mass tE ∼M1/2) and parallax (πE) of the microlensing event it is
possible to distinguish black hole lenses from other astrophysical sources. By measuring the
relative abundance of microlensing events throughout this phase space and comparing them
with microlensing simulations that include PBH dark matter (e.g., see Figure 4 from Pruett
et al. in prep.) it is possible to improve and extend microlensing dark matter constraints
to masses greater than 10M�. In order to accurately constrain the abundance of the PBHs
it is still necessary to run many such microlensing simulations to properly explore possible
PBH mass distributions as well as marginalize over nuisance Milky Way parameters. LSST
will provide exceptional constraints from microlensing (see Section 4.1).

Microlensing observations using Subaru HSC have produced the strongest limits on PBH
in the sublunar mass region [113–116], as well as a candidate event consistent with a PBH of
mass ∼ 10−7M� [113]. A reanalysis of OGLE data also produced several candidate events
with masses ∼ 10−5M� [31]. Black holes around 1M� (ie, in the mass gap region) have been
detected by OGLE-GAIA [117] and may have a primordial origin. Microlensing constraints
from HSC can be used to constrain potential stochastic GW background signals such as those
reported by NANOGrav [118, 119]. The main systematic uncertainty is the distribution of
dark matter in the Milky Way halo [120], which also affects other dark matter experiments.
Microlensing constraints are insensitive to small-scale PBH clustering [121], but are strongly
affected by large-scale PBH clustering [122].

Another unique probe of PBHs in the O(10 − 100M�) range is strong lensing of fast
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radio bursts [123, 124]. Recent analysis of the first CHIME catalog indicates that with a
thousand FRBs detected, a robust bound can be placed on a fraction f = 1 of dark matter
in PBHs [125, 126]. With thousands of FRBs expected to be detected over the next few
years, this bound will steadily improve. Strong lensing of Gamma-Ray Bursts has also
been considered as a PBH dark matter probe [127], but will require future instruments with
improved sensitivity.

As a purely gravitational probe, lensing is sensitive to primordial black holes even outside
of galactic microlensing surveys. Indeed, the strongest current constraints on primordial
black hole dark matter at 30M� come from lensing of supernovae at cosmological distances
[128, 129]. Other suggestions include disruption of the extreme lensing produced near strong
lens caustics [130] or lensing of quasar light curves [131]. Future lensing catalogues obtained
with high resolution imaging (e.g. with the James Webb Space Telescope, the Roman Space
Telescope or an Extremely Large Telescope) could likely be re-used for primordial black hole
constraints (see Section 4.3).

3.2 Gravitational Wave Mergers from PBHs

Gravitational wave (GW) signals offer the highest discovery potential for PBHs. The detec-
tion of a GW merger (or GW related stochastic gravitational wave background) in a regime
where non-primordial black hole formation channels are not present would be an unambigu-
ous smoking gun signal of PBHs. For example, the detection of black hole mergers before
the formation of the first stars at z > 20, or where one of the primaries have masses in the
sub-solar range where astrophysical BHs are unlikely to form.

There are also statistical smoking guns available with a large enough sample of black
hole mergers. These could include the detection of a substantial stochastic gravitational
wave background from unresolved merging black holes at high redshifts (z > 10) [133]. Al-
ternatively, with enough sources one could cross-correlate galaxies and black hole mergers
to measure the black hole clustering signal [134]. Primordial black hole mergers are hosted
mostly by halos with masses less than the cutoff for star formation, and so cluster substan-
tially less than electromagnetically visible stars.

Should two primordial black holes pass close enough to each other to become bound, they
will be visible through their gravitational wave emission [135]. The expected PBH merger
rate is theoretically hotly debated [e.g. 17, 19, 136–140]. PBH binary mergers can receive
significant contributions from the late Universe [17] as well as the early Universe before
matter-radiation equality [19]. Large merger rates were expected from binaries formed in
the early Universe [20, 136]. However, these merger rates are substantially reduced when
three-body effects are included [141], as these cause cluster formation and evaporation at
high redshift [138, 139]. Interpretation of GW observations crucially depends on expected
merger rates and so significant theoretical work is necessary to ensure robustness of future
constraints (see Section 5).

A priori, any GW merger event could involve a PBH as one of the progenitors [e.g. 142,
143],1 However, astrophysical black holes are known to exist and are expected to produce
mergers. Black hole no-hair theorems imply that individual mergers cannot be unambigu-

1Ref. [140] showed that PBH-neutron star mergers are subdominant to astrophysical merger rates.

