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Abstract: In this article, we describe a modified implementation of Mask Region-based Convo-
lutional Neural Networks (Mask-RCNN) for cosmic ray muon clustering in a liquid argon TPC
and applied to MicroBooNE neutrino data. Our implementation of this network, called sMask-
RCNN, uses sparse submanifold convolutions to increase processing speed on sparse datasets, and
is compared to the original dense version in several metrics. The networks are trained to use wire
readout images from the MicroBooNE liquid argon time projection chamber as input and produce
individually labeled particle interactions within the image. These outputs are identified as either
cosmic ray muon or electron neutrino interactions. We find that sMask-RCNN has an average pixel
clustering efficiency of 85.9% compared to the dense network’s average pixel clustering efficiency
of 89.1%. We demonstrate the ability of sMask-RCNN used in conjunction with MicroBooNE’s
state-of-the-art Wire-Cell cosmic tagger to veto events containing only cosmic ray muons. The
addition of sMask-RCNN to the Wire-Cell cosmic tagger removes 70% of the remaining cosmic
ray muon background events at the same electron neutrino event signal efficiency. This event veto
can provide 99.7% rejection of cosmic ray-only background events while maintaining an electron
neutrino event-level signal efficiency of 80.1%. In addition to cosmic ray muon identification,
sMask-RCNN could be used to extract features and identify different particle interaction types in
other 3D-tracking detectors.

Keywords: Pattern recognition, cluster finding, Particle identification methods, Time projection
chambers
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1 Introduction

The MicroBooNE [1] experiment uses a liquid argon time projection chamber (LArTPC) with
an active volume of 85 tonnes to study neutrinos from the Fermilab Booster Neutrino Beamline,
while also receiving neutrinos from the Neutrinos at the Main Injector (NuMI) beam. The Micro-
BooNE LArTPC is a near-surface detector that does not utilize any overhead shielding for cosmic
background mitigation. This, combined with a long TPC readout time, described in section 2.1,
results in a high ratio of cosmic ray muons to the number of neutrinos that interact within the de-
tector. Techniques must be developed to reduce this cosmic ray muon background so that different
neutrino interaction channels are measured with high purity.

A cosmic ray interaction can be mistaken for a neutrino interaction regardless of whether there
is a neutrino interaction in the readout window. We consider any cosmic ray muon depositing
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charge in the detector an ‘interaction’ regardless of whether it is captured in, decays in, or traverses
the detector. Background events without a neutrino interaction present are called “cosmic-only”
events. An example of a cosmic-only event is depicted in figure 1c. Due to the prevalence of cosmic
rays at this near-surface location, any reconstruction tools designed to tag cosmic ray muons should
be deployed early in the reconstruction chain to filter such non-neutrino events. This means that our
solution to identifying and removing cosmic ray backgrounds must be deployable across the entire
MicroBooNE dataset.

In this article, we present an approach to cosmic ray muon tagging using machine learning.
Within the MicroBooNE experiment, machine learning techniques have been applied in other areas,
such as particle identification, and pixel identification [2–5]. In this article, we make use of a neural
network called Mask-RCNN or "Mask Region-based Convolutional Neural Network" [6] to locate,
identify, and cluster 2D interactions corresponding to the projections of the LArTPC wire planes.
The design of Mask-RCNN is described in section 2.3.

Machine learning algorithms are typically deployed on graphics processing units (GPUs)
because their ability to parallelize computations pairs well with the matrix multiplications that are
abundant in machine learning code. However, in order to deploy on the full MicroBooNE dataset,
our tools need to run on central processing units (CPUs) because the MicroBooNE production chain
has access to large amounts of CPUs but not integrated GPUs. While running on GPUs would
speed up run time, integrating GPUs would require additional personnel and financial investment
that is not presently feasible, therefore operations that use CPUs are required. To solve this problem,
we extend Mask-RCNN to use sparse submanifold convolutions [7] which allow for much faster
CPU running on sparse datasets by avoiding multiplication when one term is zero. We call this
modified version of the network sparse Mask-RCNN or "sMask-RCNN". Section 3.2 contains a
brief description of submanifold convolutions, and sMask-RCNN’s modified state is described in
3.3. Several visual examples of sMask-RCNN’s performance are provided in the form of event
images in figure 1. For details on how the event images underlying the sMask-RCNN labels are
made, see section 3.1. Code detailing our implementation of sMask-RCNN has been made available
at: https://github.com/NuTufts/Detectron.pytorch/tree/larcv1_mcc9.

