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We study the simulation of the Kitaev spin model on quantum computers. In particular we focus
on the models defined on the honeycomb, and square-octagon lattices. Using a fermionic language to
describe these models reveals a region of the parameter space that is exactly solvable. We explore an
ansatz that is capable of expressing the ground state in the exactly solvable region of the parameter
space and extend it outside this region with good accuracy. Doing the calculation using fermions,
while requiring the introduction of a non-local map from the fermionic Hilbert space to that of
qubits, offers the potentially interesting application of realizing non-abelian anyons on quantum
computers, and can also lead to a reduction in the number of qubits required by half.
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I. INTRODUCTION

One of the hallmarks of frustrated interacting two-
dimensional quantum spin systems is the emergence of
quantum spin liquid ground states with long-range topo-
logical order and fractionalized excitations that obey
(non-)Abelian statistics [1, 2]. The celebrated Kitaev
spin model [3], which describes spins that are interact-
ing on a trivalent lattice via an anisotropic Ising interac-
tion, is a popular playground for theoretically studying
such phenomena. Since it is exactly solvable in terms of
fermionic operators, many properties of the model can be
analytically obtained exactly or within the framework of
perturbation theory [3–6]. Kitaev-type exchange inter-
actions are significant in spin-orbit coupled Mott insu-
lators [7] such as the iridium oxide family A2IrO3 (A =
Na, Li) and α−RuCl3 [8–11]. This resulted in a flurry of
research in the search for an experimental realization of
the Kitaev quantum spin liquid [12–14]. These materials
exhibit additional interaction terms beyond the Kitaev
exchange and show a rich and interesting behavior under
an external magnetic field, which cannot be treated easily
within the fermionic description and typically requires a
numerical analysis. Many numerical studies using various
techniques such as exact diagonalization (ED), density-
matrix renormalization group (DMRG), and tensor net-
work (TN) methods have revealed new and exotic phases
of the model beyond the perturbative regime [7, 15–24].
Effective field theory techniques can also provide valu-
able insight into the behavior in a magnetic field [25].

Quantum computers offer an exciting new framework
for simulating quantum many-body systems. There are
a number of efforts exploring simulation of the Kitaev
model on quantum computers [26–28]. In this paper we
propose a different way of simulating the model on a
quantum computer using a fermionic description. Our
motivation is to inject information about the exact solv-
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ability of the model to better treat the problem on the
quantum computer. One interesting application of our
method is the realization of non-Abelian anyons on quan-
tum computers, which we discuss. The drawback of sim-
ulating fermions on quantum computers is the need for
a mapping from the fermionic Hilbert space to that of
qubits, which necessitates deeper quantum circuits [29–
34]. This added circuit depth can make the quantum
circuits challenging to run on current noisy intermediate-
scale quantum (NISQ) [35] hardware. On the other hand,
in certain situations, as will be discussed later, treating
the problem using fermions allows for a reduction of the
number of qubits by half.

We make use of the variational quantum eigensolver
(VQE) [36, 37], a hybrid algorithm (i.e., one using
both classical and quantum computers) with significant
potential for successful implementation on NISQ de-
vices [36, 38–42]. A VQE algorithm uses a quantum com-
puter to prepare a variational ansatz state, defined using
a parameterized quantum circuit, and then measures its
energy (i.e., the expectation value of the Hamiltonian in
that state). A classical computer is then used to find
the optimal set of variational parameters that produces
the lowest possible energy expectation value. On a clas-
sical computer, preparing the state and calculating the
energy expectation value are computationally expensive,
so handing these steps over to a quantum computer may
offer an effective speed-up. VQE algorithms offer shorter
circuits when compared to other methods like adiabatic
real-time evolution [43], quantum imaginary time evolu-
tion [44], or phase estimation, and thus are viewed as
being well-suited for execution on NISQ devices.

The Kitaev spin model with its bond dependent in-
teractions can be defined on any trivalent graph, and in
this work we focus on the honeycomb and square-octagon
lattices. The exact solution of the model relies on a map-
ping to a theory of Majorana fermions coupled to a Z2
lattice gauge field. In this work, we consider the Kitaev
model in the presence of two kinds of additional Hamilto-
nian terms. First, there are 3-spin interaction terms that
do not mix different gauge sectors of the model. These
terms allow for the calculation to be restricted to a sin-
gle gauge sector and lead to a reduction in the number
of qubits by half. We also consider external magnetic
fields in the x, y, and z-directions, which do mix differ-
ent gauge sectors together, and in this case we include
the full Hilbert space in the calculation.

The rest of the paper is organized as follows. In Sec. II
we give a brief review of certain aspects of the Kitaev
model that are important for our analysis. Then in
Sec. III A we discuss the calculation when restricted to a
single gauge sector, and discuss the application of realiz-
ing non-Abelian anyons on quantum computers. Finally
in Sec. III B we discuss how to extend the calculation to
include all gauge sectors of the model.

II. KITAEV MODEL AND FERMIONIC
FORMULATION

A. Kitaev spin Hamiltonian

A trivalent lattice is one in which every site is con-
nected to three other sites—a condition satisfied, for ex-
ample, by both the honeycomb and square-octagon lat-
tices as shown in Fig. 1. Throughout the text, we reserve
the labels i, j, k, . . . for the lattice sites. The trivalence
of the lattice allows for the edges to be be split into three
disjoint sets, which will be referred to as x, y, and z-edges.
The designation of x, y, and z-edges for both the honey-
comb and square-octagon lattices is shown in Fig. 1. The
Hamiltonian of the Kitaev model is given as,

H = −
∑

α=x,y,z

Jα
∑

α−edges
σα
i σ

α
j (1)

where σα
i are Pauli operators at site i and α = x, y, z.

