
MNRAS 000, 1–20 (2022) Preprint 17 February 2022 Compiled using MNRAS LATEX style file v3.0

Incorporating galaxy cluster triaxiality in stacked cluster weak
lensing analyses

Zhuowen Zhang,1,2★ Hao-Yi Wu,3 Yuanyuan Zhang,2 Joshua Frieman,1,2
Chun-Hao To,4 Joseph DeRose,4,5,6 Matteo Costanzi,7,8,9 Risa H. Wechsler,4,5,6
Susmita Adhikari,1 Eli Rykoff,5,6 Tesla Jeltema,10 August Evrard,11 Eduardo Rozo12
1Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave, Chicago, IL, USA, 60637
2Fermilab, Kirk & Pine Road, Batavia, IL, USA, 60510
3Department of Physics, Boise State University, Boise, ID, USA, 83725
4Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA USA, 94305
5Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA, USA, 94305
6SLAC National Accelerator Laboratory, Menlo Park, CA, USA, 94025
7Astronomy Unit, Department of Physics, University of Trieste, via Tiepolo 11, I-34131 Trieste, Italy
8INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy
9Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy
10Santa Cruz Institute for Particle Physics, Santa Cruz, CA, USA, 95064
11Department of Astronomy, University of Michigan, Ann Arbor, MI, USA, 48109
12Department of Physics, University of Arizona, Tucson, AZ, USA, 85721

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
Counts of galaxy clusters offer a high-precision probe of cosmology, but control of systematic
errors will determine the accuracy, and thus the cosmological utility, of this measurement.
Using Buzzard simulations, we quantify one such systematic, the triaxiality distribution of
clusters identified with the redMaPPer optical cluster finding algorithm, which was used
in the Dark Energy Survey Year-1 (DES Y1) cluster cosmology analysis. We test whether
redMaPPer selection biases the clusters’ shape and orientation and find that it only biases
orientation, preferentially selecting clusters with their major axes oriented along the line of
sight. We quantify the boosting of the observed redMaPPer richness for clusters oriented
toward the line of sight. Modeling the richness–mass relation as log-linear with Poissonian
intrinsic scatter, we find that the log-richness amplitude ln(𝐴) is boosted from the lowest
to highest orientation bin with a significance of 14𝜎, while the orientation dependence of
the richness-mass slope and intrinsic scatter is minimal. We also find that the weak lensing
shear-profile ratios of cluster-associated dark halos in different orientation bins resemble a
“bottleneck” shape that can be quantified with a Cauchy function. We test the correlation
of orientation with two other leading systematics in cluster cosmology—miscentering and
projection—and find a null correlation, indicating that triaxiality bias can be forward-modeled
as an independent systematic. Analytic templates for the triaxiality bias of observed-richness
and lensing profiles are mapped as corrections to the observable of richness-binned lensing
profiles for redMaPPer clusters. The resulting mass bias confirms the DES Y1 finding that
triaxiality is a leading source of bias in cluster cosmology. However, the richness-dependence
of the bias confirms that triaxiality, along with other known systematics, does not fully resolve
the tension at low-richness between DES Y1 cluster cosmology and other probes. Our model
can be used for quantifying the impact of triaxiality bias on cosmological constraints for
upcoming weak lensing surveys of galaxy clusters.

Key words: cosmology: theory — cosmological parameters — galaxies: clusters: general —
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1 INTRODUCTION

The growth of the most massive structures in the universe is a
sensitive probe of the ΛCDM cosmological model. Within this© 2022 The Authors
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2 Z. Zhang et al.

model, the number of dark matter halos of a given mass, or the halo
mass function, depends sensitively upon the current matter density,
Ω𝑚, and on the linear density fluctuation amplitude at the 8 ℎ−1 Mpc
scale, 𝜎8. Beyond ΛCDM, the halo mass function is also sensitive
to the dark energy equation of state parameter, 𝑤 (see, e.g., Frieman
et al. 2008; Weinberg et al. 2013; Huterer et al. 2015, for reviews).

Comprising a few to hundreds of galaxies, galaxy clusters are
tracers of and proxies for dark halos in the approximate mass range
1013 − 3× 1015 ℎ−1 M� . Since the mass of a galaxy cluster is diffi-
cult to directly observe, it is typically inferred from another cluster
observable through a mass-observable relation (MOR). Examples
of such observables are the number counts of galaxies per clus-
ter, often referred to as the “richness" (Koester et al. 2007; Rykoff
et al. 2014); X-ray emission luminosity or temperature from the
intracluster medium (ICM; Piffaretti et al. 2011; Mehrtens et al.
2012); and the inverse Compton scatter parameter of Cosmic Mi-
crowave Background photons off of the ICM electrons, known as the
Sunyaev-Zel’dovich effect (Planck Collaboration et al. 2016; Bleem
et al. 2015). The precision of cluster cosmology studies relies on an
accurate statistical model relating these observables to cluster mass
(Allen et al. 2011).

The Dark Energy Survey (DES) used the 4-m Blanco Tele-
scope and the Dark Energy Camera (Flaugher et al. 2015) to carry
out a multi-band, 5,000 deg2 survey over six years, with the pri-
mary goal of constraining cosmology and the nature of dark energy.
Given its depth and wide-area coverage, DES observed ∼100,000
galaxy clusters up to redshift ∼ 1 (Melchior et al. 2017). Initial
cluster cosmology results, based on the first year of data (DES Y1),
were published in DES Collaboration et al. (2020). The cluster ob-
servable that DES Y1 employed as a mass proxy is a probabilistic
cluster galaxy count called richness, computed with the redMaPPer
algorithm (Rykoff et al. 2012).

Gravitational lensing, the shearing of galaxy images by fore-
ground mass concentrations, is one of the most powerful methods
for calibrating cluster mass-observable relations (Johnston et al.
2007; Gruen et al. 2014; Simet et al. 2017; McClintock et al. 2018).
DES calibrates the cluster MOR through statistical weak lensing, in
which shears from an ensemble of clusters are stacked to achieve
high signal-to-noise (Bartelmann et al. 2001). In DES, stacked shear
profiles are estimated for clusters binned in redMaPPer richness,
enabling a determination of the mean halo mass as a function of
richness (Melchior et al. 2017; McClintock et al. 2018).

Systematic effects in cluster selection or in calibration of the
cluster MOR, if uncorrected for, can lead to biased cosmological
inference from cluster abundance measurements. One such system-
atic arises from cluster triaxiality, the intrinsically elliptical shapes
of galaxy clusters. N-body simulations indicate that dark halos can
have major-to-minor axis ratios as high as 1.5 (Jing & Suto 2002;
Oguri et al. 2005), as confirmed observationally through cluster
weak lensing ellipticity measurements (Clampitt & Jain 2016; Shin
et al. 2018). Failing to account for cluster halo triaxiality may result
in an overestimate of cluster mass by as much as 3-6% for stacked
weak lensing measurements (Dietrich et al. 2014). Triaxiality was
identified as one of the most important sources of systematic bias
in the DES Y1 cluster lensing analysis, significant at the 2% level
(McClintock et al. 2018). Recently Osato et al. (2018) showed that
triaxiality not only biases the cluster surface mass density in the
“one-halo" regime but also affects the surface density profile in the
“two-halo" regime.

In this paper, we use redMaPPer cluster samples and associated
halo catalogs in the Buzzard simulations to quantify cluster selection
bias related to halo triaxiality properties such as orientation and

ellipticity. We evaluate the impact of the triaxiality selection bias
on 1) the richness–mass relation and 2) the excess surface mass
density of individual halos (Osato et al. 2018). The stacked surface
density profiles modeled with a triaxiality selection bias deviate
from the isotropically stacked profiles; we find results comparable
to those previously reported in the literature.

The paper is organized as follows. In Section 2, we describe the
simulation data set used in the study and the halo–cluster matching
algorithm. In Section 3 we examine the orientation and ellipticity
distributions of triaxial halos associated with redMaPPer-selected
clusters, quantifying the preference for halo orientation along the
line of sight. In Section 4 we examine the boost in cluster richness
for a given mass resulting from this orientation selection bias in
the cluster sample. In Section 5 we test for correlation of halo
triaxiality with other leading systematics, finding no evidence for
such. In Section 6 we study halo surface mass densities as a function
of orientation and the effect of orientation selection bias on stacked
surface density measurements. We conclude in Section 7.

Throughout, we assume a flat ΛCDM cosmology with Ω𝑚 =

0.283, and 𝐻0 = 70 km s−1 Mpc−1. Distances and masses, unless
otherwise noted, are defined in units of ℎ−1 Mpc and ℎ−1 M� .

2 THE SIMULATION DATA SET

2.1 Buzzard simulations

We make use of the DES N-body simulation catalogs from the
suite of Buzzard simulations (DeRose et al. 2019) with the ΛCDM
parameters given above. Detailed descriptions of the simulations
can be found in MacCrann et al. (2018); DeRose et al. (2019);
Wechsler et al. (2021); here we present a brief overview.

The Buzzard simulations simultaneously achieve good spa-
tial resolution and large volume by dividing the lightcone into
three simulation boxes covering the redshift ranges 𝑧 ∈ [0.0, 0.34),
[0.34, 0.90), and [0.90, 2.35), with respective minimally resolved
dark matter particle masses of 2.7 × 1010 ℎ−1 M� , 1.3 ×
1011 ℎ−1 M� , and 4.8 × 1011 ℎ−1 M� . The increased resolution at
low redshift captures non-linear structures at late times, while the
lower resolution at high redshift enables the catalogs to encompass
larger total volume. Particles are evolved using the L-Gadget2 code
designed to efficiently run large-volume dark-matter only simula-
tions (Springel et al. 2005).

Halos are found by ROCKSTAR (Behroozi et al. 2013) with
masses defined by 𝑀200𝑏 , the mass enclosed in a radius within
which the average matter density is 200 times the mean matter
density of the universe at the halo redshift. Galaxies are assigned
to dark matter particles using ADDGALS, an empirical algorithm
that places galaxies on dark matter particles based on a galaxy–dark
matter relation learned from subhalo abundance matching catalogs
and that is designed to accurately reproduce galaxy luminosities,
colors, and spatial clustering over large volumes (DeRose et al.
2019). In particular, each massive halo is probabilistically assigned
a luminous, red galaxy at its center.

2.2 redMaPPer cluster sample

With the advent of wide-field-imaging surveys, a plethora of optical
cluster finding algorithms have emerged, such as those based on
galaxy photometric redshifts, e.g. Kepner & Kim (2000), Soares-
Santos et al. (2011), Wen et al. (2012), and Oguri (2014). In this

MNRAS 000, 1–20 (2022)



Incorporating galaxy cluster triaxiality in stacked cluster weak lensing analyses 3

paper, we study the cluster sample identified with the redMaP-
Per algorithm (Rykoff et al. 2014), which identifies cluster candi-
dates as spatial over-densities of red-sequence galaxies. Clusters
are assumed to be centered on a galaxy, with the central galaxy
selected based on its luminosity and color (brightest central galaxy,
or BCG). The algorithm also produces a richness estimate, 𝜆, for
each cluster candidate, a probabilistic count of cluster red-sequence
galaxies above a luminosity threshold and inside a spatial aperture
determined from iterative richness estimations. It uses a sample of
observed clusters with spectroscopic redshifts as a training set to
build the initial redshift-dependent red-sequence model which clus-
ter galaxies are fitted onto to determine the photometric redshift
𝑧𝜆.