2 Background

2.1 The MicroBooNE LArTPC

The LArTPC technology is designed to provide precision calorimetry and particle tracking
while remaining scalable to larger sizes for future experiments. In MicroBooNE’s LArTPC, a large
volume of liquid argon is bounded on six sides within the time-projection chamber (TPC). On one
side, the cathode, is a metal plate held at a negative potential of -70 kV. On the other side of the
argon, held near ground, is the anode: a collection of three wire planes at progressively higher
potentials. Figure 2 shows a diagram of the LArTPC principle.

Each wire plane consists of a series of parallel wires spaced every 0.3 cm. The wires in each
plane are oriented at an angle of 60° with respect to the wires in the other two planes. When a
charged particle passes through the detector, it creates ionization electrons which drift toward the
anode wire planes due to the nearly uniform electric field between the cathode and anode. As the
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(a) An example of an input image as given to sMask-RCNN to process

(b) A simulated neutrino interaction overlaid on cosmic ray muons from data, labeled by sMask-RCNN

(c) Cosmic-only data event, labeled by sMask-RCNN

(d) Data event containing a neutrino interaction, labeled by sMask-RCNN

Figure 1: Several example event images. The vertical and horizontal scales are the same for all
images. Each column of pixels along the 𝑥-axis refers to a specific wire readout, and each row
along the 𝑦-axis refers to a different bin of signal readout time. This is described in greater detail
in section 3.1. (a) is an example of an input image given to sMask-RCNN to process, whereas (b)
shows the network’s subsequent labeling of the same image. (c) shows a cosmic-only data event.
(d) shows a data event containing a neutrino interaction that sMask-RCNN correctly identifies with
some confidence score, and clusters. – 3 –
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Figure 2: A diagram of the LArTPC principle. The signal formation for the second induction plane
(V plane) and the collection plane (Y plane) are shown [1].

electrons pass by the first two wire planes they induce bipolar pulses on the wires before finally
arriving at the third and final wire plane. Here they are collected and create a unipolar pulse. Thus
this final wire plane is called the "collection plane". The bipolar and unipolar pulses read out from
the wires undergo noise filtering and 2D deconvolution described in [8, 9]. This processing removes
much of the noise from the wires and transforms the bipolar pulses into unipolar pulses. These wire
signals are used to create the input images used by the neural network. The process for creating the
input images is described in section 3.1.

2.2 Existing cosmic identification tools

Cosmic ray muon tagging and background removal have previously been performed in Micro-
BooNE using a variety of methods. One example uses deep learning with semantic segmentation
to differentiate cosmic ray muon pixels from neutrino interaction pixels [10]. Mask-RCNN expands
on semantic segmentation, further separating each instance of every individual interaction it finds
using bounding boxes. This means that each cosmic muon interaction in the detector receives its
own labeled and clustered output.

Cosmic ray muon tagging has also been performed with more traditional algorithmic ap-
proaches. In the MicroBooNE experiment, one such method is the PandoraCosmic algorithm
[11, 12]. This algorithm clusters hits in 2D and then combines these clusters into 3D tracks. It
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flags a track as a cosmic ray muon if part of the track is placed outside the detector based on timing
information or if the track trajectory begins and ends at a TPC boundary using information related
to the track’s timing. It provides an exception for through-going trajectories that are parallel to
the beam direction. This is designed to eliminate cosmic ray muons as they will appear as tracks
originating from outside of the detector, and will be crossing perpendicular relative to the beam
direction.

Another method used in MicroBooNE is the Wire-Cell (WC) cosmic tagger [13, 14] which is
made up of several event-level requirements, combined with the WC charge-light (Q-L) matching
algorithm [15]. This Q-L matching algorithm uses light information detected during the neutrino
spill by 32 8-inch cryogenic photomultiplier tubes (PMTs) mounted behind the TPC wire planes.
This light information is then spatially matched to charge deposited in the TPC, selecting TPC
pulses created during the beam spill. Therefore, both the Q-L algorithm and the full WC cosmic
tagger use additional information beyond the wire planes, which is what sMask-RCNN uses as input.
In section 5.2 we show results achieved by a combination of sMask-RCNN and WC algorithms to
produce a state-of-the-art cosmic ray tagger.