11



Primordial Black Hole Dark Matter

Figure 4: A promising new means of detecting black holes with masses & 1M� using grav-
itational microlensing has been identified by [112]. By measuring both the duration (tE)
and parallax (πE) of the microlensing event it is possible to distinguish black hole lenses
from other astrophysical sources. The larger the mass of the lens the more it will move
to the lower right of the parameter space and be distinguishable from other astrophysical
events. Even if there is overlap with the mass of astrophysical black holes (pink triangles),
we can statistically constrain the PBH population (green circles) based on relative abun-
dance. The PBH population in this figure is composed of 35M� black holes distributed in
an NFW Milky Way halo; approximately consistent with the log-normal component of the
GW observed mass distribution [132]. Figure from Pruett et al. in prep.
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ously attributed to primordial or astrophysical sources from their gravitational wave sig-
natures alone. Pending detection of high redshift or sub-solar mass events, distinguishing
between astrophysical and primordial black holes requires a statistical study of the black
hole merger population [144]. These kinds of statistical signals are low-cost; the raw data
is already being gathered by the LIGO/VIRGO collaboration (and ultimately by LISA).
Dedicated analysis efforts are however required to turn the data into population constraints.

Existing data has already begun to produce tantalising hints which, while by no means
conclusive, are possibly signatures of PBH mergers in the current GW merger catalogue.
These include the existence of a peak in the GW mass function at around 30M�, which has
become increasingly significant in recent LIGO-VIRGO data releases [132]. Indeed the best
fit model to the LIGO-VIRGO mass function remains the combination of a power law and a
Gaussian, which could be produced as a consequence of a sub-population of primordial black
holes [145]. Another hint may come from the systematically low spins of the components of
the observed BBH mergers [146], which are consistent with a population of primordial black
holes.

3.3 Electromagnetic signatures

Generically PBHs are non-interacting and dark. However, there are two exceptions which
can directly produce electromagnetic signatures. First, light PBHs (. 10−15 M�) produce
significant Hawking radiation, and second, if massive PBHs (& 10 M�) are able to acquire a
reservoir of baryons, they can sometimes become luminous due to accretion.

3.3.1 Evaporation bounds

Black holes evaporate and lose mass through emission of Hawking radiation. Since the
BH temperature TPBH ∼ Mpl/M is inversely proportional to its mass, and the evaporation
timescale scales as tevap ∼ tpl(M/Mpl)

3, lighter PBHs evaporate more efficiently. In partic-
ular, PBHs with mass M . Mpl(tplH0)−1/3 ∼ 1014 g would have entirely evaporated by the
present time. They therefore cannot exist or make up any of the DM today [97]. However,
since their evaporation takes place early, it would not be detectable in gamma rays and so
their non-existence today does not imply limits on the power spectrum.

Larger mass PBHs still emit Hawking radiation. While not enough to evaporate the
PBH, for some mass ranges this is sufficient to be detectable. Since evaporation emission
produces a wide spectrum of particles, a variety of signatures can be associated with such
PBHs of M ∼ 1015 g, including γ-rays [147, 148], neutrinos or antiprotons. Radiation may
also be detectable through its secondary heating effect [149, 150].

Evaporation around the epoch of recombination can modify the primordial ionization
history, and as a consequence leave an imprint on and be constrained by CMB anisotropy
power spectra [151–153]. Injection of energy through evaporation can modify the CMB
blackbody or 21 cm spectrum, introducing a µ distortion or a y distortion depending on the
epoch during which evaporation takes place [154–158]. Spectral-distortion bounds are usually
much weaker than CMB anisotropy limits, however, except for PBHs evaporating well before
recombination (as is the case for decaying DM [151]). Energy injection from PBH evaporation
can also significantly modify the reionization history of the universe, with associated 21 cm
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signatures [159]. Constraints on ∆Neff from CMB-S4, together with measurements of a
stochastic gravitational wave background, could constrain the existence of radiation decay
byproducts and induced gravitational waves from primordial black holes that have decayed
early on [66].

3.3.2 Accretion bounds

PBHs accrete efficiently during radiation domination and before recombination. Accreting
PBHs may thus affect the cosmological ionization history, and hence CMB anisotropies [21–
23, 160, 161]. In principle, the energy injected by accreted PBHs may also lead to CMB
spectral distortions, but these are systematically less constraining than CMB anisotropies
[22]. The physics of PBH accretion is complex and remains poorly understood, and dif-
ferent models give dramatically different accretion luminosities. Assuming a low radiative
efficiency appropriate for a quasi-spherical accretion flow, one finds that PBHs with masses
M & 100M� are conservatively ruled out as all of the DM by current CMB-anisotropy power
spectrum measurements [22]. If the accretion flow around PBHs is disk-like and thus signif-
icantly more efficient, CMB anisotropies could probe PBHs with masses as low as ∼ 0.1M�
[161]. The modulation of PBH accretion by the supersonic relative velocities of baryons and
DM induces large-scale fluctuations in their accretion rate, thus luminosity, which in turn
implies inhomogeneous perturbations to the ionization history [162]. This ought to lead to
unique non-Gaussian signatures in CMB anisotropies [163].