The summation over edges counts every lattice bond
of type α once. Explicitly, on the honeycomb lattice,
which has two basis sites τ = 1, 2 per unit cell, it can
be written as H = −

∑
α Jα

∑
ri
σα
ri,1σ

α
ri+δα,2, where

ri = i1a1 + i2a2, and δx = −a1, δy = −a2, δz = 0.
The unit cell vectors ai are shown in Fig. 1(a). The
square-octagon lattice has four basis sites per unit cell,
τ = 1, 2, 3, 4, and its Hamiltonian reads explicitly as
H = −

∑
ri
Jx

(
σx
ri,2σ

x
ri,3 + σx

ri,4σ
x
ri,1

)
+ Jy

(
σy
ri,1σ

y
ri,2 +

σy
ri,3σ

y
ri,4

)
+ Jz

(
σz
ri,4σ

z
ri+a1,2 + σz

ri,3σ
z
ri+a2,1

)
. The basis

labels τ and unit cell vectors ai are shown in Fig. 1(b).

The Kitaev model (1) has a conserved quantity asso-
ciated with each plaquette p. For the honeycomb lattice
there is only one kind of plaquette, and the conserved
quantity [W (6)

p ,H] = 0 takes the form

W (6)
p = σx

1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 , 1

2
3

4

5
6

. (2)

For the square-octagon lattice there are two kinds of pla-
quettes, giving rise to two distinct plaquette operators
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FIG. 1. Different lattices and edge labels. The dashed lines enclose the smallest unit cell of the lattices, and the vectors a1
and a2 represents the primitive unit vectors.

([W (4)
p ,H] = [W (8)

p ,H] = 0):

W (4)
p = σz

1σ
z
2σ

z
3σ

z
4 ,

1

2 3

4
(3)

W (8)
p = σx

1σ
y
2σ

y
3σ

x
4σ

x
5σ

y
6σ

y
7σ

x
8 ,

1

2
3 4

5

6
78

(4)

Note that all Wp have eigenvalues of ±1 since W 2
p = 1.

It is useful to decompose the Hilbert space into blocks la-
beled by the eigenvalues of Wp, i.e., L =

⊕
w Lw, where

L is the full Hilbert space and Lw denotes the eigenspace
corresponding to a particular combination w of eigenval-
ues of the various Wp operators. A theorem by Lieb [45]
tells us that the ground state belongs to the sector with
all Wp = +1. This sector is referred to as the vortex-free
sector.

B. Representing the model with Majorana fermions

The Hilbert space of the lattice is the tensor product
of the Hilbert spaces of local spins, L =

⊗
i Li. We seek

a representation of the local spin Hilbert space using 2
fermionic degrees of freedoms at each site, or 4 Majorana
fermions. We label this fermionic Hilbert space by L̃i.
The four Majorna fermions at each site will be labeled
as bαi , and ci with α = x, y, z. These Majorana operators
obey the algebra,

{bαi , b
β
i } = 2δijδαβ , {bαi , cj} = 0. (5)

The 2 dimensional Hilbert space Li is the physical sub-
space of the 4 dimensional Hilbert space L̃i. A physical
state |ψphys⟩i ∈ Li is defined such that,

Di |ψphys⟩i = |ψphys⟩i , Di = bxi b
y
i b

z
i ci. (6)

The operator Di acts on the physical subspace as an iden-
tity, and since we are only interested in this subspace it
should be noted that two operators differeing only by
factors of Di are identified in this treatment. Further,
given any |ψ⟩i ∈ L̃i the physical part of this state can be
extracted as follows,

|ψphys⟩i =
1
2
(1 +Di) |ψ⟩i . (7)

Thus, the operator 1/2(1 + Di) as the local projector
operator onto the physical subspace. The full projector
can be written as

P =
∏
i

1 +Di

2
. (8)

In terms of the Majorana fermions, the Pauli operators
can take the following form,

σx
i = ibxi ci, σy

i = ibyi ci σz
i = ibzi ci. (9)

Using this representation of the Pauli operators the Ki-
taev model can be written as,

H =
∑
α

Jα
∑

α−edges
iûijcicj , (10)

where

ûij = ibαi b
α
j , û2ij = 1, ûij = −ûji. (11)

Note that the eigenvalues uij of ûij are uij = ±1 since
û2ij = 1. The operator ûij can be interpreted as a
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Z2 gauge field that couples to the itinerant Majorana
fermion ci. For this reason, we will sometimes refer to
the ci Majorana fermions as “matter” fermions, to distin-
guish them from the “bond” fermions bαi . The operator
Di anticommutes with ûij and therefore can be inter-
preted as implementing a gauge transformation that flips
the value of uij .

C. Reducing the Kitaev model to quadratic form

As noted by Kitaev, the operators ûij commute with
all terms in the Hamiltonian, so the eigenvalues uij = ±1
are conserved quantities of the model. Thus, it is useful
to write

L̃ =
⊕
u

L̃u, (12)

where L̃u is the subspace with all uij specified. The con-
served quantities Wp can be expressed in terms of uij as
follows,

W (6)
p =

∏
i∈p

ui+1,i,

W (4)
p = −

∏
i∈p

ui+1,i, W (8)
p = −

∏
i∈p

ui+1,i (13)

Thus each subspace L̃u corresponds to a certain configu-
ration of Wp. We will sometimes refer to L̃u as a “gauge
sector,” i.e. a sector of the full Hilbert space whose gauge
has been fixed by a choice of the eigenvalues uij .

As noted previously, the ground state belongs to the
vortex-free configuration. There are many configurations
of uij that reside in the vortex-free sector. Fig. 1 (c)
and (d) define our choice of a “standard configuration”
ustd
ij for both the honeycomb and square-octagon lattices,

which is a simple choice of gauge that achieves the vortex-
free configuration.