The redMaPPer cluster finder has been applied to the Buzzard
catalogs to identify galaxy clusters. We make use of a redMaPPer
sample with a richness cut 𝜆 > 20 to ensure the purity of the sample,
and a maximum cluster redshift of 𝑧 < 0.90 (Rykoff et al. 2016;
McClintock et al. 2018) which is around the redshift detection limit
of redMaPPer and the limit of the Buzzard light cone. Halos are also
cut at masses below 5 × 1013 ℎ−1𝑀� which roughly corresponds
to a richness of 20.

2.3 Cluster halo matching algorithm

Here we outline how redMaPPer clusters are matched to Buzzard
halos. First, a cluster is labeled as centered or miscentered based on
whether or not its redMaPPer BCG is a central galaxy in a Buzzard
halo. Centered clusters have BCGs that share the same ID as that
of the halo central galaxy; in this case, the cluster and halo central
coordinates perfectly match. By this criterion, 63% of redMaPPer
clusters are centered; the remaining were matched using the halo-
cluster algorithm described below. A more detailed description of
the centering properties of the redMaPPer catalogs can be found in
Section 5.1.

The miscentered redMaPPer clusters were matched to Buzzard
dark matter halos by proximity. Halos were ranked by halo mass,
and clusters were ranked by richness, both in descending order. We
first search for halo-cluster pairs with redshift separation Δ𝑧 ≤ 0.05
between cluster photometric redshift and true halo redshift. This
range of redshift separation is large compared to the typical photo-
metric redshift error, Δ𝑧 ∼ 0.005, for redMaPPer-selected clusters.
Then, for each halo, we identify those redMaPPer clusters with
BCGs within a projected 2-D, comoving radius of 2 ℎ−1 Mpc of
the halo central galaxy. If there are multiple redMaPPer clusters
satisfying these separation criteria, we match the halo to the richest
such cluster that hasn’t been previously matched. For each cluster,
we repeat this matching process, selecting halos satisfying the red-
shift and projected distance criteria, and then choosing the most
massive such halo still on the list as the one to be associated with
that cluster. Clusters and halos that uniquely match with each other
in both matching steps are considered valid matches.

Of the 24,243 initially identified redMaPPer cluster candidates
in the suite of 18 catalogs, 23,658 or 97% are uniquely matched
to a halo with the above prescription. We do not consider the non-
uniquely matched clusters in this study.

This halo–cluster matching algorithm was cross-checked with
an independent halo–cluster matching algorithm used in Farahi et al.
(2016) that rank-orders halos and clusters by the number of galax-
ies they have in common. Using the Aardvark simulation, Farahi
et al. (2016) uniquely matched 99% of redMaPPer clusters to ha-
los, showing excellent agreement with this paper’s algorithm on the
completeness and uniqueness of cluster-to-halo matches. We cross

Figure 1. Upper panel: A 2-D distribution plot of the true 𝑀200𝑚 and 𝑧

of halos before and after matching with redMaPPer clusters. The halos are
cut at 𝑀200𝑚 > 5 × 1013 ℎ−1𝑀� and a redshift cut of 𝑧 < 0.90 and
are sparsely sampled for better visualization. Lower panel: The probability
density function of the observed richness 𝜆obs before and after matching
with halos. Because of the high match rate of redMaPPer clusters the two
distributions are nearly identical.

checked our matching algorithm with that of Farahi et al. (2016) in
a different version of Buzzard with a smaller patch of sky contain-
ing several hundred clusters and found almost identical halo-cluster
pairings.

Due to the high number of particles per halo, Poisson noise
plays a negligible role in our ellipticity measurements: at low red-
shift, with a mass resolution of 2.7 × 1010 ℎ−1 M� , a typical
3× 1014 ℎ−1 M�-mass halo found through redMaPPer correspond-
ing to a richness of ∼ 40 will contain ∼ 10, 000 particles, and
the same-mass halo at high redshift, with a poorer mass resolution
of 1.3 × 1011 ℎ−1 M� , contains ∼ 3, 000 particles. Simulations
conducted by Jing & Suto (2002) demonstrated that these large
numbers of particles per halo make Poisson noise negligible for our
purposes. We do not consider halos with fewer than 100 particles
with poor shape convergence, corresponding to group size objects
with richnesses well below our 𝜆 > 20 cut.

MNRAS 000, 1–20 (2022)
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3 CLUSTER HALO TRIAXIALITY AND SELECTION
BIAS

Previous studies have shown that optical cluster finders preferen-
tially select halos with their major axes oriented along the line of
sight (Corless & King 2008; Dietrich et al. 2014). In this Section, we
quantify this orientation bias of selected clusters using the redMaP-
Per catalogs and the Buzzard simulations. We also explore whether
a cluster ellipticity selection effect exists, i.e., whether redMaP-
Per preferentially selects halos that are more or less elliptical than
randomly selected halos.

3.1 Measurement of Halo Ellipticity and Orientation

We make use of a quadrupole moment tensor method (Bett (2012)
and references therein) to measure the shapes and orientations of
halos. Many such algorithms solve for halo shapes by using parti-
cles inside a spherical envelope (Dietrich et al. 2014; Osato et al.
2018); this has the advantage of allowing easy comparison with
other results, but it systematically underestimates the axial ratios for
ellipsoidal profiles, an effect known as “edge bias.” As described
below, we correct for such an effect by using an iterative method to
determine the shape of the enclosing envelope, in the vein of earlier
works such as Dubinski & Carlberg (1991), Katz (1991) and Warren
et al. (1992). To do so, we first measure the shape of the halo using
particles inside a spherical envelope; once the axis ratios and the
principal axes are found, the envelope adapts iteratively until both
the axis ratios of the halo inside the envelope and the shape of the
ellipsoidal envelope itself converge.

We now describe the halo ellipticity measurement algorithm
in detail. It involves nested iteration of both the principal axes, as
determined from the quadrupole moment tensor, and of the envelope
shape. In the initial iteration, 𝑙 = 0, of the envelope shape, the
envelope is set to be a sphere centered on the halo center with a radius
equal to the virial radius of the halo, 𝑅vir. The reduced quadrupole
moment tensor is then calculated for the 𝑁𝑃 dark matter particles
inside the envelope. This tensor, with its principal-axis directions
solved at the 𝑘-th iteration, is defined as:

M (𝑘)
𝑖 𝑗

=
1

𝑁
(𝑘)
𝑃

𝑁
(𝑘)
𝑝∑︁

𝑝=1

𝑅
(𝑘)
𝑝,𝑖

𝑅
(𝑘)
𝑝, 𝑗(

𝑅
(𝑘)
𝑝

)2 , (1)

where 𝑅𝑝,𝑖 and 𝑅𝑝, 𝑗 are the distances from the center along Carte-
sian coordinate axes of the 𝑝-th particle and 𝑅𝑘

𝑝 is the triaxial radius,
defined below, of the 𝑝-th particle solved at the k-th iteration.

We define 𝑎, 𝑏, and 𝑐 as the major, intermediate, and minor axes
lengths of a particle projected onto the unit sphere and 𝑞 ≡ 𝑐

𝑎 and
𝑠 ≡ 𝑏

𝑎 as the minor-major and intermediate-major axis ratios; the
physical distances to the 𝑝-th particle along the minor, intermediate
and major axes are denoted 𝑋𝑝 , 𝑌𝑝 and 𝑍𝑝 . In this notation, the
triaxial radius at the k-th iteration of the particle is expressed as:

𝑅
(𝑘)
𝑝 =

√√√(
𝑋𝑝

𝑞 (𝑘−1)

)2

+
(

𝑌𝑝

𝑠 (𝑘−1)

)2

+ 𝑍2
𝑝 . (2)

The axis lengths projected onto the unit sphere are the square roots
of the eigenvalues of the reduced tensor, and the axis directions are
the corresponding eigenvectors. After each iteration, the principle
axes are rotated by the rotation matrix 𝑀 (𝑘) , where each row in
the matrix is a principle axis found from the reduced tensor in the
previous iteration. The reduced tensor is computed again under the

rotated coordinates. Starting from 𝑞 (𝑘=0) = 1 and 𝑠 (𝑘=0) = 1, the
tensor is considered to have converged if�����1 − 𝑞 (𝑘)

𝑞 (𝑘−1)

����� < 10−6 and

�����1 − 𝑠 (𝑘)

𝑠 (𝑘−1)

����� < 10−6 , (3)

and is deemed divergent if convergence is not reached before the
number of iterations 𝑘 exceeds 100.

The total rotation matrix after 𝑛 rotations is

𝑀tot = 𝑀 (𝑛) . . . 𝑀 (𝑘) . . . 𝑀 (1) , (4)

where each row in 𝑀tot gives the direction of the corresponding
halo axis prior to rotation.

If after 𝑘 iterations the axis ratios derived from the tensor
converge, then the elliptical envelope of the particles is advanced
from the previous 𝑙 − 1-th to the 𝑙-th (for 𝑙 > 0) iteration, adapting
its axis ratios and orientation to those of the halo as determined
from the tensor with the previous envelope. Particles with elliptical
distances of

𝑅
(𝑙)
𝑝 ≡

√√√(
𝑋
(𝑙−1)
𝑝

𝑞 (𝑙−1)

)2

+
(
𝑌
(𝑙−1)
𝑝

𝑠 (𝑙−1)

)2

+ (𝑍 (𝑙−1)
𝑝 )2 < 𝑅vir (5)

are selected. The sequence initializes at 𝑞 (𝑙=0) = 𝑠 (𝑙=0) = 1, and
(𝑋0

𝑝 , 𝑌
0
𝑝 , 𝑍

0
𝑝) along the original (𝑥, 𝑦, 𝑧) axes of our coordinate sys-

tem and converges using the same criteria as for the shape of the
halo inside the envelope, Cf. equation 3. The shape of the halo is
said to be convergent only if both the shape of the halo particles
found inside the envelope and the shape of the envelope itself both
converge.

We applied this technique to measure the shapes of simulated
halos that are matched to the redMaPPer clusters; of the 23,658
matched redMaPPer clusters, the halo shape measurements con-
verge by the above criteria for 22,790 of them. We use this sample
in the following sections to explore orientation bias.