Massive PBHs can acquire accretion discs by interacting with the interstellar medium
even at low redshift. The emission from these accretion discs creates emission spectra across
the electromagnetic spectrum, depending on the gas density and PBH mass [38, 164]. X-ray
observations limit the number of such sources, leading to an observational bound on PBHs
with masses greater than a few M� [40]. Emission from accretion disks can efficiently deposit
energy into the surrounding gas. Spinning PBHs passing through dense galactic regions may
form and sustain powerful relativistic jet outflows. Outflowing jets and winds [165], can
efficiently heat the surrounding gas, potentially leading to stronger constraints [38, 39, 164].
Gas heating by accreting PBHs provides independent constraints in similar mass-ranges as
the CMB. Observing accretion at high redshift may also provide a route to detect massive
PBHs serving as SMBH seeds, and could be constrained by searching for excesses in the
cosmic IR and X-ray backgrounds [166].

Current constraints are limited by our understanding of black hole accretion. As a compo-
nent of dark matter, the PBH has a high velocity relative to the ISM gas. Thus to realise the
above probes, additional theory and simulation efforts are required to better refine accretion
and radiation models and so derive more accurate predictions and bounds.

3.4 Neutron stars as PBH laboratories

If dark matter is made up of PBHs with masses (10−16 − 10−10)M�, a PBH can be cap-
tured by a neutron star, transmuting ([142]) the host star into a ∼ 1 − 2 solar mass
black hole [142, 143, 167–171]. This process results in a population of black holes that
can be distinguished from astrophysical black holes [171, 172]. Neutron rich material ejected
from a rapidly spinning neutron star during the last milliseconds of its demise can con-
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tribute to r-process nucleosynthesis [169] and can be observed as a kilonova by optical tele-
scopes [169, 173]. Instead of a merger event, the asteroid mass black hole settles inside the
neutron star and gradually accretes its material. Thus the event is not expected to be accom-
panied by significant gravitational wave emission. Future surveys such as LSST may be able
to detect kilonovae not triggered by the gravitational waves signals [174]. A kilonova lacking
the gravitational waves counterpart would be smoking-gun evidence of PBHs [169, 173].

4 Facilities Enabling Measurements of PBHs

There are a variety of facilities which potentially enable measurements of PBHs. In most
cases the PBH science is a secondary target for well-motivated future facilities. The action
items are thus data analysis and theoretical work. Theoretical work is discussed in Section 5.
Here we focus on the potential constraints available from each facility, other applications of
which are discussed further in the CF03 facilities paper.

4.1 Rubin Observatory LSST

The upcoming Rubin Observatory LSST provides an exciting opportunity to directly measure
the mass function of compact object through microlensing. Existing microlensing surveys
lose sensitivity at M & 10 M� due to the ∼5-year duration of these surveys (although see
[108] which combines two surveys to achieve sensitivity to M ∼ 100 M�). While the nominal
LSST has a similar duration (extensions to LSST may be considered [175]), it can surpass
this limitation by directly detecting events using the parallactic component of the lensing
signal. With this technique, LSST will observe billions of stellar sources in multiple filters
over several years to enable the detection of thousands of microlensing events across a wide
range of timescales and consequently a wide range of masses.

LSST will directly detect compact halo objects through gravitational microlensing ob-
servations. It will be sensitive to both low-mass objects through short (∼ 30 s) events
and high-mass objects through long-duration (∼ years) events. If scheduled optimally, the
wide field-of-view, high cadence, and precise photometry of LSST will provide sensitivity to
microlensing event rates corresponding to ∼ 0.03% of the dark matter density in compact
objects with masses > 0.1 M� (see Figure 2). Ref [1] projected that LSST will be sensitive to
PBH making up a fraction of 10−4 of the dark matter over a wide range of PBH masses (see
also [29]). Dedicated mini-surveys of high stellar density fields (similar to those performed
with HSC [113]) will yield sensitivity to much lower mass PBHs. Figure 2 shows the forecast
constraints from Rubin LSST, although at high masses, M > 103M�, these constraints may
be weakened by source blending.

As a time-domain survey, LSST will also be able to detect kilonovae lacking gravitational
waves signals [174], smoking gun evidence for the existence of low-mass (and thus primordial)
black holes, as discussed in Section 3.4.

If compact objects make up a significant fraction of dark matter, LSST will provide
insight into the primordial perturbations and early universe equation of state, in the case
of PBHs, or provide evidence that dark matter particle physics is complex enough to allow
significant cooling channels. Dark matter with sufficient self-interactions to cool will also
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affect halo profiles, and LSST will be well-placed to distinguish different models for the
formation of novel compact objects [29].