In the subsspace L̃u, the Hamiltonian in Eq. (10) takes
the following quadratic form:

H = i

2

N∑
i,j=1

Kijcicj , (14)

where the matrix K = uij when i and j make an edge and
Kij = 0 otherwise. In order to diagonalise a Hamiltonian
of this form we need to find a matrix R ∈ O(N) such that

RKRT =
N/2⊕
n=1

[
0 εn

−εn 0

]
, εn ≥ 0. (15)

This transformation can be achieved by a unitary matrix
U ,

U−1ciU = Rjicj . (16)

such that,

U−1HU = i

2

N∑
i,j=1

[
RKRT

]
ij
cicj (17)

= i

N/2∑
n=1

εnc2nc2n+1. (18)

To read off the spectrum, it is useful to pair the Ma-
jorana fermions into complex fermions. How the Majo-
rana fermions are paired into complex fermion is a mat-
ter of basis choice. Here we chose to couple the Majo-
rana fermions inside the same unit cell together. For the
honeycomb lattice, the 1 sublattice is coupled to the 2
sublattice, and for the square-octagon lattice, the 1 sub-
lattice is coupled to the 2 sublattice, and the 3 sublattice
is coupled to the 4 sublattice. Such a choice of basis can
be written in the following way,

c2n = an + a†n, c2n+1 = 1
i
(an − a†n), (19)

U−1HU =
∑
n

2εn
(
a†nan − 1

2

)
. (20)

The ground state of H can be written as U |ψ0⟩, where

an |ψ0⟩ = 0, for all an. (21)

The action of the Hamiltonian on U |ψ0⟩ is found to be,

HU |ψ0⟩ = E0U |ψ0⟩ , (22)

E0 = −
N/2∑
n=1

εn. (23)

In designing our VQE ansatz it will be crucial to know
what form the operator U takes. A general SO(N) trans-
formation can be applied using exp

[∑
ij θijcicj

]
, which

acts on a Majorana operator ci as

exp

−∑
ij

θijcicj

 ci exp
∑

ij

θijcicj

 = [eθ]jicj . (24)

Even though any antisymmetric matrix can be brought
to the block diagonal form in Eq. (15) by an SO(N)
transformation, to ensure that the upper-right element
of each block is a positive number (as required) we need
to be allowed O(N) transformations. This can be seen
as switching the off diagonal elements of a 2×2 matrix is
an operation with a determinant of −1, i.e. σx. Thus, we
might need to attach a local particle-hole transformation
to exp

[∑
ij θijcicj

]
to make sure all εn ≥ 0. Note this

operation would only be needed if an odd number of the
2 × 2 block diagonal matrices need such operation. For
example, switching the off-diagonal parts of 2 of these
2 × 2 block-diagonal matrices can be done by a σx ⊕ σx
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FIG. 2. The definition of the 3-spin terms.

which has a determinant of +1, and is expressible by
exp

[∑
ij θijcicj

]
. In short, it is just the determinant of

the transformation that we need to worry about.
This shows that the pure Kitaev model in Eq. (1) is ex-

actly solvable. In the next section we discuss several ad-
ditional terms of interest that spoil the exact solvability
of the model. The form of the exact solution will still be
a useful guide when choosing the form of the variational
ansatz in the VQE calculation. If we always include U as
a part of the ansatz we make sure the algorithm can ex-
actly reproduce the ground state in the exactly solvable
limit, where the model is quadratic in terms of fermion
operators. We will also add more terms to the ansatz
in order to better approximate the ground state in the
presence of interactions as we discuss next.

D. Added interactions

Terms added to the Kitaev Hamiltonian fall into two
classes: the first class contains terms that do not mix
different gauge sectors together, and the second contains
terms that do. Here we consider both kinds. This dis-
tinction is useful because it informs how the model will
be simulated on the quantum computer. For terms of the
first kind we only need to simulate a single gauge sector
of the model, which is a much smaller Hilbert space than
that of the original spin Hilbert space, and may reduce
the number of qubits needed for the calculation.

Terms that do not mix different gauge sectors are of
the following form,

V = −
∑

(i,j,k;l)

[
κa(σx

i σ
y
j σ

z
l + σx

i σ
y
l σ

z
k + σx

l σ
y
j σ

z
k)

+κbσx
i σ

y
j σ

z
k

]
, (25)

where (i, j, k; l), refers to the i, j, and k-th sites connected
to the l-th site as shown in Fig. 2. These terms show up
at 3rd order when treating an external magnetic field per-
turbatively. However, we will study the effects of these
terms regardless of their origin and treat κb and κb as
independent parameters.

Interestingly, the κa and κb terms map to very different

looking terms on the fermionic side,

V =
∑

(i,j,k;l)

nijk [iκa(uilulj cjci + uikuli cick + ujlulk ckcj)

+ κb uilujlukl cicjckcl] , (26)

where nijk is defined as in Fig. 2. The κa terms do
not spoil the exact solvability of the model, and Kitaev
showed [3] that they can drive the system into a topo-
logically ordered state. The κb terms though, being four-
fermion terms, spoil the exact solvability of the model,
and their effects are less studied in the literature. Later
we discuss one aspect in which these terms can be inter-
esting and useful.

As an example of terms that do mix different gauge sec-
tors, we will consider a uniform external magnetic field,

Hmag = −
∑
i

[hxσx
i + hyσ

y
i + hzσ

z
i ] . (27)

In the language of the fermionic degrees of freedom this
can be written as,

Hmag = −i
∑
i

[hxbxi ci + hyb
y
i ci + hzb

z
i ci] . (28)

When simulating the Kitaev model in an external mag-
netic field, we therefore must include all gauge sectors in
the calculation.