Cosmic ray tagging can also be achieved with hardware solutions. An example in MicroBooNE
is the design and construction of the cosmic ray tagger system [16]. This system was introduced
partway through MicroBooNE operation, and therefore is only available for part of the MicroBooNE
data. It uses plastic scintillation modules to acquire the time and location for particles traversing the
TPC. Reconstructed tracks can then be matched to this data and be flagged as pertaining to cosmic
ray muons rather than neutrino interactions. Additionally, the cosmic ray tagger system can be used
in tandem with software solutions to improve performance.

2.3 Object detection and Mask-RCNN

The original Mask-RCNN network is designed to perform three common tasks in the field
of computer vision: object detection, classification, and semantic segmentation. In the field of
computer vision, classification is a task commonly performed to label an image as one of some
predefined list of classes, for instance an image might be labeled a cat or a dog. Semantic
segmentation refers to a labeling performed at pixel level, for example in an image with a cat and a
dog, the pixels making up the dog are labeled ‘dog’ pixels and those making up the cat are labeled
‘cat’ pixels, while the remaining pixels are given a background label. The network is trained to
receive some input image, place bounding boxes around objects of interest, classify these objects
within some set of user defined classes, then within each box label each pixel as part of the object
or not.

Structurally, Mask-RCNN is comprised of four subnetworks. First is a residual network
(ResNet) [17]. This network runs on the input image and creates a feature map for the image.
This feature map is then fed into a region proposal network (RPN) [18], which then produces a
series of bounding boxes around regions of interest (RoIs) within the image. The bounding boxes
are described by a 2D coordinate, a height and a width, and are designed to produce the smallest
rectangular box containing the object. The RoIs are aligned in the feature map space via the
RoIAlign algorithm, then combined with appropriate features, scaled to a fixed size and fed into
the two final subnetworks: a classifier, and a fully convolutional network (FCN) we refer to as the
"maskifier". The classifier takes each bounding box and its features and predicts which class of
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object it is with some confidence score. The maskifier produces a semantic segmentation mask
of all the pixels within the box, determining which pixels correspond to the object and which are
background. This semantic segmentation mask is synonymous with a cluster of pixels within the
box, though the cluster need not be connected. Figure 3 shows a simplified view of the network
architecture.

Figure 3: Network Architecture for Mask-RCNN in MicroBooNE.

3 Methods

3.1 Data preparation

To create images for analysis using MicroBooNE LArTPC data, we use the charge readout
from the three wire planes at the anode. The neutrino beam window is 1.6 ms, but we record a
buffer on either side providing a modified window of about 3 ms. The data taken during this 3 ms
comprises an "event". Over the course of this recorded beam window these wires are sampled as a
rate of 2 MHz. This equates to 6048 samples per wire.

We create the event images shown in this article by placing the wire number along the 𝑥-axis and
the sampling time along the 𝑦-axis. However, we first downsample the number of time samples per
wire by a factor of six, going from 6048 samples per wire to 1008. This downsampling is performed
both to reduce image size and to make the drift distance per pixel of an ionization electron roughly
0.3 cm. This distance matches the wire separation within a given wire plane. The value stored in
each pixel within an image then is proportional to the charge deposited in the detector. We will
refer to this as the "pixel intensity". We then apply a threshold the image by setting any pixel with
pixel intensity below 10 (arbitrary units) equal to zero to further reduce noise. In comparison, the
pixel intensity distribution from minimum ionizing particles peaks at ∼ 40 in these arbitrary units.

While there is one image made for each of the three LArTPC wire planes, for this study we
only use the collection plane. We choose the collection plane over the other wire planes because
the collection plane does not require signal processing to turn bipolar pulses into unipolar pulses
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and therefore the signal is cleaner. The event images then have a dimensionality of the number of
wires on the collection plane times the number of samplings per wire, or 3456 × 1008.

Lastly, in the MicroBooNE LArTPC a portion of the wires are unresponsive [19]. In the
collection plane this happens for about 10% of the wires. This creates an artifact in the images
by creating vertical lines of unresponsive pixels. In some cases large groups of adjacent wires are
unresponsive, leading to regions of unresponsive pixels.

3.2 Sparse submanifold convolutions

In the event images created from the LArTPC collection plane, about 0.7% of the pixels
are nonzero, making the data "sparse". This is because the pixel value comes from the ionized
electrons drifting away from the charged particles moving in the detector. Most of the time, the
wires are reading out low-level noise that is below the threshold. The resultant low pixel occupancy
means that when we apply Mask-RCNN to the event images, there are many computations that
involve multiplications by zero. These trivial calculations waste computing resources, particularly
if performed in sequence via a CPU and not in parallel via a GPU.