We can gauge the impact of the edge bias on halo shape mea-
surement by comparing results with the adaptive ellipsoidal enve-
lope to those using a fixed spherical envelope. In Fig. 2, we plot the
halo axis ratios 𝑞 and 𝑠 found using spherical envelopes (ordinates)
with those from the adaptive ellipsoidal envelopes (abscissas). We
see clearly that the axis ratios are biased high (ellipticities biased
low) when using spherical envelopes, with larger bias at higher
ellipticities (lower values of the axis ratios). These results are in
qualitative agreement with those of Shin et al. (2018), who studied
2-D projected ellipticities of observed galaxies in redMaPPer clus-
ters. They found that the inferred 2-D ellipticity, 𝑒 ≡ (1+𝑞)/(1−𝑞)
where 𝑞 is the axis ratio for a 2-D ellipse, deviates by as much as
0.1 when using a circular aperture for the redMaPPer (Rykoff et al.
2014) cluster finder, 𝑅𝜆 = 1ℎ−1 Mpc(𝜆/100)0.2, due to the cut-off
of satellite galaxies along the major axis; they also found that the
bias in ellipticity becomes worse at higher ellipticity (smaller 𝑞).

3.2 Distributions of cluster halo orientation and ellipticity

Armed with measurements of halo shapes for redMaPPer clus-
ters, in this subsection we study the distributions of halo ellip-
ticity and orientation. To test for redMaPPer-associated selection
biases, we compare these distributions to those for a sample of
36,445 randomly selected halos with convergent shape measure-
ments from the Buzzard catalog. The orientation of interest is
the angle between the halo major axis and the line of sight,
which we denote by 𝑖; a non-uniform distribution of 𝑖 would

MNRAS 000, 1–20 (2022)



Incorporating galaxy cluster triaxiality in stacked cluster weak lensing analyses 5

Figure 2. Axis ratios, 𝑞 and 𝑠, for redMaPPer-matched halos measured
with spherical vs. adaptive ellipsoidal envelopes. Solid black lines show
the mean ratios in each axis-ratio bin, and the blue bands indicate the
1− 𝜎 scatter. Dashed lines would correspond to no difference in axis ratios
between the two methods. The results demonstrate that edge bias reduces
the measured ellipticities of halos from their true values, with larger bias at
higher ellipticities (smaller 𝑞 and 𝑠).

signal the preferential selection of (prolate) clusters with these
vectors aligned. For this analysis, we adopt the orientation bins
cos(𝑖) ∈ [0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0).

The distributions of axis ratios for redMaPPer-matched halos
and for randomly selected halos are shown for different orienta-
tion bins in the upper panels of Figure 3. Previous N-body studies
found that more massive halos tend to be more elliptical (Kasun
& Evrard 2005) as a result of tidal forces and mergers. To account
for this effect, we resampled the randomly selected halos to match
the halo mass function of the redMaPPer-matched halos. The up-
per panels of Fig. 3 indicate that the ellipticity distributions of the
redMaPPer-matched halos are qualitatively very similar to those for
the resampled random halos, with little dependence on orientation.

To quantify this comparison, in the bottom panels of Fig. 3
we show the mean axis-ratios for the redMaPPer-matched halos
in different orientation bins (in blue), along with the means for

the random halos (in grey). The errors on these measurements are
estimated by jackknife resampling, with the simulated survey foot-
print split by the k-means algorithm kmeans_radec1 into 40 non-
overlapping patches—the error estimates come from the variance
among the patches, each of them 37.5 square degrees. With this
kind of spatial jackknife, the choice of the size of the jackknife
patch is a compromise: for very large patch size, the number of
patches (samples) would be too small to get a meaningful statisti-
cal sample; for very small patch size, large-scale structure would
be highly correlated across adjacent patches, so they could not be
treated as quasi-independent for error estimation.

The mean axis ratios differ by 0.7 and 1.2% for 𝑞 and 𝑠 re-
spectively for redMaPPer vs. random halos. To determine if these
differences are significant, we conduct a null-hypothesis test on 𝑞

and 𝑠 with their standard errors modeled as Student’s 𝑡 distribu-
tions. We find a 1.4𝜎 difference in the minor-to-major axis ratio 𝑞

for redMaPPer vs. randomly sampled halos and a 1.8𝜎 difference
in the intermediate-to-major axis ratio 𝑠. There are no statistically
significant shifts in mean axis ratios for redMaPPer halos between
different cos(𝑖) bins. Thus, we do not find strong evidence of shifts
in the ellipticity distributions.

Figure 4 (top panel) shows a similar analysis to that above, but
now for the distribution of halo orientation in 3 different richness
bins. In this case, there is a clear signal of orientation bias in the
redMaPPer-matched clusters, with preferential selection of clusters
with major axis oriented along the line of sight. The effect is more
pronounced for clusters of higher richness: the lower panel shows
an increase in the mean value of cos(𝑖) with richness. Using the
same method of null hypothesis testing, we find that the mean value
of cos(𝑖) for redMaPPer halos of 0.555±0.002 is boosted compared
to that for randomly selected halos with a 13.8𝜎 significance. There
is also a statistically significant shift in the mean value of cos(𝑖)
between richness bins: the mean cos(𝑖) for 𝜆 ∈ [30.0, 50.0) (𝜆 ∈
[50.0, 274.0)) exceeds that for 𝜆 ∈ [20.0, 30.0) at 3.7𝜎 (4.8𝜎)
significance. As a null test, we find that the randomly selected halos
have a mean cos(𝑖) consistent with 0.50.

In the next subsection, we will interpret the correlation of mean
cos(𝑖) with richness seen in Fig. 4 as due to the boosting of observed
richness for clusters (of fixed mass) oriented along the line of sight.

4 EFFECT OF ORIENTATION ON THE
RICHNESS–MASS RELATION

Since we have shown that the orientation distribution of redMaPPer-
selected clusters is biased, it is important to understand how this may
impact the observed cluster richness-mass relation, a key ingredient
in cluster cosmology. In this Section, we explore how the cluster
richness-mass relation varies with cluster orientation.

Figure 5 shows the empirical relation between Buzzard halo
mass (defined by 𝑀200m) and observed richness for the redMaPPer-
matched clusters. Following previous work (Saro et al. 2015; Simet
et al. 2017; Melchior et al. 2017; McClintock et al. 2018), we model
the relation between cluster mean richness 𝜇(𝜆) and halo mass 𝑀

as a linear relation between ln(𝜆) and ln(𝑀), with a pivot point at
1014 M�:

𝜇(ln𝜆) = ln(𝐴) + 𝐵 ×
(
ln𝑀 − 14 ln(10)

)
. (6)

1 Code written by Erin Sheldon. Source: https://github.com/

esheldon/kmeans_radec
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Figure 3. Top panels: Axis-ratio distributions for redMaPPer-matched clusters binned by orientation and for randomly selected halos from the Buzzard
simulations. Bottom panels: Mean axis ratios with 1𝜎 errors from jackknife resampling. Applying the 3𝜎 significance cutoff rule, no significant shift is found
in the shape parameters 𝑞 and 𝑠 for redMaPPer-matched and randomly selected halos. Also is the case that no statistically significant difference is found in the
mean ellipticities across different orientation bins.

We do not consider the redshift evolution of the richness-mass re-
lation as results from previous multiwavelength scaling relations of
galaxy clusters have prescribed a global redshift fit to the richness-
mass relation (Simet et al. 2017) or those that do model the redshift
dependence find it consistent with a null dependence (Saro et al.
2015; Melchior et al. 2017; McClintock et al. 2018; Bleem et al.
2020). In a recent work, To et al. (2021) used Buzzard simulations
to quantify the large scale bias of redMaPPer-redMaGic cross cor-
relation that has a redshift dependence at 1 − 𝜎 from null and that
could be explained by the increase in observed richness at higher
redshift from stronger projection effects.

We model the scatter of richness at fixed mass as truncated
log-normal scatter that cuts off clusters with 𝜆 < 20:

𝑃(ln𝜆 |ln𝑀) ∝ N (𝜇(ln𝜆), 𝜎(ln𝜆))𝐻 (𝜆 − 20) , (7)

where 𝐻 (𝑥) is the Heaviside step function. The variance 𝜎2 is the
sum of the intrinsic variance 𝜎2

0 and a Poisson term due to finite

richness,

𝜎2 (ln𝜆) = 𝜎2
0 + exp(𝜇(ln𝜆)) − 1

exp(2𝜇(ln𝜆)) . (8)

According to Bayes’ theorem, the posterior likelihood of the
model parameters is given by

𝑃(𝐴, 𝐵, 𝜎0 |𝜆, 𝑀) ∝ 𝑃(𝜆, 𝑀 |𝐴, 𝐵, 𝜎0)𝑃(𝐴, 𝐵, 𝜎0), (9)

where 𝑃(𝐴, 𝐵, 𝜎0) is the joint prior on the parameters which we set
as non-informative uniform distributions.

The maximum likelihood estimates for the model parameters
are found with a Markov Chain Monte-Carlo (MCMC) method
implemented through the pymc module, assuming uniform priors
for 𝐴, 𝐵, and 𝜎0. We run chains of 106 steps for each run, thin them
by selecting every 200 steps, and remove the first 3000 steps (after
thinning) as burn-in, yielding 2000 steps to sample the posterior
distribution.

The solid line labelled "Combined" in Fig. 5 shows the best-fit
model to the richness-mass relation for the full redMaPPer sample,
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Figure 4. Top panel: Distribution of cos(𝑖) for redMaPPer-matched halos
in 3 richness bins and for randomly selected halos. Bottom panel: The mean
cos(𝑖) for redMaPPer-selected halos is boosted relative to that for randomly
selected halos (0.50, not shown). The mean value of cos(𝑖) also increases
with redMaPPer richness. Errors are estimated from jackknife resampling.

with parameters given in the bottom line of Table 1. The posterior
distributions for the "Combined" model parameters shown in Figure
6 show good convergence of the parameters and minimal correlation
among them. The same trends are produced (but not shown) in the
posterior distributions for different orientation bins. The reduced
chi-square statistics shown in Table 1 show that the model is a good
fit to the data.

Next, we assume that the richness-mass model of Eqns. (6-8)
applies separately in each orientation bin. The 3-parameter model
in each orientation bin is fit independently, with the results shown
in Figure 7 and parameter values in the middle box of Table 1.
We find that most of the dependence on orientation comes from
the boosting of the amplitude parameter, ln(𝐴), with cos(𝑖). We
therefore also consider a model in which only ln(𝐴) varies with
orientation, with the other 2 parameters fixed to their global values.
The top panel of Fig. 7 and Table 1 show that this 1-parameter
model makes no appreciable change in the best-fit values of ln(𝐴)
in each bin. Moreover, reducing the number of parameters does not
significantly compromise the goodness-of-fit of the MLE model
relative to the number of extra parameters: as shown in Table 1, the

reduced Bayesian Information Criterion (BIC) for the 1-parameter
vs. the 3-parameter model marginally favors the simpler model.