III. VQE

A VQE algorithm contains four parts: first, one pre-
pares an initial state |ψ0⟩, which is typically a state that
can be easily prepared on the quantum device. Second,
one applies a parameterized unitary (or quantum circuit)
U(θ) with variational parameters θ to the initial state
to prepare the ansatz wavefunction |ψ(θ)⟩ = U(θ) |ψ0⟩.
The third step is to measure a cost function C(θ), which
is a sum of observables that are being measured in the
variational state |ψ(θ)⟩. To prepare the ground state of a
system, the cost function is usually taken to be the energy
expectation value C(θ) = ⟨ψ(θ)|H |ψ(θ)⟩. However, as
we will discuss in the dynamic-gauge VQE section, it can
be useful to use a slightly modified cost function. Finally,
the fourth step is the classical optimization over the set
of parameters θ so as to minimize C(θ). This involves
frequent evaluations of the cost function that follow the
first three steps. A VQE algorithm is designed such that
the first three steps are carried on a quantum computer
while the fourth is done on a classical computer.

A. Fixed-gauge VQE

1. Choice of VQE initial state

Even though the model is most conveniently expressed
in terms of Majorana fermions, for the sake of simulating
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the system on a quantum computer, we need to group
the Majorana fermions into pairs of complex fermions
in order to map the problem onto qubits. We already
discussed how we choose to group the the ci Majoranas
into the complex fermions an in Eq. (19), namely,

an = 1
2
(c2n + ic2n+1), a†n = 1

2
(c2n − ic2n+1). (29)

For the purpose of finding the ground state we choose
an initial state in the vortex-free sector of the Hilbert
space, where the plaquette operators W (α)

p = 1 for all p.
Further, we also choose the initial state of the system to
be annihilated by all an, as defined in Eq. (21).

|ψ0⟩ ∈ Lustd , an |ψ0⟩ = 0 ∀an. (30)

After a Jordan-Wigner transformation, the details of
which are discussed in Appendix B, this initial state
would simply corresponds to the |0⟩ state on the quan-
tum computer, i.e., the all zero state in the Z eigenbasis.

2. Form of variational ansatz

When performing VQE in the fixed-gauge subspace we
use an ansatz of the following form:

|ψ(θ)⟩ = exp

∑
ijkl

θbijklcicjckcl

 exp

∑
ij

θaijcicj

 |ψ0⟩

≡ U b(θb)Ua(θa) |ψ0⟩ ≡ U(θ) |ψ0⟩ , (31)

with all components θa and θb being real, and anti-
symmetric under the exchange of any two indices. This
form of the ansatz is motivated by the Hamiltonian vari-
ational ansatz successfully used in quantum chemistry
and many-body problems [46, 47]. It contains a unitary
single-particle transformation term Ua, which can diag-
onalize the single-particle sector in the exactly solvable
limit, and an interaction term U b that can account for
additional correlations created by four-fermion interac-
tion terms.

We focus on Ua(θa) first. We make this the first part of
our ansatz since from our discussion in Sec. II C, we know
it should be capable of expressing the ground state of the
pure Kitaev model. For a system with N spins, there are
N(N−1)

2 independent parameters in θa. However, we are
not interested in this full set of transformations. Rather
we want to mod out the transformations that leave |ψ0⟩
invariant. We leave the details of such reduction of the
ansatz to Appendix A, and give the answer here in terms
of the complex fermions ai defined in Eq. (19),

Ua(θa) ≡∏
ij

exp
[
iθa1

ij (a
†
ia

†
j + ajai)

]
exp

[
θa2
ij (a

†
ia

†
j − ajai)

]
(32)

Note that the number of complex fermions for a system
described by N Majorana fermions is N/2. Thus in total
θa contains N

2
(
N
2 − 1

)
independent parameters.

Recall the discussion below Eq. (24) about the deter-
minant of the transformation needed to diagonalize the
Hamiltonian. Since we fix our initial state in Eq. (30), we
might need to supplement Ua(θa) with a local particle-
hole operation, for it to be able to express the ground
state. This can easily be done by using Ua(θa)c1 as the
ansatz. In all our simulations we compare the optimal
energy resulting from using Ua(θ) and Ua(θ)c1, and re-
port the one with lowest energy value.

We also choose not to include all of the quartic terms
in U b(θb) to simplify the circuits used. Though it is not
strictly the case, like before, that the dropped terms have
no effect on the result, we found that only including the
following terms offers the best performance in terms of
computation time in our simulations:

U b(θb) ≡
∏
nmkl

exp
[
iθb1nmkl(a

†
na

†
ma

†
ka

†
l + alakaman)

]
× exp

[
θb2nmkl(a

†
na

†
ma

†
ka

†
l − alakaman)

]
. (33)

With that being said, a more careful study of the ef-
fect of including the dropped terms might be in order,
and we leave this for future work. The number of pa-
rameters contained in the above form of U b(θb) can
be found to be 1

4!N
(
N
2 − 1

)(
N
2 − 2

)(
N
2 − 3

)
. Thus,

the total number of parameters contained in U(θ) is
N
2
(
N
2 − 1

) [
1 + 1

12
(
N
2 − 2

)(
N
2 − 3

)]
. We discuss how

to express this ansatz on a quantum computer in Ap-
pendix B.

3. Simulations and results

In general, when restricting the Kitaev model with N
spins to a single gauge configuration, we end up with
N Majorana fermions ci, one at each site i. This corre-
sponds to N/2 complex fermions that we need to simu-
late, and thus only N/2 qubits are needed for computa-
tions. This is a substantial reduction compared to simu-
lating the spins directly, which requires N qubits. This
reduction makes the fermionic formulations particularly
attractive when considering additional terms in the Ki-
taev model that are “gauge diagonal”. Note that the
model is no longer exactly solvable when quartic fermion
interactions are present, which is where VQE calculations
in the fermionic description will be most useful.