4.2 Roman Space Telescope

As a high resolution space-based imaging system, the Roman Space Telescope has the poten-
tial to detect or constrain PBHs through various types of lensing. A hypothetical photometric
microlensing survey of the Galactic bulge could detect PBHs comprising 5−10% of the dark
matter [164]. Roman will also allow an M31 microlensing survey. As Figure 2 shows, such a
survey provides the strongest constraining power for low-mass compact objects. Rubin is in
the southern hemisphere and thus is unable to observe M31.

Furthermore, the high angular resolution of Roman enables the detection of astrometric
microlensing. Astrometric microlensing relies on the fact that the two images generated dur-
ing a compact object lensing event will be of differing brightness and the brightness ratio of
these two images will vary throughout the duration of the lensing event. The two images will
be most similar in brightness when the projected lens-source separation is at its minimum.
The planned Roman exoplanet (astrometric) microlensing survey will be sensitive to PBHs
at the level of about 40% of the dark matter [176]. An astrometric microlensing survey con-
ducted by Roman would complement LSST by breaking degeneracies between lensing mass
and geometry, allowing for precise measurements of individual black hole masses, thereby
measuring the black hole mass spectrum in the Milky Way halo [177]. Finally, Roman
will detect a large number of strong lenses, greatly improving current constraints from the
disruption of strong lens caustics by PBHs [130].

4.3 Extremely Large Telescopes

The 30-m class extremely large telescopes (ELTs) will also be sensitive to microlensing
events. Similar to Roman, the greatest utility from ELTs is likely to come from using
astrometric microlensing to break lens degeneracies in microlensing events detected by LSST
[108, 178, 179]. ELTs will be able to perform follow up observations of compact object
candidates with high-precision astrometry and high spatial resolution Future ELTs, equipped
with adaptive optics (AO), will have an astrometric precision at least an order of magnitude
better than the current AO system on Keck and spatial resolutions of <20 mas. Furthermore,
simultaneous measurements with a ground-based ELT and Roman in orbit at L2 will enable
instantaneous space parallax measurements, which can constrains the distance ratio between
the lens and source.

4.4 LIGO

Gravitational wave detectors such as LIGO have a high degree of discovery potential for
PBHs. LIGO/VIRGO data analysis continues to search for unexpected signals. In particular,
should LIGO detect black holes in a mass range unlikely to be the result of stellar evolution,
this would constitute evidence for PBHs. Current data already place meaningful constraints
on the merger rate of 220 − 24200 Gpc−3 yr−1, depending on the chirp mass of the binary
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[180]. Turning this merger rate into a PBH fraction constraint is model-dependent, and so
these observations motivate the theoretical work described in Section 5.

There is also the possibility that the binaries already detected by LIGO/VIRGO may
have a primordial origin, as discussed extensively in the literature [17, 19, 28]. Perhaps
the most tantalising hint for this possibility comes from the peaks observed in the black
hole binary mass function [132], which are suggestive of multiple populations of black holes.
Indeed, a recent Bayesian analysis selecting between black hole formation models showed a
mild preference for a PBH component [181]. Further investigations of this possibility are
clearly warranted [182]. They require data analysis, continued theory work and the continued
development of the LIGO detectors.

4.5 Cosmic Explorer

The next generation of gravitational wave experiments, of which Cosmic Explorer (CE) is
the US component [183] and Einstein Telescope (ET) the European [184], would increase
sensitivity in the LIGO/VIRGO frequency band (∼ 10−1000 Hz) by an order of magnitude.
With this improved sensitivity would come transformative ability to probe PBHs. The
redshift range of the next-generation GW network would reach to z ∼ 30. The detection of
BH mergers at this redshift, before the formation of the first stars, would be clear evidence
for a primordial origin.

A second avenue for discovery is the detection of a high redshift stochastic gravitational
wave background from faint, unresolved, binary black hole sources [185]. Ref [186] showed
that redshift uncertainties mean that CE would most likely be able to securely place a handful
of mergers at z ≥ 30. The stochastic signal would provide invaluable evidence confirming
any potential primordial events.

Finally, improved statistics from CE would allow detailed analysis of the present-day
binary black hole mass function, allowing features in the population to be securely detected.
The redshift evolution of the merger rate could be measured to z ∼ 2 [184]; should this
evolution track the star formation rate it would be evidence for a stellar origin of the merging
black holes. Should it evolve differently, there would be evidence for a primordial component.

Action items for these next-generation networks are first, to design and build the detectors
over the next decade and second, as with current LIGO, continued theory work and data
analysis.