The best-fit 1-parameter models in each orientation bin are
indicated by the dashed lines in Fig. 5: the effect of orientation bias
on the richness–mass relation is a boost in the amplitude, that is,
in observed richness, at fixed halo mass, for halos with major axes
aligned with the line of sight.

While the orientation-bias model studied here captures the
behavior of redMaPPer-selected halos in the Buzzard simulations, a
caveat is in order before applying the model to redMaPPer-selected
clusters in the real universe. In particular, the redMaPPer richness
at fixed halo mass in Buzzard has been found to be systematically
lower at a 3𝜎 level from that for redMaPPer clusters with weak-
lensing calibrated masses in DES Y1 data (DeRose et al. 2019)
which can be traced to the underestimation of the halo occupation
distribution (HOD) of red galaxies identified by the red sequence
in Buzzard. If this systematic is relatively independent of richness,
we expect our model for the difference in richness amplitude with
orientation, Δ ln(𝐴), to retain its validity, even if the central values
of ln(𝐴), 𝐵 and 𝜎0 differ (note that the intrinsic scatter 𝜎0 is not
constrained in the McClintock et al. (2018) weak lensing analysis of
DES Y1 clusters). The dependence of the richness–mass relation on
the HOD of red-sequence galaxies can be tested with studies using
other simulations, such as the latest cosmoDC2 (Korytov et al.
2019), which populates halos with galaxies using a different set of
semi-analytic and empirical methods from ADDGALS (Z. Zhang
et al., in prep). Alternatively, one can construct and analyze new
redMaPPer catalogs from the Buzzard simulations after injecting
red-sequence galaxies to match the HOD of DES Y1 data (W. Black
et al., in prep).

5 CORRELATION OF TRIAXIALITY WITH OTHER
SYSTEMATICS

Orientation bias is one significant systematic for the cluster richness-
mass relation; miscentering and projection effects are two others. In
modeling these systematics for cluster cosmology, it is important to
know the degree to which they may be correlated. In this Section,
we explore possible correlation of orientation bias with the other
two.

5.1 Miscentering

As noted above in Section 2.3, in the simulated cluster catalog 37%
of the matched clusters are miscentered in the sense that the galaxy
identified by redMapper as the BCG is not the central galaxy in
the corresponding Buzzard halo. In both the simulation and the
real universe, miscentering can happen for a number of reasons.
For example, a recent halo merger may result in two nearly-central
galaxies of comparable luminosity, or a recent burst of star formation
may move the central galaxy’s color off the locus of the red sequence.
(Cooke et al. 2019; Ragone-Figueroa et al. 2020; Zenteno et al.
2020). Alternatively, a red foreground galaxy along the line of sight
to a cluster may be misidentified as the BCG, although Section 5.2
indicates that this is rare in the Buzzard simulations.

The miscentering distribution for redMapper clusters in DES
Y1 data was estimated through comparison of redMaPPer BCG
angular positions with the peaks of X-ray emission for a subsample
of clusters with Chandra archival data (Zhang et al. 2019). A number
of studies have indicated that X-ray peaks are accurate proxies for
the centers of cluster potential wells, though they are subject to
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Figure 5. Left panel: Solid line labelled "Combined" shows the best-fit model to the full sample assuming a linear relationship between ln(𝜆) and ln(𝑀 ) .
Dashed lines show best-fit models in each orientation bin, with the amplitude ln(𝐴) allowed to vary from bin to bin. For halos of fixed mass, those oriented
along the line of sight have larger observed redMaPPer richness. The dashed horizontal line indicates the richness cut at 𝜆 > 20 and dashed vertical line the
mass cut at 𝑀 > 5 × 1013 ℎ−1𝑀� . Color coded is the density of the scatter points in the parameter space, with brighter colors indicating a higher density.
Right panel: The richness distribution in mass bins for all data points overlaid with a truncated Gaussian fit using the best-fit parameters in the "Combined"
1-parameter model. In lower mass bins the best fit mean log-richness 𝜇 (ln𝜆) is lower than the mean log-richness of the data points, as the peak of the truncated
Gaussian fit lies below the 𝜆 > 20 cutoff.

Model parameters and BIC for richness–mass template
3-parameter model 1-parameter model

cos 𝑖 ln 𝐴 B 𝜎0 BIC ln 𝐴 B 𝜎0 BIC 𝜒2/𝜈
[0.0,0.2) 2.869± 0.004

0.006 0.747± 0.007
0.011 0.576± 0.004

0.003 8819 2.866± 0.005
0.003 8799 1.33

[0.2,0.4) 2.890± 0.005
0.004 0.739± 0.010

0.007 0.581± 0.004
0.004 8088 2.892± 0.003

0.006 8064 1.26

[0.4,0.6) 2.919± 0.003
0.006 0.762± 0.008

0.010 0.575± 0.004
0.004 8123 2.916± 0.004

0.005

0.762 ± 0.005
0.003 0.582 ± 0.002

0.002

8104 1.20

[0.6,0.8) 2.988± 0.004
0.005 0.776± 0.005

0.013 0.581± 0.002
0.005 6480 2.986± 0.004

0.005 6463 1.02

[0.8,1.0) 3.115± 0.003
0.005 0.785± 0.012

0.006 0.597± 0.003
0.004 2648 3.114± 0.006

0.003 2588 0.77

All NA 2.956± 0.003
0.001 29807 1.09

Table 1. Maximum Likelihood estimates and 68% CL errors of richness-mass model parameters for redMaPPer clusters as a function of halo orientation
cos(𝑖) and for the full cluster sample ("All"). The middle box shows results when all 3 model parameters are allowed to vary with cos(𝑖) (3-parameter model);
right-most box shows results when only ln(𝐴) is allowed to vary (1-parameter model). Also shown are the Bayesian Information Criterion (BIC) values for
each case; the slightly lower values for the 1-parameter model indicate that it is marginally preferred. The reduced chi-square statistics 𝜒2/𝜈 ∼ 1 show that the
1-parameter model is a good fit to the data.

systematic errors as well (Lin & Mohr 2003; Song et al. 2012; Stott
et al. 2012; Mahdavi et al. 2013; Lauer et al. 2014). In Zhang et al.
(2019), based on 144 redMaPPer clusters with X-ray data, 75 ± 8%
of the redMapper clusters were found to be centered, i.e., they have
very small projected separation between redMaPPer BCG and X-
ray centroid. For the remainder, the distribution of radial separation

between redMaPPer BCGs and X-ray peaks was modeled as a sum
of a declining exponential and a gamma function.

Here, we study the distribution of projected separation, 𝑅sep,
between redMaPPer BCGs and Buzzard central galaxies for halo-
matched clusters in the simulation. Since the separation is expected
to scale with cluster size, we use the scaled separation, 𝑅sep/𝑅𝜆,
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Figure 6. Posterior distributions of the richness–mass parameters derived
using all redMaPPer-matched clusters. The shaded regions in the 2-D dis-
tributions show the 68 and 95% confidence regions; shaded regions in 1-D
plots indicate the 68% confidence regions for the marginalized parameters.
Posteriors for templates in different orientation bins share the same features.

where 𝑅𝜆 = 1ℎ−1 Mpc(𝜆/100)0.2 is the characteristic circular aper-
ture for the redMaPPer cluster finder.

We note here the difference in definition between centers. In
real data the centering property for a single cluster is not known.
Rather the separation distance between optical and X-ray center is
modeled as a joint distribution for centered and miscentered clusters
with the centered fraction as a model parameter with a maximum
likelihood of 75% ± 8%. In the simulations the centering of each
individual cluster is a known quantity determined by whether the
central galaxy determined by redMaPPer and the halo are one and
the same. Among the 23658 halo-matched clusters, 14905 were
correctly centered and 8753 are miscentered, the centered fraction
being 63% which is within 2𝜎 the centering fraction using X-ray
follow-up (Zhang et al. 2019).

In contrast, Buzzard populates halo centers with galaxies using
the ADDGALS algorithm, and by construction a galaxy lies in the
halo center. For redMaPPer clusters correctly centered on the halo
central galaxy their coordinates are perfectly matched. We define
the distance between the redMaPPer chosen BCG and the true halo
center as the miscentering separation distance 𝑅sep.

The resulting separation distribution is shown in Fig. 8; the
distribution is peaked at 𝑅sep = 0.1𝑅𝜆, with a tail that extends
to 𝑅sep ' 𝑅𝜆. The shape of the distribution is well-fit by a Γ

distribution of functional form

𝑃miscent (𝑥 |𝜏) =
𝑥

𝜏2 exp
(
− 𝑥/𝜏

)
, (10)

where 𝑥 ≡ 𝑅sep/𝑅𝜆. Using methods of least squares, the best fit
characteristic scale is found to be 𝜏 = 0.16 which is well within the
1 − 𝜎 range of the characteristic scale for Chandra to DES center
offset found in Zhang et al. (2019). Using the Kolmogorov-Smirnov
test, we find that the binned dataset is consistent with the best-fit
Gamma distribution at a 𝛼 = 0.05 significance level.

Figure 7. Dependence of redMaPPer richness–mass model parameters on
halo orientation cos(𝑖) . Horizontal bands show the mean and 68% CL range
for the global (full-sample) fit for each parameter. The top panel shows best-
fit amplitude ln(𝐴) vs. orientation when the other 2 parameters are allowed
to vary with orientation (3-parameter model) and when they are fixed (1-
parameter model), indicating little difference. The Bayesian Information
Criterion (BIC) test favors the 1-parameter model.
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We study differences in the properties of the centered and
miscentered cluster populations in the simulation in Fig. 9. The
upper panel shows that the probability distribution of cluster mass
for the centered population is peaked at a slightly higher mass
than for the miscentered population, that is, it is the lower-mass
clusters that tend to be miscentered, which suggests that this may
be a mass dependent bias more prone to low-mass and low-richness
clusters. The same trend was not observed with X-ray luminosity and
temperature, variables sensitive to the cluster mass with a sample
size of only 144 redMaPPer SDSS clusters with X-ray follow up
(Zhang et al. 2019). Near-future X-ray surveys as eRosita (Hofmann
et al. 2017), which aims to detect 105 clusters with a lower mass
limit of ∼ 1014 𝑀� , will provide a much better handle on the
mass distribution of centered and miscentered clusters. The lower
panel of Fig. 9 shows that the normalized richness distribution of
the centered clusters is higher than that of the miscentered ones at
𝜆 > 60, though the difference is marginal.

The centered fraction increases with increasing richness, from
63% for the full sample (𝜆 > 20) to 60% for 𝜆 > 40, 67% for 𝜆 > 60
and 69% for 𝜆 > 80. This trend is qualitatively consistent with the
consistency test carried out on data by Zhang et al. (2019): they
compared redMaPPer BCG positions for DES and SDSS clusters
where the two data sets overlap and found that for 𝜆 > 40 a large
fraction of the BCG positions were within 0.05𝑅𝜆 of each other. The
archival data from XMM and Chandra has a sharp richness cutoff of
𝜆 ' 70 (Farahi et al. 2019), so any trend of miscentering of BCGs
relative to X-ray centroids with richness is not yet detectable with
current data.