We demonstrate the capabilities of the ansatz above
using two geometries: a honeycomb lattice with 3 × 3
unit cells, and a square-octagon lattice with 2 × 2 unit
cells. These geometries have 18 and 16 spins respec-
tively, and thus we only need 9 and 8 qubits for the
VQE. Periodic boundary conditions are applied in both
cases. We set both models inside the gapless region of
the phase diagram. For the honeycomb lattice we set
J⃗ = (Jx, Jy, Jz) = (1, 1, 1), and for the square-octagon
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FIG. 3. VQE results for a fixed gauge configuration. Panel (a) is for the exactly solvable quadratic model, while panel (b)
includes fermion interactions. The relative error in the energy is defined as Eerror = |(EVQE − Eexact)/Eexact|, and the state
infidelity reads = 1 − | ⟨ψexact|ψVQE⟩ |2. The results shown that the ansatz does what it was set out to do. It is capable of
reproducing the ground state in the exactly solvable cases. The accuracy of the model ranges from 10−10 to 10−4 depending
on how strong the interaction terms κb are. Our method here has the advatage of cutting the number of qubits needed by half
when compared to simulating the model directly from the spins on the lattice.

lattice we set J⃗ = (1, 1,
√
2). Further, we test the ansatz

for the cases of κa = κ, κb = 0, and κa = κb = κ. The
results are shown in Fig. 3. As expected, for the case
κb = 0 the optimized ground state shows excellent agree-
ment with the exact ground state found by exact diag-
onalization. Also, as expected, when moving away from
the exactly solvable limit, we see a noticeable decrease in
the accuracy of the ansatz. However, it is worth mention-
ing that the accuracy is comparable to other ansatzes in
the literature treating the model from the spin language
directly [26, 27].

4. Implications for quantum simulation of non-Abelian
anyons

A potentially interesting application for our method
is realizing non-Abelian anyons on quantum computers.
Let us for now focus on the honeycomb lattice, though the
square-octagon case is not substantially different. With
J⃗ = (1, 1, 1) and κa = κb = 0, the model is gapless.
Adding the κa terms opens up a gap in the spectrum.
One of the interesting features of the model in this re-
gion of the parameter space is that it hosts non-Abelian
anyons [3]. In particular, a vortex excitation of the model
(i.e., a plaquette p for which Wp = −1) will carry a Ma-
jorana zero mode. One can therefore imagine using VQE
methods to prepare the ground state in the presence of
some number of vortices. Then, by applying appropri-
ate unitary transformations to this state (see, e.g., [48]),
one could manipulate the vortices in order to “braid” the
attached Majorana zero modes, which is one route to re-
alizing fault-tolerant Clifford operations [49]. We discuss
below some considerations that must be taken into ac-
count when contemplating such a scheme.

If we have an infinite system with two vortices that
are very far from each other, we expect two degenerate
ground states that have the same energy and different
fermion parity. In both classical and quantum simula-
tions, we only have access to finite systems and there is

a limit to how far away the vortices can be from each
other. As the Majorana modes get close to each other
they can hybridize, leading to a small energy gap be-
tween the even- and odd-parity states. We henceforth
refer to this energy scale as the “ground-state splitting,”
to avoid confusion with the (larger) energy scale of the
bulk gap. In practice, it is desirable for this splitting to
be as small as possible to suppress the accumulation of
dynamical phases during braiding. The degree of close-
ness between the Majorana zero modes can be quantified
by comparing the distance between the vortices to the
correlation length ξ. It is thus desirable to make ξ as
small as possible, so that the vortices do not need to be
very far apart during braiding. For κa ≪ |J⃗ |, one can
show that ξ ∝ 1/κa. However, we also expect this be-
havior to change for large κa, since a theory with only κa
terms (without Jx, Jy and Jz terms) will be gapless, and
thus has ξ = ∞. We thus expect the ξ to have a mini-
mum value as a function of κa. This minimum value of ξ
is crucial since it puts a lower bound on the system sizes
where we expect to observe the topological properties of
the model.

For instance, to have robust Majorana modes on a
quantum computer we have to be able to simulate sys-
tems whose sizes are of the order of 2ξ for periodic bound-
ary conditions. (Having open boundaries would not help
since we will also need to require the Majorana modes to
be away from the boundary.) Thus the lower bound on
ξ also puts a lower bound on the system sizes where we
expect to see robust Majorana modes using only the κa
terms. This is one area where we find that including the
κb terms can be of some help, as we will now explain.

Two Majorana modes can fuse into either the vacuum
or a fermion, with both states having the same energy,
making a gapless system. However, if the two Majorana
modes are close to each other, they can hybridize and
open up a gap. Thus, a proxy for how robust two Ma-
jorana modes are in our system can be the energy gap
in the presence of the Majorana modes, which we calcu-
late in Fig. 4 as a function of κa for a 3 × 3 honeycomb
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FIG. 4. (a) The energy splitting between the ground and the
first excited states on a 3×3 honeycomb lattice with two vor-
tices present (shown in gray) in panel (b). Each vortex host a
Majorana fermion, and in the limit where the vortices are in-
finitly separated we expect a doubly degenerate ground state
manifold. However, because of the finite size of our sample,
the two states hyperdize, and there is a split in energy. This
splitting in energy would spoil the study of brading properites
of the vortices. How big the splitting will depend on a corre-
lation length. The correlation length is bounded from below
when we only consider κa terms. However, when adding the
κb terms we can lower the splitting more.

lattice with periodic boundary conditions. Indeed we no-
tice that the gap follows a similar trend to that expected
for the correlation length ξ and is bounded from below.
However, we find that the gap can be further lowered
by adding the κb terms. This can be crucial when the
calculation is limited in the number of qubits that can
be used, but we still want to make the Majorana modes
more robust.

B. Dynamic gauge VQE

1. VQE initial state

In this section, we consider the case of arbitrary
nonzero external magnetic fields. In this case, one can no
longer restrict the calculation to only one of the L̃u sub-
spaces, where the configuration of fluxes Wp [see Eq. (13)]
is fixed. This follows from Eq. (28), where the ibαi ci terms
flip the sign of the uij bond variable with (i, j) ∈ α-edges.
We thus need to consider the full fermionic Hilbert space
L̃ =

⊕
u L̃u, which includes all flux sectors. To map the

system onto qubits, we note that each link variable uij
can be represented by a single qubit. A system of N
spins thus requires 2N qubits to simulate both the flux
degrees of freedom and the fermionic (matter) subspace.