4.6 Pulsar Timing with ngVLA

At low frequencies (10−9 − 10−7 Hz), stochastic GW backgrounds may be constrained using
pulsar timing arrays. The next-generation radio interferometer ngVLA will improve GW
bounds by an order of magnitude over the current constraints from the NANOGrav 12.5-year
dataset [187]. The NANOGrav collaboration has detected a stochastic signal [188]. It is not
yet a secure gravitational signal as quadrupolar spatial correlations have not been detected.
However, should it be confirmed, one interpretation is GWs induced by the formation of
sub-solar mass PBHs (the mechanism discussed in Section 2.2.2) [189–191]. The order of
magnitude improvement in sensitivity from ngVLA would allow confirming or ruling out the
gravitational wave nature of the signal. It would also become possible to measure the slope
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of the background and thus distinguish a PBH explanation from other potential high energy
(such as cosmic string) or astrophysical sources.

4.7 Fast Radio Bursts observatories

Radio experiments, such as CHIME and HIRAX, will obtain a large number of FRBs, and
so allow statistical studies on their lensing, detecting possible PBH dark matter lenses.
The characteristic time-delay signature of strong lensing would allow us to separate a de-
tection from systematics, and to moreover characterize the PBH masses if lensing was de-
tected [123]. The upcoming Canadian Hydrogen Observatory and Radio transient Detector
(CHORD [192]), the successor to CHIME, would provide a unique opportunity to detect
primordial black holes through their lensing signature in the time domain, given their ex-
pectation to detect on order of tens of thousands of FRBs at large cosmological distances.

4.8 Laser Interferometer Space Antenna

The space-based LISA mission will be sensitive to gravitational waves in a frequency band
from ∼ 10−5−0.1 Hz. As with any gravitational wave experiment, there is discovery potential
by detecting PBHs which merge in this frequency band. A unique feature of LISA is its ability
to detect extreme mass ratio inspirals, when a low-mass black hole merges with a much more
massive object. In some models of PBH formation with a wide mass function, the expected
rate of these mergers can be larger than 103 yr−1 Gpc−3 [193].

LISA’s strain sensitivity will allow it to constrain the stochastic GW background sourced
by the subhorizon formation of PBHs [67, 194–196]. LISA would also be able to detect the
stochastic signal from NANOGrav, if it has a PBH origin, as it is expected to be almost flat
from 10−8 Hz to 10−2 Hz [191].

The astrophysical range of LISA will allow it to probe the existence of intermediate mass
binary black hole mergers at redshift z > 20 with a SNR larger than five, for equal-mass
mergers and progenitor masses between 103M� and 106M� [193]. This would constitute a
probe of the formation scenario for SMBHs described in Section 2.3, where a collection of
PBHs merge at high redshift, before the formation of astrophysical black holes, and seed the
first quasars.

4.9 Mid-band GW Detectors: AEDGE

There is a frequency gap from around 0.01−10 Hz between the ground-based (LIGO/Cosmic
Explorer) and space-based (LISA) gravitational wave experiments. This gap can be filled
with a midband experiment, either using LISA-like technology but shorter arms [e.g. DE-
CIGO 197] or an atomic interferometer [198]. The unique capability of a midband experiment
is the detection of intermediate mass ratio mergers, such as those expected during the early
stages of supermassive black hole assembly. Detection of these mergers at sufficiently high
redshift that astrophysical black holes have not yet formed would constitute evidence for
PBHs. Furthermore, closing this frequency gap would strengthen the ability of all GW de-
tectors to measure stochastic gravitational wave backgrounds [199]. Continuous frequency
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coverage allows for better component separation, making it easier to distinguish astrophysical
and high energy signals.

4.10 MeV Gamma-Ray Telescopes

The MeV gamma-ray band remains under-explored compared to the neighboring GeV and
X-ray bands, and is particularly important for probing asteroid-mass PBHs. That is because
PBHs evaporating at present with lifetimes near the age of the universe have masses near
5 × 10−19 M�, lying at the lower end of the asteroid-mass gap, and thus generically emit
gamma rays with energies of O(10 keV)−O(1 MeV). The radiation from such PBHs could
contribute to the galactic and extragalactic gamma-ray spectrum, and would have a distinct
spectrum from astrophysical backgrounds.

COMPTEL observations of the Milky Way dating back two decades give some of the
strongest constraints on the abundance of PBHs in the 2.5 × 10−18 − 5 × 10−17 M� mass
range [30]. Likewise, INTEGRAL gamma-ray data of the masked Galactic profile has set the
tightest bound on the mass of PBHs that are allowed to compose the DM [148]. Looking at
the future, several telescopes have been proposed to fill the MeV gamma-ray sensitivity gap,
including AdEPT [200], AMEGO [201, 202], All-Sky ASTROGAM [203], GECCO [204],
GRAMS [205, 206], MAST [207] and PANGU [208, 209]. Observations of galactic and
extragalactic targets with several of these telescopes have the potential to extend constraints
on PBH dark matter from ∼ 5× 10−17 M� to 1.5× 10−15 M�, or to discover them [30, 210–
212]. As PBHs become more massive their emission dims and shifts to lower energies.
Therefore, telescopes with a low energy threshold are particularly well-suited to extending
the PBH dark matter discovery reach into the asteroid-mass gap, where few other probes
are available.