To quantify the impact of miscentering on the redMaPPer
richness estimate in the Buzzard simulations, we consider two ap-
proaches. The first method is to recalculate the observed richness
by assigning the cluster center onto a different galaxy. It has the
advantage that it can also be applied to cluster data but the disadvan-
tage that it involves additional assumptions that have not been fully
tested. For each cluster, the redMaPPer algorithm initially identifies
five galaxies as candidates for the BCG. At the end of its iterative
procedure, it assigns a final probability of being the BCG to each
of these five, produces richness estimates, 𝜆𝑖 , 𝑖 = 1, ..., 5 assuming
each of them is the BCG, and identifies the most probable as the
BCG, with corresponding richness estimate 𝜆𝑖 . As the probability
of it being the true center drops for each candidate, a comparison of
richness for clusters targeted at different central candidates would
yield information on the potential degree of miscentering for each
cluster.

In this first approach, we can quantify the bias in miscentering
by taking the ratio of the richness centered at the second most prob-
able galaxy to the first most probable cluster central galaxy among
the 5 candidates identified by redMaPPer. This ratio 𝜆2/𝜆1 is an
indication of the potential bias in observed richness that miscen-
tering could play when choosing a different cluster center. Among
the many selection effects of redMaPPer that come into play in the
measurement of this quantity, it is primary a function of the sep-
aration distance between the two central candidates—𝜆2/𝜆1 shifts
downward from unity with increasing separation distance 𝑅RM_sep
between the cluster candidates, and also notably so does the disper-
sion increase with 𝑅RM_sep. Here 𝑅RM_sep is the separation distance
between the two redMaPPer central candidates which in some clus-
ters could be the halo-cluster separation distance 𝑅sep but is often
not the case. As shown in the left panels of Fig. 10 and in Fig. 8,
𝑅sep goes out to ∼ 1𝑅𝜆 while 𝑅RM_sep can be extended to ∼ 2.5𝑅𝜆.

The second method of quantifying the impact of miscentering
on richness gives a “ground-truth" estimate of the richness bias, but

it can only be estimated in the simulation, not from observations.
There is a version of the redMapper catalog for the Buzzard sim-
ulation, called the halorun catalog, in which the redMaPPer BCG
is constrained to be the halo central galaxy for each halo-matched
cluster. By construction, correctly centered clusters in the fullrun
redMaPPer catalog that we have been discussing so far have the
same richness as those in the halorun catalog. On the other hand,
for the miscentered fullrun clusters, there is a bias in the estimated
richness due to miscentering characterized by

Δ𝜆

𝜆
=
𝜆fullrun − 𝜆halorun

𝜆fullrun
. (11)

This fractional shift in richness is plotted as a function of the scaled
miscentering separation in the lower left panel of Fig. 10.

It is apparent from visual inspection in the left panels of Fig.
10 that both methods of quantifying miscentering bias that richness
bias increases in amplitude and dispersion with scaled separation as
has been shown using DES Y1 clusters with X-ray follow-up data.

Having shown that the miscentering properties of the Buzzard
redMaPPer catalog are consistent with those in DES Y1 data, we
now turn to examining whether miscentering and triaxiality are cor-
related systematics. We do this by measuring the miscentering bias
as a function of halo orientation, using both of the metrics described
above. As the right panels of Fig. 10 show, we find that the mean
values and dispersion of the two metrics have no systematic depen-
dence on cos(𝑖). Miscentering and triaxiality can thus be treated as
independent systematics.

The fact that we find no correlation between these two sys-
tematics is useful for the modeling of systematics in future weak
lensing studies but should not come as too unexpected in light of
their different physical origins. Miscentering occurs when mergers
introduce identical central galaxy candidates or from the star for-
mation properties of the central galaxy that shifts its color out of
the red-sequence (Cooke et al. 2019; Ragone-Figueroa et al. 2020;
Zenteno et al. 2020), effects completely different from the geomet-
ric boosting in richness when clusters are oriented along the line of
sight that induce triaxiality bias.

We also test if miscentering can be attributed to line of sight
projections whose effect on clusters we describe in detail in subsec-
tion 5.2. If miscentering is due to projection effects then the BCG
at the center of the matched-halo would be of a different redshift
and not belong as a member of the matched redMaPPer cluster.
Within the allowed Δ𝑧 ± 0.05 redshift separation between halo and
cluster in our matching algorithm, all of the BCGs at the halo center
belong as a member of the matched redMaPPer cluster. Additional
tests beyond the scope of this paper need to be conducted to in
order to conclude whether miscentering can be attributed to projec-
tion effects and if so to what degree, but simulations from Buzzard
suggests that this may not be a strong effect.

5.2 Projection

In this section we test for correlations between triaxiality and pro-
jection effects. Projections effects were modeled and quantified
in Costanzi et al. (2019) using a different Buzzard halo catalog
populated according to the assigned "true" richness–mass rela-
tion of Simet et al. (2017), and adopts an empirically calibrated
back/foreground contamination to account for projection effects on
the observed richness. We denote this catalog as the C19 projection
catalog. Below we summarize the properties of projection effects
and the quantities used in the C19 projection mock catalog for our
analysis.

MNRAS 000, 1–20 (2022)



Incorporating galaxy cluster triaxiality in stacked cluster weak lensing analyses 11

Figure 8. Probability distribution of the projected separation between Buz-
zard halo central galaxies and redMaPPer BCGs in the miscentered popula-
tion. Scatter plots are the binned mock data points with Poisson error and the
line is the best fit Gamma distribution. The two distributions are consistent
according to the Kolmogorov-Smirnov test at a 𝛼 = 0.05 significance level.

Cluster richness suffers from projection effects when non-
member galaxies along the line of sight to a cluster are mistak-
enly classified as cluster members. These may be randomly located
galaxies along the line of sight, galaxies spatially correlated with the
cluster due to large-scale (e.g., filamentary) structure, or galaxies
in a lower-richness cluster along the line of sight that “leak” into a
larger one, a process in redMaPPer known as percolation (Costanzi
et al. 2019). In combination, they bias the observed richness 𝜆obs

away from the true richness 𝜆true by the amount:

𝜆obs − 𝜆true = Δbkg + Δ
prj
non−cor + Δ

prj
LSS + Δprc (12)

Each component contributes to the observed richness in a dif-
ferent form. Background scatter, Δbkg, is assumed to be normally
distributed around the true richness. The sum of the projection terms
due to non-correlated clusters, Δprj

non−cor, and correlated large-scale
structure,Δprj

LSS, are modeled as an exponential function with a cutoff
at Δprj > 0, to ensure an upscatter of 𝜆obs as is physically moti-
vated. The observed richness is painted on in the mock catalog by
summing the richness of clusters along the light of sight weighted
by the redshift kernel 𝑤(Δ𝑧, 𝑧):

𝜆obs
𝑖 = 𝜆true

𝑖 + Δ
prj
𝑖

= 𝜆true
𝑖 +

𝑁∑︁
𝑗≠𝑖

𝜆true
𝑗 𝑓 A

𝑖 𝑗𝑤(Δ𝑧𝑖 𝑗 , 𝑧 𝑗 ), (13)

where 𝑓 𝐴
𝑖 𝑗

is the geometric masking fraction of object 𝑗 over 𝑖 for an
object 𝑗 that’s (partially) in the line of sight of 𝑖, and 𝑤(Δ𝑧𝑖 𝑗 , 𝑧 𝑗 ) the
redshift kernel which, as a function of redshift of 𝑖 and the redshift
separation between 𝑖 and 𝑗 is modeled as the functional form:

𝑤(Δ𝑧 |𝑧cl) =
{

1 − (Δ𝑧)2

𝜎𝑧 (𝑧cl)2 , |Δ𝑧 | < 𝜎𝑧 (𝑧cl)
0, otherwise,

(14)

which can be interpreted intuitively as the diminishing strength of
projection effects with redshift separation |Δ𝑧 | up to a maximum
separation of 𝜎𝑧 (𝑧cl).

For each cluster, its 𝜎cl
𝑧 (𝑧) is fitted by sliding the redMaPPer

Figure 9. Upper panel: Mass distribution of the centered and miscentered
redMaPPer clusters in the Buzzard simulations. The centered population is
peaked at a higher mass. Lower panel: Richness distributions of centered
and miscentered clusters and for the entire cluster sample. The inset plot
shows a slightly higher fraction of centered clusters at high richness.

redshift center away from the true cluster redshift so as to remove
the excess richness Δprj due to projection as a function of the red-
shift separation between assigned and true redMaPPer redshift. To
recover the “leakage" function for clean line of sights, Costanzi
et al. (2019) chooses the lower 5% of clusters in a given redshift
as the leakage function. It is fit with a piecewise log-linear model
with a transition at 𝑧 = 0.32. Data from SDSS redMaPPer clusters
(Costanzi et al. 2019) show that at 𝑧 . 0.3 projections are from
the width of the red-sequence and increase monotonically with
increasing redshift from increasing photometric errors. At 𝑧 & 0.3
projection effects flatten out as the SDSS survey is no longer volume
limited but magnitude limited, the faintest cluster galaxies residing
near the magnitude limit of the survey at redshift above 0.3.

In this paper we introduce the derived quantity

log
(
𝜎

proxy
𝑧 (𝑧cl)

)
= log

(
𝜎cl
𝑧 (𝑧cl)

)
− log

(
𝜎5%
𝑧 (𝑧cl)

)
(15)

as the difference between the log-scaled 𝜎𝑧 of an individual cluster
and the lower 5% envelope of 𝜎𝑧 for all clusters at the redshift bin
of the cluster. This quantity 𝜎

proxy
𝑧 (𝑧cl) can be seen as the level of

intrinsic excess projection after eliminating background noise and
redshift-dependent observational biases.

Percolation is added into the full model of projection when
clusters of lower richness are “absorbed" into one with higher rich-
ness. For each cluster 𝑗 with richness smaller than that of 𝑖, the
richness is taken from 𝑗 to 𝑖 by the amount

Δ
prc
j =

𝑁∑︁
𝑗<𝑖

𝜆true
𝑗

(
1 − 𝑓 A

𝑖 𝑗𝑤(Δ𝑧𝑖 𝑗 , 𝑧 𝑗 )
)
, (16)

whose probability distribution 𝑃(Δprc |𝜆true, 𝑧) is empirically deter-
mined to well resemble a boxcar function with Δprc ∈ [−𝜆true, 0].
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Figure 10. Left panels: Richness bias vs. miscentering separation for redMaPPer clusters in the Buzzard simulation. Both richness bias metrics 𝜆2/𝜆1 and
Δ𝜆/𝜆 show larger bias and increased dispersion at larger miscentering distance. Right panels: Richness bias vs. orientation. The mean values of the richness
bias metrics show no correlation with halo orientation angle, cos(𝑖) .