In the last section we discussed how to group the ci
(matter) Majorana fermions into complex fermions, see
Eq. 19. Similarly, the bαi (bond) Majorana fermions can
be combined into complex fermions in the following way,

g(i,j) =
1
2
(bαi + ibαj ), g†(i,j) =

1
2
(bαi − ibαj ), (34)

where α = x, y, z depending whether (i, j) ∈ x, y, z-edges.
Using this basis we can write the gauge variables as

ûij = ibαi b
α
j = 2g†(i,j)g(i,j) − 1, (35)

and thus initializing a state in a specific gauge configu-
ration amounts to choosing whether a certain fermionic
orbital is occupied or empty.

In the same way as we label the sites of the model
with Latin indices i, j, k, . . . , we will label the edges using
Greek letters µ, ν, λ, . . . . However there is an ambiguity
when writing gµ for example since g(i,j) ̸= g(j,i), but (i, j)
and (j, i) are the same edge. In order to remove this
ambiguity we define gν such that g†νgν = 1 on all edges
corresponds to the standard configuration ustd

ij .
We choose to initialize the system in the standard

gauge configuration, with all uij = 1. Thus our initial
state is such that

g†ν |ψ0⟩ = 0, ∀g†ν (36)

2. Variational ansatz

The ansatz we use for the calculation in the full Hilbert
space reads

|ψ(θ)⟩ = exp
[∑

θcijcibj

]
exp

[∑
θbijbibj

]
× exp

[∑
θaijcicj

]
|ψ0⟩

≡ U c(θc)U b(θb)Ua(θa) |ψ0⟩ . (37)

Similarly to the discussion in Sec. III A 2, and Ap-
pendix A, we choose to reduce the number of parameters
by keeping only the following terms,

Ua(θa) =

exp

[∑
nm

[
iθa1

nm(a†na†m + aman) + θa2
nm(a†na†m − aman)

]]
,

(38)
U b(θb) =

exp

[∑
µν

[
iθb1µν(g†µg†ν + gνgµ) + θb2µν(g†µg†ν − gνgµ)

]]
,

(39)
U c(θc) =

exp

[∑
mµ

[
iθc1iµ(a

†
mg

†
µ + gµam) + θc2iµ(a

†
mg

†
µ − gµam)

]]
.

(40)

Here, θa contains N
2
(
N
2 −1

)
parameters for a system with

N spins. Such a system will have 3N
2 edges, and thus θb

contains 3N
2
( 3N

2 − 1
)

parameters, and θc contains 3N2

2
parameters. In total, the ansatz U(θ) has 2N(2N − 1)
parameters.
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FIG. 5. Dynamic gauge VQE results. Panels (a) and (b) show the error in energy comparing the VQE results to exact
diagonalization, Eerror = |(EVQE − Eexact)/Eexact|. Panel (c) shows that an external field induces a finite magnetization that
is saturating when the field becomes of the order of the Kitaev exchange. Panel (d) shows the proliferation of fluxes induced
by an external field. This gives a quantitative estimate on the extent of the perturbative regime, where one considers only the
flux free sector with w = 1. The system starts out from the gapless point for zero field. Solid lines are exact, and the squares
are from the optimal VQE state.

3. Cost function

The variational state in Eq. 37 explores states in the
full Hilbert space, which includes both physical and un-
physical states. When using the expectation value of the
energy C(θ) = ⟨ψ(θ)|H|ψ(θ)⟩ as a cost function , it is
not guaranteed that the optimal state ψ(θoptimal) belongs
to the physical subspace. Unphysical states are defined
such that P |ψ⟩ = 0, where P is the projection operator
as defined in Eq. (8). Therefore, we use the following
cost function

C(θ) = ⟨ψ(θ)|PH|ψ(θ)⟩
⟨ψ(θ)|P|ψ(θ)⟩

], , (41)

which explicitly includes the projector onto the physical
subspace. We observed that using this cost function, the
algorithm always converged to a physical state in all the
cases tested.

In Appendix B we discuss the Jordan-Wigner trans-
formation of the Majorana fermions of the Kitaev model.
The Jordan-Wigner transformation of the projection op-
erator P (much like the Hamiltonian) is a sum Pauli
strings. Since both P and H are a sum of Pauli strings,
PH is also a sum of Pauli strings. Pauli strings are ob-
servables that can be measured on a quantum computer,
and how to measure sum of Pauli strings effeienctly has
been discussed in the litrature [50–54].

4. Results

With the gauge variables being dynamic, we demon-
strate the capabilities of the ansatz above using three
geometries: 1 × 1 square-octagon, 2 × 1 square-octagon,
and 2× 2 honeycomb lattice. These geometries have 4, 8
and 8 spins, respectively, and thus require 8, 16, and 16
qubits in the simulation. Periodic boundary conditions
are applied in both cases. As before, we set both mod-
els inside the gapless region of the phase diagram. For
the honeycomb lattice we set J = (1, 1, 1), and for the

square-octagon lattice we set J = (1, 1,
√
2). Fig. 5 (a)

and (b) show the error in the ground state energy com-
baring the VQE results to that of exact diagonalization
for H = h0(1, 1, 1). Adding the magnetic field terms does
not change the fact that the model is invariant under a
gauge transformation. Thus the full fermionic Hilbert
space has many degenerate ground states that can be
related to each other by a gauge transformation. This
make comparing state fidelity a lot harder than in the
fixed VQE case, especially for the 16 qubit cases where
getting the full spectrum using exact diagonalization is
time consuming and we had to resort to only solving for
the ground state even classically. There is no garan-
tee that the ground state found by exact diagonalization
should be the same as the ground state found by the
VQE algorithm. We do expect them to be gauge related,
though. In Fig. 5 (c) and (d) we show the average po-
larization and average number of plaquettes respectively.
These are two gauge independent quantities that should
be equal between the ground state obtained by exact di-
agonalization and hour variational ground state. Both
quantities agrees pretty well between the exact diagonal-
ization ground state and our VQE ground state.