4.11 GeV and TeV Gamma-Ray Observatories

PBHs with masses of ∼ 5 × 10−19M� would be currently evaporating and are expected to
produce TeV gamma rays. These would be detected at the end of the PBH’s life as a burst of
gamma rays. We expect these bursts to occur isotropically across the sky. Therefore, a wide
field of view survey observatory is ideal for these searches. For example, the Fermi-LAT and
HAWC can observe 15% of the sky at any given moment. These instruments also search the
entire sky (or close to the entire sky) with a high duty cycle of at least daily. Recent searches
have been performed by the Fermi-LAT [213, 214] and HAWC [215] observatories. The best
limits come from HAWC with a burst rate density upper limit of ∼3× 103pc−3yr−1. Future
wide field of view survey observatories with increased sensitivity are being proposed. For
example, SWGO is expected to set an upper limit on the burst rate density of ∼50pc−3yr−1,
thus increasing the current sensitivity by almost two orders of magnitude after 5 years of
observation[216].

Existing imaging atmospheric Cherenkov telescopes, such as VERITAS, MAGIC, and
H.E.S.S., despite their narrow field of view (∼ 5◦ in diameter), have excellent sensitiv-
ity for TeV gamma-ray transients and can provide competitive upper limits on the burst
rate density. For example, the strongest 95% upper limits are 527 pc−3 yr−1 from 4924
hours of H.E.S.S observations [217]. With its wider field of view and better sensitivity, the
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Cherenkov Telescope Array is expected to improve the constraints on the burst rate density
to ∼102 pc−3 yr−1 [218, 219].

5 Theoretical Work

There are a number of open questions in the theory of primordial black hole formation as
well as observational aspects. While some possible detectable signatures of PBHs are well
explored, other aspects of their life cycle remain obscure. Especially uncertain and important
questions are:

• The rate at which PBHs merge and produce gravitational wave signatures.

• The connection between the initial mass function of the primordial black holes and the
observable mass function.

• The distribution of PBH spins.

• Observational signatures of different PBH formation mechanisms.

5.1 The PBH merger rate

Lacking any other mechanism to dissipate angular momentum, PBHs merge primarily through
gravitational wave emission. This process takes place when two PBHs pass by sufficiently
close at sufficiently low relative angular momentum to become bound by gravitational wave
emission [220]. To be observable, these mergers must happen at a redshift low enough to
be detectable by LIGO/VIRGO or LISA. Several semi-analytic estimates of the merger rate
exist in the literature [e.g. 17, 19, 135, 139, 140]. However, these estimates are mostly at
the order of magnitude level.

Constraints are known to depend on the small-scale density distribution of PBHs, poten-
tially evolving as a sub-dominant component in a background of cold dark matter. This is
currently highly uncertain as the relevant mass scales are . 100M�, whereas N-body simu-
lations are more commonly used to probe halos potentially forming stars M & 109M�. Note
that it is not sufficient to simulate a smaller box as mass transfer effects couple small and
large scales. Furthermore, N-body simulations smooth (‘gravitationally soften’) the density
field on small scales to avoid the formation of artificial binaries. They also generally do not
include models for the GW emission of close PBH binaries.

A number of works have numerically studied the enhanced clustering induced by PBHs
at high redshifts (z & 100). If PBHs make up the majority of the CDM, then they can
form halos potentially containing thousands of PBHs [221]. Such halos grow via hierarchical
clustering, but can also evaporate from encounters between PBHs [139, 222] (the latter effect
is not included in the simulations of [221] due to gravitational softening). The formation
of these early halos could affect various PBH constraints. On the other hand, if PBHs are
just a fraction of the CDM then it is necessary to model the rest of the dark matter as well.
A natural choice is a minimal model of cold, collisionless, dark matter and its impact on
PBH binaries has been studied in [223]. If the PBH is by itself, a steep CDM halo forms
[221, 224] which leads to stronger CMB constraints as the additional mass causes increased
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gas accretion [225]. Future cosmological simulations could more directly treat the evolution
of PBH binaries, or evolve larger volumes to lower redshifts and so assess how PBH clusters
are impacted by (or themselves impact) the formation of the first galaxies. Other avenues
for investigation would be simulations of the accretion of gas onto PBHs with M > 104M�,
or the growth of PBH seeds into SMBHs via runaway mergers.