In the C19 projection catalog, each cluster is assigned a true
richness using an empirically calibrated richness–mass relation
from Simet et al. (2017) and given an observed richness using
the projection effect algorithm described above by way of the red-
shift kernel 𝑤(Δ𝑧 |𝑧𝑐𝑙). Hence the difference between the true and
observed richness in this mock is due to projection effects alone.
The probability distribution for 𝑃(Δ|𝜆true, 𝑧) for each component
is then fit using this C19 projection mock, and upon convolution
of the probability distributions for each individual component in
Equation 12 we arrive at the final expression for 𝑃(𝜆obs |𝜆true, 𝑧).
We refer the reader to Costanzi et al. (2019) for the full expression
and best-fit parameters. All halos in the mock projection catalog are
artificially assigned an observed and true richness, whether or not
such a halo could be detected and matched to a redMaPPer cluster.
The observed richness is thus biased only from projection effects
and does not suffer from all the other selection effects, including
triaxiality and miscentering, that would exist had the halos under-
gone redMaPPer detection and cluster matching. This technique
effectively isolates projection effects from potentially correlated
systematics in the same vein that we used the halorun catalog to
isolate miscentering effects.

We find that projection effects are independent from triaxiality.
Figure 11(a) shows that𝜎proxy, the strength of projection effects due
to large-scale structure, is not correlated with cos(𝑖). We further

inspect the full scope of projection effects by studying the fractional
difference between the observed and true richness in the projection
mock catalog,

Δ𝜆prj
𝜆prj

=
𝜆obs

prj − 𝜆true

𝜆obs
prj

, (17)

which shows no correlation with cos (𝑖), as shown in Figure 11(b).
Finally, we run our fit to the richness–mass relation in the projection
catalog of 𝜆obs

prj binned in cos(𝑖) and observe no difference in the
observed richness–mass relation, shown in Figure 12. The 1 − 𝜎

range of the best-fit parameters for the log-linear richness–mass
template between different cos(𝑖) bins all closely overlap with each
other, with no clear trend.

The lack of correlation between projection and orientation may
be puzzling at first in light of a common physical origin of these
effects. The ΛCDM model of hierarchical structure formation facil-
itates the preferential gravitational collapse of dark matter halos that
become galaxy clusters along the nodes of large-scale filaments. It
is also widely understood that a halo’s semi-major axis is preferen-
tially aligned with the direction of the associated filament for halos
residing in over-densities (e.g. Hahn et al. (2007), Forero-Romero
et al. (2014)). It is thus sensible to expect a correlation between the
strength of projection effects and halo orientation for halos residing
in filaments.
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The lack of correlation can be explained by the stochasticity
of these effects along with the fact that not all halos share the
same physical origin for this set of systematics. The boosting in
richness from projection is from uncorrelated background noise and
correlated large scale structure, the latter playing a much larger role.
Adding the large scale structure into the modeling of the observed
richness for projection boost the richness perturbation Δprj by a
factor of 2 and 4 in the 𝜆true range 20 − 100 (Costanzi et al. 2019).
It is also observed by N-body simulations from Sunayama et al.
(2020) that a minority of clusters that reside in large scale filaments
is responsible for the boosting of the stacked weak lensing signal of
halos (see Section 6 on weak lensing) due to projection effects. This
set of studies suggests that a small batch of clusters is responsible
for the large degree of bias from projection effects.

Triaxiality bias, on the other hand, can occur whether halos re-
side in large scale filaments or in voids. That all halos, regardless of
its external environment, is subject to the same degree of triaxiality
bias while not the case for projection bias would explain the lack
of correlation among an ensemble of stacked clusters. It would be
interesting as a follow-up study to know if the correlation between
projection and triaxiality can be detected for the minority of clusters
residing in large scale structures that heavily boost the projection
observable, but for the purposes of modeling redMaPPer selection
effects, it is sufficient to know that for the entire sample of 𝜆obs > 20
clusters detectable by redMaPPer, projection and triaxiality can be
treated as separate systematics. A further study using spectroscopic
redshift measurements of redMaPPer member galaxies from Mag-
ellan telescope data (Gruen D., in prep.) will provide the shape and
orientation of clusters as well as test for non-member galaxies pro-
jected along the line of sight misidentified by redMaPPer, serving
as a follow-up test of the correlation of these systematics using real
data.

6 EFFECT OF HALO ORIENTATION ON WEAK
LENSING PROFILE

The effects of triaxiality on cluster optical detection are twofold—
one through the boosting of the richness-mass relation as was cov-
ered in Section 4, the other through the boosting of radially depen-
dent weak lensing signals.

This section quantifies the latter effect. It is split into three
subsections—Section 6.1 models the boosting effect of the clus-
ter weak lensing signal in the Buzzard simulations for individual
halos before applying the redMaPPer cluster finder; Section 6.2
combines the result from Section 6.1 and our richness-mass model
from Section 4 to predict the observed boosting in stacked cluster
lensing profiles at different richness bins after redMaPPer selection;
Section 6.3 uses the result from Section 6.2 to conduct a Fisher ma-
trix forecast on the mass bias of triaxiality for redMaPPer clusters
stacked in different richness bins.

6.1 Modeling the effects of halo orientation on excess surface
density before redMaPPer selection

In this section, we measure the excess surface densities of
all halos with convergent shape measurements in a lightcone
of 𝑧 < 0.90. The masses of halos are binned in mass bins
of [5 × 1013, 1014), [1014, 2 × 1014), [2 × 1014, 4 ×
1014) and [4 × 1014, ∞) ℎ−1𝑀� , and redshift bins of
[0, 0.34), [0.34, 0.5), [0.5, 0.7) and [0.7, 0.9), for a total of
16 bins.

(a) Correlation of 𝜎proxy
𝑧 with halo orientation.

(b) Correlation of Δ𝜆
𝜆

with halo orientation.

Figure 11. Correlation of projection strengths and halo orientations mea-
sured in two mock catalogs. Top panel shows the measurement in the Buzzard
simulations, where the 𝜎

proxy
𝑧 (defined in Equation 15) is used to estimate

the strength of projection effects. Bottom panel shows the measurement in
the C19 projection mock, which is constructed using the same halo catalog
as the Buzzard simulations. In the C19 catalog the galaxies are populated
using a richness–mass relation and the observed richness is generated using
a semi-analytic model (described in Section 5.2). In this mock, because we
know the true galaxy content in each halo, we use the fractional difference
between the observed richness and true richness (defined in Equation 17)
as a proxy for projection. In both panels, we find there is no correlation
between projection strengths and halo orientations.

Another common expression for the density inside a halo is
the halo–matter correlation 𝜉ℎ𝑚 (𝑟), which is related to the surface
density Σ through the relation

Σ(𝑅) = 𝜌𝑚

∫ +∞

−∞

(
1 + 𝜉ℎ𝑚

(
𝑟 =

√︁
𝑅2 + 𝑧2

))
𝑑𝑧, (18)

where 𝜌𝑚 is the mean matter density at the redshift of the cluster,
𝑅 is the projected radius in the plane of the sky, and 𝑧 is the length
along the line of sight.

In weak lensing, the tangential shear 𝛾𝑡 of the galaxies relative
to the center of each foreground halo is related to the excess surface
density by the relation

Σcrit𝛾𝑡 = Σ(< 𝑅) − Σ(𝑅) ≡ ΔΣ(𝑅), (19)

where the critical surface density Σcrit defined as

ΔΣcrit =
𝑐2

4𝜋𝐺
𝐷𝑠

𝐷𝑙𝐷𝑙𝑠
, (20)
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Figure 12. Observed richness–mass relation for different orientation bins
in the projection mock catalog. No difference is observed in the observed
richness–mass relation in the projection catalog with clusters of different
orientation bins. The 1 − 𝜎 contours for the best fit parameters ln (𝐴) , 𝐵
and 𝜎0 (not shown) in all bins closely overlap with one another, indicating
no correlation between the two systematics. The dashed horizontal line
indicates the richness cut at 𝜆 > 20 and dashed vertical line the mass cut at
𝑀200m > 5 × 1013 ℎ−1𝑀� .

and where 𝐷𝑠 , 𝐷𝑙 and 𝐷𝑙𝑠 refer to the angular diameter distances to
the source, to the lens, and between the lens and source, respectively.

In this paper we measure ΔΣ(𝑅), which has a one-to-one re-
lationship with Σ(𝑅) and 𝛾𝑡 , all of which can be determined from
the underlying halo–matter correlation 𝜉ℎ𝑚 (𝑟) and a fiducial cos-
mology for determining Σcrit. In the following sections, in order
to reduce the clutter in the equations for modelling excess surface
density as a function of orientation we use 𝜇 as a shorthand for
cos(𝑖).

When we measure ΔΣ(𝑅) from the simulations, we use pro-
jected radii 𝑅 extending from 0.1 ℎ−1 Mpc to 100 ℎ−1 Mpc in 30
equally log-spaced bins, and a projected distance symmetric about
the halo of Δ𝐷 𝑝 = 10, 50, 100, 200 ℎ−1 Mpc. For ease of vi-
sualization, the orientation dependence is plotted and fitted onto a
template as the quantity

𝐹 (𝑅, 𝜇) = log
ΔΣ(𝑅, 𝜇)
ΔΣ(𝑅)

, (21)

where ΔΣ(𝑅, 𝜇) is the average profile in an orientation bin for a
given mass and redshift bin, and ΔΣ(𝑅) is the averaged profile
across all orientation bins in the same mass and redshift bin.

The shapes of the profiles can be roughly divided into the “one-
halo" regime (𝑅 . 𝑅200𝑚) and the “two-halo" regime (𝑅 & 𝑅200𝑚)
(Fig. 13). In the one-halo regime, halos with their major axes ori-
ented towards the line of sight are boosted in their surface density
relative to the mean, a result well explained by the triaxial halo
model (Oguri et al. 2005; Corless & King 2008). The transition
between the one- and two-halo regimes produces a neck in the sur-
face density, where the halo–matter correlation from neither regime
dominates. In the two-halo regime, the trends of the lensing ra-
tios in different orientation become inverted with respect to unity
when increasing the projection depth from Δ𝐷 𝑝 = 10ℎ−1Mpc to
Δ𝐷 𝑝 = 200ℎ−1Mpc. At Δ𝐷 𝑝 = 10ℎ−1Mpc, the ratio of excess
surface densities in the two-halo regime of high cos (𝑖) halos drop
below the mean, which may be explained by an under-dense re-
gion surrounding the plane perpendicular to the major axes of
the halos. As one moves towards larger projection depths, halos
with higher cos (𝑖) exhibit boosted ΔΣ profiles in the two-halo

regime relative to the mean as a result of the alignment of halos
with their underlying large scale structure, i.e., the large projection
depth captures much of the mass in the large-scale filaments for
halos with cos(𝑖) ∼ 1 (Hahn et al. (2007), Forero-Romero et al.
(2014)). Because of the similarity of excess surface density profiles
for Δ𝐷 𝑝 = 100 ℎ−1Mpc and Δ𝐷 𝑝 = 200ℎ−1Mpc, we deem the
projection length Δ𝐷 𝑝 = 100 ℎ−1Mpc as convergent. The excess
surface density profiles in the one- and two-halo regimes and their
dependence on projection depth agree well with Osato et al. (2018),
who built profiles for a simulation of similar projections depths and
with comparable mass resolution.