A normal convolution in a neural network takes a convolutional kernel or filter and moves it
across the image, multiplying at each location to acquire the convolved value. In comparison, a
sparse submanifold convolution only multiplies the kernel against positions centered on nonzero
pixels, avoiding computations on zeroed regions of the input. Notably, a submanifold convolution
is not mathematically equivalent to a regular convolution. In normal convolutions, kernels centered
on zeros in the input image can output a nonzero convolved value if the edge of the filter captures
some nonzero input. An example of this is shown in figure 4. This blurs the features coming out of
a convolution, so that convolutions which are performed one after another in a deep neural network,
such as ResNet, spread information outward.

Figure 4: An example of a convolution operation that depends on use of submanifold or normal
convolutions. The normal convolution multiples the kernel against the image at the given position,
and outputs a convolved value of 17. Meanwhile, the submanifold convolution does not get
computed when centered on a zero. The submanifold convolutions used in sMask-RCNN have a
kernel size of 3 × 3 (same as shown in the figure), with a stride of 1.
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3.3 Sparse Mask-RCNN

We utilize Mask-RCNN to locate, identify, and cluster interactions within the 2D event images
described in section 3.1. The network places bounding boxes around, classifies, and then clusters
pixels corresponding to deposited charge for each interaction it finds within the image. We define
an interaction as all of the charge deposited in an image coming from the same ancestor particle.
For example, if an electron neutrino interacts with the argon in the LArTPC, and yields a proton and
an electron, all of the charge deposited from the proton and electron are combined into one ancestor
"electron neutrino" interaction and should be clustered together. A more detailed description of
network training is described in section 3.4.

To speed up the network when deployed on CPUs, we swap the ResNet convolutions with sparse
submanifold convolutions while maintaining the original network structure. Additional work could
be done to make the later subnetworks use sparse convolutions but examinations of the compute
times for the individual parts of sMask-RCNN made this unnecessary. For clarity, we will refer to
Mask-RCNN without submanifold convolutions as dense Mask-RCNN.

The change to sparse convolutions yields a significant gain in terms of network speed for
inference when running on CPUs. The timing information for running the dense and sparse
configurations of the network is shown in table 1. These timings were performed on an Intel(R)
Core(TM) i9-9820X CPU @ 3.30 GHz and measure wall time. This allows the network to be
inserted into production code on CPU farms such as FermiGrid [20] and to scale up how quickly
the network is run over large data samples. We note that the Intel CPU we tested on is superior
to what is generally available on CPU farms. Brief testing done on available CPU farms shows
the ResNet runtime difference is exacerbated. This means the difference between sparse and dense
implementations is even greater when older CPUs are used. This further prioritizes shortening
the ResNet runtime, as when we deploy on CPU farms, we will use a variety of CPUs with lesser
performance than an Intel(R) Core(TM) i9-9820X CPU @ 3.30 GHz. Further, an added benefit
of using CPUs is that this technique is scalable to future experiments and studies where more data
may be analyzed, and the computing resources cannot scale to a reasonable number of GPUs.

The implementation to sparse ResNet also introduces improvements to training when it comes
to memory. For the dense version of the network, due to memory constraints, we could only train the
network on 832×512 crops of the event image. We use the word crop to refer to a random cutout of
the original image of this new 832× 512 size, where the crop must contain a portion of a simulated
interaction. However, sMask-RCNN is trained on the full 3456 × 1008 event images because the
memory required on the GPU to store a full image for the network is reduced by roughly a factor
of the image’s occupancy, as all zero pixels are no longer operated on. Regardless of training size,
both the dense and sparse forms of Mask-RCNN could be deployed on the full 3456 × 1008 event
images, as less memory is used if not actively training the network.

All of the event images shown in this article use the sparse implementation of Mask-RCNN.
We examine the difference in performance between the dense and sparse networks in section 4.

3.4 Network training

When training, the entire network performs a forward pass on an image, and then the backward
pass updates the weights of all the subnetworks based on a combined loss function built from
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Table 1: The average inference runtimes per 3456 × 1008 pixel image on a CPU. The first row is
the runtime for just the ResNet portion of Mask-RCNN on the images. The second row is the time
to run the entire network on the images. In the case of sparse ResNet, the time spent making the
input image into a sparse tensor and the output features into a dense tensor is included in the sparse
ResNet module time.