Despite these technical challenges, some pioneering studies have simulated the discrete
behaviour of PBHs in a small region less than 1 Mpc across for z ≥ 99 [221]. The particle
load of this simulation was relatively small, and a concerted simulation campaign could
likely increase the size of a simulation to the point where it could make predictions for GW
emission. Subgrid models could also be developed to model GW emission and the effects of
tight PBH clumps. Exploration of more complex formation channels (e.g. involving multi-
body interactions and dynamics) is an essential next step to definitively evaluate theoretical
predictions and merger rates.

5.2 The Predicted Spin of PBHs

Formation mechanism Mass range PBH spin
Inflationary perturbations [106] DM, LIGO, supermassive small
Inhomogeneous baryogenesis [51–53, 98] LIGO, supermassive small
Yukawa “fifth force” [89, 226] DM, LIGO, supermassive small
Supersymmetry, Q-balls, no long-range [79, 80, 82] DM (10−16 − 10−6M�) large
Supersymmetry, long-range scalar forces [90] DM (10−16 − 10−6M�) small
Light scalar Q-balls (not SUSY) [80] DM, LIGO, supermassive large
Oscillons from the inflaton [81] DM, LIGO, supermassive large
Multiverse bubbles [55–57] DM, LIGO, supermassive small

Table 1: Masses and spins of PBHs from different scenarios [51–53, 55, 56, 79–82, 89, 90, 98,
106, 226]

Black holes have two properties: mass and spin, both observable through properties of
the gravitational waveform as they merge. The distribution of spins thus in principle encodes
substantial useful information on the origin and evolution of the black holes. If PBHs form
through the collapse of an over-density (the mechanism outlined in Section 2.2.1) they have
negligible initial spin [227], although more complex sub-horizon formation scenarios such as
those outlined in Section 2.2.2 often lead to higher spins [82, 226, 228]. PBH in dense clusters
scatter off each other, and close encounters could significantly increase their otherwise low
spin [229].

A relatively well-measured quantity from the gravitational waveforms is the mass-weighted
effective spin of the incoming binaries aligned with their relative angular momentum, χeff .
The distribution of effective spins in the LIGO/VIRGO black hole population is centered
around zero, indicating that the spins of the progenitor black holes are not correlated with
each other [132]. This is a generic signal of a dynamical origin for the black hole binaries
and compatible with a primordial black hole origin for some of them [146]. Further measure-
ments of the black hole spin distribution, especially with the upcoming increase in the size of

21



Primordial Black Hole Dark Matter

the network to five detectors, could potentially constrain differences in the spin distribution
expected from different formation models (see Table 1).

5.3 Formation Mechanisms and Connection to Supersymmetry
and the Early Universe

It is important to map out the landscape of cosmological scenarios for PBH formation. Some
formation scenarios discovered recently predict the correct abundance of PBH dark matter
by relating the PBH abundance to the baryon asymmetry of the universe [89, 90, 230]. It
was also shown that dark matter in the form of PBHs naturally appears in the models with
supersymmetry [79, 82, 90], in which case the mass scale of PBHs, set by the Planck mass and
the scale of supersymmetry breaking, falls inside the open window for PBH dark matter. The
properties of the present-day PBH population, such as clustering, spins, and mass function,
depend on their formation history [122]. It is, therefore, important to explore the range
of formation scenarios and their astrophysical predictions. Conversely, by measuring the
clustering and spin of primordial black holes, one can hope to use PBH as a new window on
the early universe.

5.4 Accretion and emission from PBHs in different astrophysical
environments

The dynamics of accretion rates, emission and outflows around black holes can be noto-
riously challenging to model. PBHs have velocity and spatial distributions distinct from
astrophysical black holes, as well as potentially very broad mass-ranges extending over many
orders of magnitude. Some accretion regimes and their associated emission will only ap-
pear in the context of PBHs but not astrophysical ones (e.g. accretion onto (sub)solar-mass
BHs). Hence, PBH accretion and emission regimes require reinvigorated simulation efforts
beyond what already exists for regimes associated with typical astrophysical black holes and
their environments. Advancement across this frontier could be especially beneficially for
definitively establishing the role of PBHs in the stellar-mass range for LIGO/VIRGO GW
observations, since several of the existing constraints there (e.g. CMB) sensitively rely on
the description of the above processes.

6 Conclusion

As we have outlined in the white paper, by constraining the abundance and properties of
PBHs we can place some of the tightest constraints on the early universe, extending the CMB
and gamma-ray constraints to even earlier times (to the highest wavenumbers observable).
These same observations of the PBH phase-space can enable us to constrain the abundance
of PBHs and determine their viability as a dark matter candidate. The science impacts of
these analyses are not limited to PBHs, but in many cases also apply to other exotic compact
objects (e.g. axion stars or minihalos).