We model the log ratio of excess surface density, 𝐹 (𝑅, 𝜇), in a
𝜇 ≡ cos(𝑖) bin relative to the mean with six free parameters given
by the product of a multipole expansion over cos(𝑖) and a Cauchy
function:

𝐹 (𝑅, 𝜇) = 𝐴(𝜇) 𝑓 (𝑅)

𝐴(𝜇) = 𝐴0 + 𝐴1𝜇 + 𝐴2𝜇
2 + 𝐴3𝜇

3

𝑓 (𝑥 ≡ ln(𝑅)) = 1 − 1
(𝑥 − 𝑥0)2 + 𝛾

. (22)

The bottleneck shape of the ΔΣ profiles binned by cos(𝑖) is
well captured by the Cauchy function in most of the mass and red-
shift bins, with best-fit parameters and 𝑝-values listed in Table 2
and plotted in Figure 14. The parameters show no clear sign of
monotonic evolution with mass or redshift that may hint at under-
lying physics, but they do differ in value from bin to bin, so for
greater accuracy the templates are divided into different bins when
estimating the stacked mass bias due to triaxiality as will be shown
in subsection 6.3. The best-fit parameters are determined using a
Nelder-Mead minimization method; with 10 log-spaced bins in each
cos (𝑖) binned ΔΣ profile and 5 cos (𝑖) bins, the templates are fitted
with 6 free parameters, totalling 5×10−6 = 44 degrees of freedom;
the 𝜒2 and 𝑝-value are calculated for each fit. Of the 16 fits, 8 have
left- or right-handed 𝑝-values within 0.01, and 11 within 0.001. The
over-fitted templates occur in high-mass or high-redshift bins, which
suffer larger errors from the dearth of dark matter particle samples
in each bin, and the under-fitted ones result from a mismatch in
the “two-halo regime" that exhibits more poorly constrained trends
from bin to bin and the behavior of which is less well understood.
Qualitatively, the fits preserve the basic underlying shape of the
excess surface density ratios, as shown in Fig. 14.

The templates provided could be used as correction terms for
Stage III and IV weak lensing cluster surveys such as in the comso-
SIS pipeline (Zuntz et al. (2015)) for DES-Y3.

6.2 Modeling the effects of halo orientation on
richness-binned excess surface density after redMaPPer
selection

Stacking refers to the process of building averaged excess surface
density profiles of halos in different richness bins. This subsection
describes the process of stacking used by the DES survey to calibrate
the richness–mass relation and presents the effect of triaxiality on
the stacked surface density.

The shapes of source galaxies behind a cluster along the line
of sight will have small tangential distortions due to gravitational
lensing. While individual distortions are small, this tangential shear
can be measured at high signal to noise as a function of projected
radial separation 𝑅 in the stacked images of source galaxies around
clusters binned, e.g., in richness and redshift. In the weak lensing
regime, the tangential shear is related to the source-galaxy ellipticity
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Table 2. Best fit parameters for Equation 22 across different mass and redshift bins.

𝑧min 𝑧max 𝑀min (𝑀�) 𝑀max (𝑀�) 𝐴0 𝐴1 𝐴2 𝐴3 𝑥0 𝛾 𝜒2 Left-tail
p-value

Right-tail
p-value

0.00 0.34 5 × 1013 1 × 1014 -0.157 -0.001 0.091 0.485 1.346 0.378 85.204 0.9998 0.0002
0.00 0.34 1 × 1014 2 × 1014 -0.168 -0.0107 0.222 0.375 1.325 0.592 25.580 0.012 0.988
0.00 0.34 2 × 1014 4 × 1014 -0.197 0.373 -0.818 1.112 1.289 0.757 34.009 0.139 0.861
0.00 0.34 4 × 1014 1 × 1016 -0.190 -0.270 1.307 -0.457 1.245 1.504 18.551 0.9997 0.0003
0.34 0.50 5 × 1013 1 × 1014 -0.204 0.264 -0.489 0.909 1.320 0.403 65.605 0.981 0.020
0.34 0.50 1 × 1014 2 × 1014 -0.190 0.238 -0.472 0.888 1.261 0.782 23.623 0.995 0.005
0.34 0.50 2 × 1014 4 × 1014 -0.281 0.952 -2.056 1.913 1.342 1.141 25.567 0.988 0.012
0.34 0.50 4 × 1014 1 × 1016 -0.021 -0.268 -0.681 1.504 1.146 1.344 28.903 0.962 0.038
0.50 0.70 5 × 1013 1 × 1014 -0.212 0.190 -0.174 0.669 1.292 0.523 91.768 1.000 0.000
0.50 0.70 1 × 1014 2 × 1014 -0.203 0.103 0.017 0.547 1.307 0.784 66.490 0.9841 0.016
0.50 0.70 2 × 1014 4 × 1014 -0.214 0.095 0.213 0.350 1.228 1.126 48.257 0.305 0.695
0.50 0.70 4 × 1014 1 × 1016 -0.036 -0.996 2.188 -0.780 1.148 1.514 88.200 0.9999 0.0001
0.70 0.90 5 × 1013 1 × 1014 -0.208 0.209 -0.263 0.738 1.290 0.564 99.745 1.000 0.000
0.70 0.90 1 × 1014 2 × 1014 -0.213 0.305 -0.612 1.030 1.29 0.931 71.863 0.995 0.005
0.70 0.90 2 × 1014 4 × 1014 -0.287 0.655 -0.975 1.105 1.243 1.226 33.589 0.873 0.127
0.70 0.90 4 × 1014 1 × 1016 -0.158 -1.184 3.551 -1.839 1.260 1.904 21.298 0.9985 0.0015

by

𝛾𝑡 ≈ 𝑒𝑇 + noise, (23)

where 𝑒𝑇 is the source ellipticity rotated to the tangential frame, and
the noise is due to intrinsic ellipticities of the source galaxies (shape
noise) and measurement uncertainty. The tangential shear, 𝛾𝑡 , as di-
rectly measured by observations can be converted toΔΣ(𝑅) through
Equation 19. This paper directly measures ΔΣ(𝑅) by computing the
2D dark-matter density along a cylinder of given projection depth
centered around the cluster.

The model excess surface density is obtained by integrating the
halo–matter correlation 𝜉ℎ𝑚 (𝑟) along the line of sight as in equation
18, and subtracting that from the mean surface density inside the
projected radius as in equation 19. Typically, the halo–matter corre-
lation in the “one-halo” regime is modeled as a spherical Navarro-
Frenk-White (NFW) (Navarro et al. 1996) profile 𝜌NFW (𝑟 |𝑀),

𝜉1h (𝑟 |𝑀) = 𝜌NFW (𝑟 |𝑀)
𝜌𝑚0

− 1, (24)

and the “two-halo" term as a linear matter correlation (Hayashi &
White 2008) scaled by the halo bias, (e.g. Tinker et al. (2010)):

𝜉2h (𝑟 |𝑀) = 𝑏2 (𝑀)𝜉lin (𝑟). (25)

At the transition between the two regimes, DES Y1 follows Zu
et al. (2014) in setting the halo–matter correlation to the maximum
value of the two terms, i.e.,

𝜉ℎ𝑚 (𝑟 |𝑀) = max {𝜉1h (r|M), 𝜉2h (r|M)} (26)

In our analysis we reproduce the surface density templates
from the procedures in the DES Y1 analysis using publicly avail-
able code—the linear power spectrum computed from CLASS (Les-
gourgues (2011); Blas et al. (2011)) and the excess surface density
computed from the cluster_toolkit module2, which uses the spheri-
cal NFW profile for the “one-halo” term and refers to Tinker et al.
(2010) for the halo bias—to generate isotropic profiles, which we
denote ΔΣ(𝑅), calculated by integrating through Equation 18 𝜉ℎ𝑚
in the form of Equation 26. In the “one-halo" regime we parametrize
the NFW profile with a nominal concentration of 𝑐 = 5.

2 Code written by Tom McClintock. Source: http://cluster-
toolkit.readthedocs.io/en/latest/index.html

We investigate the difference in the stacked profile between the
isotropic ΔΣ(𝑅) and ΔΣ(𝑅, 𝑀, 𝜇), the stacked profile as a function
of orientation dependence.

The orientation dependence has two components—one is the
scaling of individual lensing profiles by exp(𝐹 (𝑅, 𝜇)) as described
in Section 6.1, and the other the effect of richness-mass, 𝑃(𝜆 |𝑀, 𝜇),
as modeled in Section 4, on the mass distribution of redMaPPer-
selected clusters. The second component, 𝑃(𝜆 |𝑀, 𝜇), biases the
mass distribution of clusters in a richness bin 𝑃(𝑀) through the
form

𝑃(𝑀) =
∫

𝑑𝜇

∫ 𝜆2

𝜆1
𝑑𝜆𝑃(𝑀, 𝜆, 𝜇)

=

∫
𝑑𝜇

∫ 𝜆2

𝜆1
𝑑𝜆𝑃(𝜆 |𝑀, 𝜇)𝑃(𝜇 |𝑀)𝑃(𝑀)

and safely assuming that 𝑃(𝜇 |𝑀) is constant,

∝
∫

𝑑𝜇

∫ 𝜆2

𝜆1
𝑑𝜆𝑃(𝜆 |𝑀, 𝜇)𝑃(𝑀), (27)

where 𝑃(𝑀) is the mass function of redMaPPer-selected clusters.
The conditional probability of richness, 𝑃(𝜆 |𝑀, 𝜇), is log-

normally distributed around a mean richness governed by Equation
6, and the standard deviation is given by equation 8. The equa-
tions are fit to the one-parameter model in which only log(𝐴), the
intercept of the log(𝜆)-log(𝑀) relation, is allowed to vary with ori-
entation. We use a cubic spline to interpolate log(𝐴) for 𝜇 ∈ [0, 1).
The halo-mass function of redMaPPer-selected clusters, 𝑃(𝑀), is
constructed from a discrete histogram with 30 log-spaced mass bins
in the mass range of the clusters.