Dense ResNet Sparse ResNet

ResNet Runtime 3.172 s 0.1758 s
Full Detection Runtime 8.438 s 5.79 s

the outputs of the maskifier, classifier, and RPN, as described in the original Mask-RCNN article
[6]. Rather than train the ResNet from randomized initial weights, we use weights pretrained
on the ImageNet dataset [21], which is a publicly available labeled dataset of images of animals
and everyday objects. The ImageNet dataset is commonly used in the field of computer vision.
We briefly started training ResNet from scratch, with randomly initialized weights, because the
ImageNet pretraining is designed to identify animals and everyday objects, but despite this, we
found that using the pretrained ResNet gave more useful features for the other components of
Mask-RCNN to utilize in this particle physics analysis.

To train both the dense and sparse forms of Mask-RCNN, we use a sample of simulated electron
neutrino events featuring simulated cosmic background. This means that every full 3456 × 1008
image contains a single electron neutrino interaction among many cosmic ray muons. While the
dense network was trained on crops containing at least part of a neutrino interaction or cosmic ray
muon, they did not always have an example of both within the same crop.

The interactions present in the training data are broken up into six different interaction classes,
detailed in table 2. Dense Mask-RCNN was trained on each of these interactions, but as we deter-
mined our goal was primarily cosmic ray muon tagging, we only trained the sparse implementation
on cosmic ray muons and electron neutrino interactions. Simulated interactions where the simulated
ancestor particle was one of the four other classes were still present in the data but the network
was told to ignore them. The training data uses CORSIKA [22] for cosmic ray muon simulation.
For electron neutrino interactions the GENIE neutrino interaction simulator [23] is used. In both
instances, GEANT4 [24] is used to model the detector response.

We also note that the version of simulation used to produce the training data for the sparse
network is slightly updated as a newer version of simulation became available. Both the dense and
sparse networks have their performance evaluated on the same set of 9400 events from the newer
version of simulation, meaning there is a slight discrepancy between the training and testing data
for the dense network. However, we expect this change to have minimal effect on the network
performance.

As is common practice in machine learning, we split the data into two orthogonal subsets: a
training set with 80% of the events and a validation set with 20%. When training the network, we
use events in the training set, and whenever we wish to measure the performance of the network,
such as calculating performance metrics shown in section 4, we use the validation set. This is a
critical part of machine learning because it verifies that the network can generalize and perform its
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Table 2: The different class types and number of occurrences in the training sets for the dense and
sparse versions of Mask-RCNN. Note that the sparse network only trained on cosmic ray muon and
electron neutrino interactions.

Dense Training Sparse Training
Interaction Class Counts Percentage Counts Percentage

Cosmic Ray Muon 2708730 92.99 786050 95.24
Electron Neutrino 97034 3.33 39296 4.76

Neutron 26072 0.90 - -
Proton 5738 0.19 - -

Electron 155 0.005 - -
Other 75026 2.58 - -

task on events outside of the training set.
The dense version of the network is trained on a sample of 230,000 crops for 1.75 epochs. In

the context of machine learning, an epoch is one training pass through the data. While 1.75 is a low
number of epochs, each crop features multiple interactions seen and masked by the network. Then
the network is trained on a subset of 30,000 of these crops containing examples of high intersection-
over-union (IOU) interactions. IOU between two interactions is defined as the number of pixels
present in both interaction bounding boxes, divided by the total number of unique pixels present in
either bounding box. These crops featured multiple interactions with overlapping bounding boxes.
This fine tuned training is performed due to poor performance by the dense network on overlapping
interactions. The training on this subset is performed for 8 epochs so the network can focus on
learning these difficult events.

The sparse version of the network is trained on a sample of 40,000 full event images for three
epochs. No fine tuning needed to be performed on highly overlapping interactions as the sparse
network did not appear to suffer from the same issue as the dense network. It should be noted that
while at first glance the training sample sizes of the dense and sparse networks differ by a significant
factor, in actuality the dense crops were made at a factor of up to 10 crops per full image, and the
training datasets are comparable in terms of interaction sample variance. Further, all performance
evaluations for both networks are deployed on the same validation set of 9400 full sized images.