IV. CONCLUSION

We use the variational quantum eigensolver (VQE)
method to simulate ground state properties of Kitaev
spin models on the honeycomb and square-octagon lat-
tices. Following Kitaev’s original decomposition of spins
into fermions, we simulate a fermionic description of the
model. We show that this can reduce the number of re-
quired qubits by a factor of two, if one can restrict states
to a fixed gauge sector. We present results for systems
up to 18 spins and show that VQE can find the ground
state with high accuracy not only in the exactly solv-
able limit, but also in the presence of additional gauge-
diagonal terms that render the fermionic matter sector
interacting. Such terms arise, for example, when treat-
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ing external magnetic fields within perturbation theory
and can drive the system into a non-Abelian topolog-
ical phase. We highlight the potential application of
our method in realizing non-Abelian anyons on quan-
tum computers. We also perform VQE simulations in
the presence of terms that couple different gauge sec-
tors, in which case one requires 2N qubits to simulate N
spins, restricting the maximal system sizes we can reach
to N = 8. We show results for the magnetization and the
average number of fluxes induced by an external field that
agree well results from exact diagonalization. Our results
compare well to other VQE results of the model in the
literature, and demonstrate that fermionizing spin mod-
els can provide an advantage when additional constraints
limit the size of the Hilbert space where the ground state
is located.
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Appendix A: Relevant parts of the ansatz

Our ansatz introduced in Sec. III A 2 can be simplified
by modding out the parts of the ansatz that leaves the
initial state invariant. Let us look at the action of Ua(θa)
on |ψ0⟩, where

Ua(θa) = exp

∑
ij

θaijcicj

 , (A1)

and ai |ψ0⟩ = 0 for all ai. We begin by writing Ua(θa) in
terms of the complex fermions ai,

Ua(θa) = exp
∑
ij

(θa2i,2jc2ic2j + θa2i+1,2jc2i+1c2j

+ θa2i,2j+1c2ic2j+1 + θa2i+1,2i+1c2i+1c2j+1)

= exp

∑
ij

[
iθa1

ij (a
†
iaj + a†jai) + θa2

ij (a
†
iaj − a†jai)

]

+
∑
ij

[
iθa3

ij (a
†
ia

†
j + ajai) + θa4

ij (a
†
ia

†
j − ajai)

] ,
(A2)

where it can be shown that,

θa1
ij = θa2i,2j − θa2i+1,2j+1

θa2
ij = θa2i,2j + θa2i+1,2j+1

θa3
ij = θa2i+1,2j + θa2i,2j+1

θa4
ij = θa2i+1,2j − θa2i,2j+1 (A3)

Since the commutators [a†iaj , a
†
i′aj′ ], [a†iaj , ai′aj′ ],

[a†ia
†
j , ai′aj′ ], and [aiaj , ai′aj′ ] are either zero or a

quadratic product of ai’s and a†i ’s we can write

exp

∑
ij

[
iθa3

ij (a
†
iaj + a†jai) + θa4

ij (a
†
iaj − a†jai)

]

+
∑
ij

[
iθa1

ij (a
†
ia

†
j + ajai) + θa2

ij (a
†
ia

†
j − ajai)

]
=
∏
ij

exp
[
iθ

′a1
ij (a†ia

†
j + ajai)

]
exp

[
θ
′a2
ij (a†ia

†
j − ajai)

]
×
∏
ij

exp
[
iθ

′a3
ij (a†iaj + a†jai)

]
exp

[
θ
′a4
ij (a†iaj − a†jai)

]
(A4)

However since the parameters in the exponent are to be
found variationally anyway, the exact relationship be-
tween the primed and unprimed θ’s is not relevant, and
we can just as well use the RHS of the equation above in
our ansatz. Finally we notice that,∏

ij

exp
[
iθa3

ij (a
†
iaj + a†jai)

]
exp

[
θa4
ij (a

†
iaj − a†jai)

]
|ψ0⟩

= eiϕ |ψ0⟩ (A5)

since ai |ψ0⟩ = 0 for all ai. Thus in our ansatz we only
use

Ua(θa) ≡∏
ij

exp
[
iθa1

ij (a
†
ia

†
j + ajai)

]
exp

[
θa2
ij (a

†
ia

†
j − ajai)

]
(A6)

without any loss of generality. For a system with N spins,
the above expression has N/2(N/2−1) as opposed to the
N(N − 1)/2 independent parameters of Eq. (A1).

Appendix B: Mapping the fermionic model onto
qubits

1. The Jordan-Wigner transformation

Consider a fermionic Hilbert space of N orbitals (we
take orbital here to also include the spin) with ai, i ∈
{1, . . . N} being the annihilation operators for these N
orbitals. This Hilbert space is 2N dimensional, since each
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orbital can either be full or empty. The operators ai’s
satisfy the following anti-commutation relationships,

{ai, a†j} = δij , {ai, aj} = 0. (B1)

A basis of this Hilbert space can be defined as

|n1 . . . nN ⟩ = (a†1)n1 . . . (a†N )nN |0⟩ , ni ∈ {0, 1}, (B2)

where |0⟩ is the state annihilated by all lowering opera-
tors. The lowering operators has the following action on
the basis states,

ai |n1 . . . ni . . . nN ⟩ =
{
0, ni = 0,
ξi |n1 . . . 0 . . . nN ⟩ , ni = 1,

(B3)

where

ξi = (−1)
∑

j<i
nj (B4)

is the parity counting of all the fermions with a labels j <
i. This phase factor is what makes mapping a system of
fermions on a system of bosons not very straight forward.
The definition of our basis states depends (up to a sign)
on how we choose to order the orbitals.