Taking into account the two components for orientation depen-
dence, the stacked surface density in a richness bin becomes

ΔΣ(𝑅, 𝑀, 𝜇) for 𝜆 ∈ [𝜆1, 𝜆2)

=

∫
𝑑𝑀 ΔΣ(𝑅, 𝑀, 𝜇)𝑃(𝑀)

=

∫
𝑑𝜇

∫
𝑑𝑀

∫ 𝜆2

𝜆1
𝑑𝜆 ΔΣ(𝑅, 𝑀, 𝜇)𝑃(𝜆 |𝑀, 𝜇)𝑃(𝜇 |𝑀)𝑃(𝑀)

∝
∫

𝑑𝜇

∫
𝑑𝑀

∫ 𝜆2

𝜆1
𝑑𝜆 ΔΣ(𝑅, 𝑀, 𝜇)𝑃(𝜆 |𝑀, 𝜇)𝑃(𝑀) (28)

The excess surface densities are computed for 〈ΔΣ(𝑀, 𝑅, 𝜇)〉
using equation 28 and ΔΣ(𝑀, 𝑅) using equations 24–26. We define
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Figure 13. ΔΣ(𝑅, 𝜇) for 𝑀 ∈ [1014, 5 × 1014) M� as a function of pro-
jection depth, Δ𝐷𝑝 . The lensing ratios in the “two-halo" regime reverses
trends from low to high projection depth as a result of alignment of clusters
with the large scale structure. The profiles with Δ𝐷𝑝 = 100 ℎ−1 Mpc are
deemed convergent due to their similarity with the Δ𝐷𝑝 = 200 ℎ−1 Mpc
profiles.

the fractional difference with the shorthand notation

𝛿〈ΔΣ〉 = ΔΣ(𝑅, 𝜇) − ΔΣ(𝑅)
ΔΣ(𝑅)

. (29)

6.3 Mass bias estimation of stacked clusters

We are interested in estimating the effect of triaxiality on the mean
weak lensing mass in clusters stacked in richness bins. The weak
lensing mass is an observed quantity in weak lensing surveys derived
by fitting the observed lensing profile to an analytic profile in a
procedure akin to that in Section 6.2 and is used to constrain the
mass-richness relation. We estimate the bias due to triaxiality on
the weak lensing mass for stacked clusters by propagating the error
on the lensing observable onto the mass model parameter using a
Fisher matrix approximation.

In the most generic sense, the Fisher matrix 𝐹𝑖 𝑗 in a given
radial bin is defined as:

𝐹𝑖 𝑗 (𝑅) =
𝜕〈ΔΣ〉(𝑅)

𝜕𝑝𝑖
Cov(〈ΔΣ〉(R))−1 𝜕〈ΔΣ〉(𝑅)

𝜕𝑝 𝑗
, (30)

where the partial derivatives are of surface density profiles with
respect to model parameters 𝑝𝑖 of cluster mass 𝑀 and concentration
𝑐, and the covariance matrix is that of surface density as a function
of radius.

The mass-bias for stacked clusters due to triaxiality is given by
the expression

𝛿𝑀binned =
∑︁
𝑗

(𝐹−1)𝑖 𝑗
[
(𝛿〈ΔΣ〉)Cov(〈ΔΣ〉)−1 𝜕ΔΣ

𝜕𝑝 𝑗

]
, (31)

estimated by inserting the fractional difference of stacked profiles,
𝛿(ΔΣ), into the bracketed expression and marginalizing over the
concentration parameter. The total bias is then the weighted sum
of all mass and redshift bins marginalized over concentration and
radius:

𝛿𝑀total =
∑︁
𝑀,𝑧

𝑃(𝑀, 𝑧 |𝜆)

∑︁
𝑗 ,𝑅

(𝐹−1)𝑖 𝑗 (𝑅)
(
𝛿〈ΔΣ〉Cov(〈ΔΣ〉)−1 𝜕ΔΣ

𝜕𝑝 𝑗

) .
(32)

The 〈ΔΣ〉 profiles are binned in richness intervals of 𝜆 ∈
[20, 30), [30, 50), and [50, ∞), and are further divided into
the same mass and redshift bins when computing individual ΔΣ(𝑅)
templates as described in Section 6.1. We make the simplifying
assumption that the partial derivative of the bin-averaged surface
density profile is well approximated by that for a numerical model
for an individual halo, with 𝑀 taken at the midpoint of the mass
bin, and 𝑐 derived from redshift and mass using the relation

𝑐200𝑏 =
𝑐0

1 + 𝑧

( 𝑀

𝑀0

)−𝛽
, (33)

with functional form and best fit parameters of 𝑐0 = 4.6 at 𝑧 = 0.22
and 𝛽 = 0.13 from Mandelbaum et al. (2008), calculated at the
midpoint value of said mass bin. The approximation of 〈ΔΣ(𝑅)〉
profiles is computed using cluster_toolkit for the Buzzard cosmo-
logical parameters.

The covariance matrix for cluster weak lensing is taken from
Wu et al. (2019), who calculated the matrices from a combina-
tion of analytic calculations and high-resolution N-body simula-
tions for radii between 0.1 and 100 ℎ−1 Mpc, discretized at 15
equally log-spaced bins. The covariance comes from a combination
of shape noise, large scale structure and intrinsic noise. Modeled
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Figure 14. Stacked ΔΣ profiles in different orientations bins (solid lines) vs. Cauchy function fits (dashed lines) to the profiles governed by Equation 22 and
with best fit parameters listed in Table 2. Error bars are the 1 − 𝜎 deviations in measurements in a given orientation and radial bin.

on a DES-like simulation with a galaxy density of 𝑛𝑠 ∼ 10/arcmin,
the covariance is dominated by shape noise at projected radii
/ 5ℎ−1 Mpc. The covariance matrices are binned by mass in bins
of [1014, 2×1014), [2×1014, 4×1014) and [4×1014, ∞) ℎ−1𝑀� ,
and in lens/source redshift slices of {𝑧𝑙 = 0.3, 𝑧𝑠 = 0.75},
{𝑧𝑙 = 0.5, 𝑧𝑠 = 1.25} and {𝑧𝑙 = 0.7, 𝑧𝑠 = 1.75}, with 𝑧𝑙 denot-
ing the lens redshift and 𝑧𝑠 the source redshift.

To address the different binning schemes used in the lensing
covariance and stacked lensing profiles, we choose to evaluate the
covariance at the central redshift slice of {𝑧𝑙 = 0.5, 𝑧𝑠 = 1.25},
since the redshift dependence of the lensing covariance is weak.

Because the covariance matrix is not applicable for masses below
1014 ℎ−1𝑀� , we ignore 〈ΔΣ(𝑀, 𝑧)〉 in the modeling for Equation
32 for the lowest mass bin of [5× 1013, 1× 1014) ℎ−1𝑀� . Making
this mass cut removes 35% of the redMaPPer clusters in total.

Using the covariance matrix from Wu et al. (2019) and the
mass-concentration relation of Mandelbaum et al. (2008), we cal-
culate the total mass bias through the propagation of bias from the
lensing signal onto the mass model parameter through a Fisher ma-
trix forecast. As shown in Figure 15, the mass is biased high at
1− 5%, consistent with findings from McClintock et al. (2018) and
Dietrich et al. (2014) and is highest at mid-richness ranges.
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Figure 15. Fractional difference in lensing profiles 𝛿 〈ΔΣ〉 for redMaPPer-
selected clusters stacked in bins of richness. The total mass bias for each
richness bin is measured by marginalizing 𝛿 〈ΔΣ〉 as shown in plot through
Equation 32 through propagating the errors of the lensing profile onto the
mass model parameter using a Fisher forecast.

Our results are consistent with the recently released DES Y1
cluster cosmology paper (DES Collaboration et al. 2020), which
tested for systematics by controlling for variables that may introduce
bias. The lensing profiles of two samples were compared—one
selected by richness bins with its mass distribution left free to vary,
and the second tracing the mass distribution of the richness-selected
sample with its richness free to vary. The ratio of these profiles is
an estimate of the total systematic bias due to redMaPPer selection
in a given richness bin and radial range. The effects of triaxiality
and projection effects can be teased out by re-sampling their proxies
cos (𝑖) and 𝜎(𝑧) in the richness-selected sample to match the mass-
selected sample. The paper showed that triaxiality and projection
effects were capable of adjusting the ratios of the two lensing profiles
to unity within errors for richness 𝜆 > 30 but failed to resolve the
tension at 𝜆 = 20-30. The maximal impact of triaxiality at mid-
to-high richness ranges supports the finding that as triaxiality bias
weakens at low-richness, some other unaccounted-for systematic
must be in play.

7 CONCLUSION

The main findings of this work are as follows:

(i) We find that the prolateness distribution of redMaPPer-
selected halos is consistent with the prolateness distribution of halos
overall.

(ii) We find that the log-richness amplitude ln(𝐴) of redMaPPer
clusters for a given mass is boosted from the lowest to highest
orientation bin with a significance of 14𝜎.

(iii) We find a null correlation between the bias in richness due
to triaxiality and those for two other leading systematics in DES Y1
cluster cosmology—miscentering and projection—and offer expla-
nations or follow-up studies for this result. The null correlation with
projection effects is was verified using both the Buzzard and C19
projection mock, catalogs with different galaxy-halo connection
models.

(iv) We confirm the bottleneck shape in the transition between
one- and two-halo regimes for halo lensing profiles first discovered
by Osato et al. (2018) and fit it to redshift- and mass-dependent
templates.

(v) We quantify through items (ii) and (iv) the DES observable
of richness-stacked redMaPPer cluster lensing profiles to predict a
positive mass bias of 1 − 5% due to triaxiality.

(vi) We find that the mean 𝑃(cos 𝑖) and the mass bias are both
richness dependent and largest at mid-to-high richness, in accor-
dance with the DES Y1 result that triaxiality does not fully resolve
the tension in weak lensing mass at low richness.

Our findings are based on redMaPPer catalogs constructed us-
ing galaxies in the Buzzard simulations. The realistic red-sequence
galaxy model in the Buzzard simulations allows us to run the
redMaPPer algorithm in the same way as it was run on DES-Y1
data and hence enables us to quantify various selection effects in-
troduced by the cluster finder. While this analysis provides evidence
of redMaPPer selection effects and quantifies the relations between
different systematics, we must acknowledge that there is one im-
portant caveat in this approach: the performance of the redMaPPer
cluster finder depends on how galaxies are populated in the simu-
lations, which might not precisely match the real universe. Since
this analysis is only done on one specific simulation, the result in
this paper can serve as guidance for constructing a flexible enough
model used in the analysis of real data.

These findings shed light on the impact of triaxiality on clus-
ter selection, both their physical quantities and observed signals.
Specifically, items (ii) and (iv) may be used as templates for current
and near future weak lensing surveys as correction terms for this
systematic. One important future work is to perform this analysis on
different mock galaxy catalogs with different assumptions about the
relations between galaxies and dark matter. Such an analysis will be
essential to addressing the dependence of cluster finder performance
on galaxy population models.
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