Fortunately many of the facilities able to make these observations are already well-
justified (and often under construction). For example, gravitational wave observations are
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already being taken by the LIGO, Virgo, and KAGRA scientific collaborations, as well as
pulsar timing arrays such as NANOGrav. Rubin/LSST will be capable of making the neces-
sary microlensing observations. Telescope facilities such as the Nancy Grace Roman Space
Telescope and the Extremely Large Telescopes will be complementary.

Much of the necessary raw data will thus exist in the coming decade. What will not exist
without support are the necessary pipelines and algorithms to turn this raw data into the
required scientific data products. Similarly, without support for new theoretical studies it
will not be possible to translate these observations into scientific constraints. Already, there
has been confusion in the literature regarding existing dark matter and power spectrum
constraints, which could be avoided with a stronger theoretical understanding.

Many of the facilities necessary to make the initial measurements are already planned.
However, the next generation of facilities need support now. The necessary microlensing
observations will be well facilitated by Roman and Rubin, but there are major gains to be
had with future GW facilities. In rough order of scheduled start time, these are ngVLA,
LISA, Cosmic Explorer, and AEDGE/DECIGO. Gamma ray observations will require MeV
gamma-ray facilities, and imaging air Cherenkov telescopes.

Many of these recommendations echo those in other white papers. For example, dark
matter beyond the standard model [231], inflation [232], early universe gravitational wave
probes [233], the CF03 facilities paper [234], the CF03 simulations paper [235] and the CF03
halos paper [236]. Future gravitational wave facilities are discussed in [237]. Particular areas
of agreement are the focus on gravitational waves, and the need for theory work and data
analysis.
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[153] H. Poulter, Y. Ali-Häımoud, J. Hamann, M. White and A.G. Williams, CMB
constraints on ultra-light primordial black holes with extended mass distributions,
arXiv e-prints (2019) arXiv:1907.06485 [1907.06485].

[154] J. Chluba, A.L. Erickcek and I. Ben-Dayan, Probing the Inflaton: Small-scale Power
Spectrum Constraints from Measurements of the Cosmic Microwave Background
Energy Spectrum, ApJ 758 (2012) 76 [1203.2681].

[155] T. Nakama, B. Carr and J. Silk, Limits on primordial black holes from µ distortions
in cosmic microwave background, Phys. Rev. D 97 (2018) 043525 [1710.06945].

[156] J. Cang, Y. Gao and Y. Ma, Prospects of Future CMB Anisotropy Probes for
Primordial Black Holes, JCAP 05 (2021) 051 [2011.12244].

[157] J. Cang, Y. Gao and Y.-Z. Ma, 21-cm constraints on spinning primordial black holes,
JCAP 03 (2022) 012 [2108.13256].

[158] A.K. Saha and R. Laha, Sensitivities on non-spinning and spinning primordial black
hole dark matter with global 21 cm troughs, 2112.10794.

[159] P. Villanueva-Domingo and K. Ichiki, 21 cm Forest Constraints on Primordial Black
Holes, 2104.10695.

[160] M.C. Miller, Reionization Constraints on the Contribution of Primordial Compact
Objects to Dark Matter, ApJ 544 (2000) 43 [astro-ph/0003176].

34

https://doi.org/10.1016/j.dark.2021.100791
https://arxiv.org/abs/2010.13811
https://doi.org/10.1103/PhysRevLett.123.251101
https://doi.org/10.1103/PhysRevLett.123.251101
https://arxiv.org/abs/1906.09994
https://doi.org/10.1103/PhysRevD.101.123514
https://arxiv.org/abs/2004.00627
https://arxiv.org/abs/2007.07739
https://doi.org/10.1016/j.physletb.2021.136459
https://arxiv.org/abs/2009.11837
https://doi.org/10.1088/1475-7516/2017/03/043
https://arxiv.org/abs/1610.10051
https://doi.org/10.1103/PhysRevD.95.083006
https://arxiv.org/abs/1612.07738
https://arxiv.org/abs/1907.06485
https://doi.org/10.1088/0004-637X/758/2/76
https://arxiv.org/abs/1203.2681
https://doi.org/10.1103/PhysRevD.97.043525
https://arxiv.org/abs/1710.06945
https://doi.org/10.1088/1475-7516/2021/05/051
https://arxiv.org/abs/2011.12244
https://doi.org/10.1088/1475-7516/2022/03/012
https://arxiv.org/abs/2108.13256
https://arxiv.org/abs/2112.10794
https://arxiv.org/abs/2104.10695
https://doi.org/10.1086/317197
https://arxiv.org/abs/astro-ph/0003176


Primordial Black Hole Dark Matter

[161] V. Poulin, P.D. Serpico, F. Calore, S. Clesse and K. Kohri, CMB bounds on
disk-accreting massive primordial black holes, Phys. Rev. D 96 (2017) 083524
[1707.04206].
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