A system of N qubits has a Hilbert space that is
spanned by,

|s1 . . . sN ⟩ = (σ+
1 )s1 . . . (σ

+
N )sN |0⟩ , si ∈ {0, 1}, (B5)

where σ+
i = 1

2 (σ
x
i − iσy

i ), and the state |0⟩ is defined
such that σ−

i |0⟩ = 0 for all σ−
i = (σ+

i )†. This Hilbert
space is also 2N dimensional and it looks very similar to
the fermionic system. We can try and make the identi-
fications σ−

i = ai, and σ+
i = a†i . However there is an

important difference, the action of σ−
i on the basis states

does not include the parity counting phase,

σ−
i |s1 . . . si . . . sN ⟩ =

{
0, si = 0,
|s1 . . . 0 . . . sN ⟩ , si = 1.

(B6)

The Jordan-Wigner mapping then seek to restore this
parity counting phase by making the following identifi-
cations,

ai =
∏
j<i

σz
jσ

−
i , a†i =

∏
j<i

σz
jσ

+
i . (B7)

2. Transforming the Hamiltonian and the ansatz

As discussed in the main text, it is useful to have a
distinction between two kinds of Majoranas of the Kitaev
model, the bαi Majoranas that make up the gauge sector
and the c Majoranas that make up the fermionic sector.
In the main text we chose to have,

c2n = an + a†n, c2n+1 = 1
i
(an − a†n). (B8)

Since a pair of Majoranas combine to make a complex
fermion, for a system of N spins the index n above ranges
from 1 to N/2. Using the transformation in Eq. (B7) we
see that the Majorana fermions maps to the following,

c2n =
∏
m<n

σz
mσ

x
n c2n+1 =

∏
m<n

σz
mσ

y
n. (B9)

Further, we also have a complex fermion gµ associated
with each edge as discussed in the main text. Since the
complex fermions gµ are defined in such a specific way
such that g†µgµ = 1 corresponds to the standard gauge
configuration ustdij , we need a new notation for the bαi
Majorana fermions in order to avoid ambiguous notations
and properly keep track of minus signs. We define,

b1ν = g†ν + gν b2ν = 1
i
(g†ν − gν), (B10)

For the Jordan-Wigner transformation we make the fol-
lowing identification,

gν ≡ aν+N/2. (B11)

With this we can extend the Jordan-Wigner transforma-
tion to include the bαi Majorana Fermions

b1ν =
∏

m<ν+N/2

σz
mσ

x
ν+N/2 b2ν =

∏
m<ν+N/2

σz
mσ

y
ν+N/2.

(B12)

Using Eqs. (B9) and (B12) one can work out the
Jordan-Wigner transformation of all possible terms in
the Hamiltonian. Defining

Sji =
∏

j≤p<i

σz
p (B13)

the fixed gauge Hamiltonian transforms as follows,∑
j>i

iAijcicj =
∑
j>i

Aij iσ
αi

i′ Si′j′σ
αj

j′ , (B14)

∑
l>k>j>i

Vijklcicjckcl =
∑

l>k>j>i

σαi

i′ Si′j′σ
αj

j′ σαk

k′ Sk′l′σ
αl

l′ ,

(B15)

with i′, j′, k′, l′ = ⌊i/2⌋, ⌊j/2⌋, ⌊k/2⌋, ⌊l/2⌋, αi = x when
i is even, and αi = y when i is odd.

When dealing with dynamic gauge Hamiltonian we
have,∑

j>i

Jαcicjb
α
i b

α
j = iσαi

i′ Si′j′σ
αj

j′

[
sijσ

z
ν+N/2

]
, (B16)

∑
i

hαcib
α
i = iσαi

i′ Si′ν+N/2 σ
βα

ν+N/2 (B17)

where sij = ± , and βα = x, y when bαi = b1ν , or bαi = b2ν
respectively.
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FIG. 6. Building blocks for the ansatz. Here Ui = H (Hadamard gate) if αi = x, and Ui = Rx(π2 ) (rotation about x-axis by
π/2) if αi = y.

We now move on to the Jordan-Wigner transformed
ansatz. We start with

Ua(θa) ≡∏
i<j

exp
[
iθa1

ij (a
†
ia

†
j + ajai)

]
exp

[
θa2
ij (a

†
ia

†
j − ajai)

]
.

(B18)

Using Eq. B7, we can write the exponents as

a†ia
†
j + ajai = 2(σx

i Sijσ
x
j − σy

i Sijσ
y
j ) (B19)

a†ia
†
j − ajai = −2i(σx

i Sijσ
y
j + σy

i Sijσ
x
j ) (B20)

Next we look into the stransformation of

U b(θb) ≡
∏

i<j<k<l

exp
[
iθb1ijkl(a

†
ia

†
ja

†
ka

†
l + alakajai)

]
× exp

[
θb2ijkl(a

†
ia

†
ja

†
ka

†
l − alakajai)

]
. (B21)

Using Eq. B7 the exponents can be transformed as fol-
lows,

a†na
†
ma

†
ka

†
l + alakaman =

(
σx
i Sijσ

x
j σ

x
kSklσ

x
l

−σy
i Sijσ

y
j σ

x
kSklσ

x
l − all permutations of x, y

+σy
i Sijσ

y
j σ

y
kSklσ

y
l

)
(B22)

a†na
†
ma

†
ka

†
l − alakaman = 2i (

σy
i Sijσ

y
j σ

y
kSklσ

x
l + all permutations of x, y

− σx
i Sijσ

x
j σ

x
kSklσ

y
l + all permutations of x, y

)
. (B23)

In Fig. 6 we show how this transformed ansatz can be im-
plemented on a quantum computer. Finally, we note that
the ansatz used in the dynamical gauge VQE (Eqs. (38,
39, 40)) can be transformed to operators that can be
acted with on qubits using equations that are very simi-
lar to Eqs. (B19) and (B20).
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