4 Comparing dense and sparse performance

In this section we define several metrics to test the performance of Mask-RCNN at identifying
and clustering interactions within MicroBooNE event images. Then we compare the performance
between the dense and sparse versions of the network. For this evaluation, we include interactions
found by the network with a class score of 0.4 or higher. The class score is a score between 0 and
1.0 indicating how confident the network is that the class label is correct. This threshold is chosen
to provide a balance between the purity and efficiency metrics defined and discussed below. Once
this threshold is applied, all remaining predicted interactions are treated equally for the purpose of
calculating metrics.
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All analysis in this section uses the full scale 3456× 1008 event images in the validation set of
simulated data used to train the sparse network. This refers to the data described in the right two
columns of table 2.

4.1 Efficiency and purity

For the purpose of this section, we will refer to interactions either as "true" or "predicted".
A true interaction is one that exists in the simulation, whereas a predicted interaction is one that
the network claimed it has found and labeled. We define two metrics to measure the pixel level
efficiency and purity of the network’s ability to find and cluster interactions. The efficiency is a
measure of the percentage of pixels in a true interaction that are masked by the network’s prediction.
Purity is defined for each predicted interaction as the highest fraction of pixels belonging to the
predicted interaction and a single true interaction. For example, if 30% of a prediction maps to
true interaction A, and 50% maps to true interaction B then the purity is 50% for that predicted
interaction. In both of these definitions, only pixels containing charge deposition above the pixel
intensity threshold of 10 are considered, as we do not care about clustering empty pixels. Concretely,
the efficiency 𝐸 is defined as

𝐸 =

∑
𝑖 𝑗 𝑇𝑖 𝑗 ·𝑊𝑖 𝑗 · 𝑀𝑖 𝑗∑

𝑖 𝑗 𝑇𝑖 𝑗 ·𝑊𝑖 𝑗

, (4.1)

where 𝑇 , 𝑊 , and 𝑀 are matrices representing the truth interaction, wire event image, and predicted
interaction mask, respectively, with dimensions of the event image. Meanwhile, 𝑖 and 𝑗 are pixels
indices. A visual representation of the efficiency calculation is depicted in figure 5. Similarly, the
purity 𝑃 is defined as

𝑃 =

∑
𝑖 𝑗 𝑀𝑖 𝑗 ·𝑊𝑖 𝑗 · 𝑇𝑖 𝑗∑

𝑖 𝑗 𝑀𝑖 𝑗 ·𝑊𝑖 𝑗

. (4.2)

The purity calculation is depicted in figure 6. For each of these equations, the values in 𝑇 are 1 if
the pixel belongs to the true interaction, and 0 otherwise, while the values in 𝑀 are 1 if the pixel
belongs to the predicted interaction mask, and 0 otherwise. Finally, the values in𝑊 are 1 if the pixel
has any deposited charge, and 0 otherwise. After the element-wise multiplication of the matrices,
the summations then run over the indices of the matrix. This corresponds to a counting of the pixels
corresponding to the union of the given matrices.

A true interaction’s efficiency is taken as the best value as calculated for all predicted inter-
actions. A predicted interaction’s purity is taken as the best value when calculated for all true
interactions.

These definitions mean that a given event image will have one efficiency measurement for
each true interaction, and one purity measurement for each predicted interaction. While we are
aware that object identification customarily uses panoptic quality [25] or intersection-over-union as
evaluation metrics, we choose to use efficiency and purity in better keeping with particle physics
analysis language.

For each event, we average the purities and efficiencies for the predicted and true interactions.
These averages are of O(20) interactions, where there is a single neutrino interaction and many
cosmic ray muon interactions. We reiterate that a cosmic ray muon ‘interaction’ is just any cosmic
ray muon and potential daughter particles that deposit charge in the detector. These event-averaged
values are plotted in the 2D histograms shown in figure 7.
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Figure 5: A visual representation of the definition of efficiency. Only nonzero pixels in the event
image are counted.

Figure 6: A visual representation of the definition of purity. Only nonzero pixels in the event image
are counted.

(a) Dense Mask-RCNN (b) Sparse Mask-RCNN

Figure 7: The event-averaged efficiencies and purities for the dense and sparse implementations
of Mask-RCNN. The dense network has a mean event-averaged efficiency of 0.89 and a mean
event-averaged purity of 0.87. For the sparse network these values are 0.86 and 0.85. Each of these
evaluations use the same validation dataset.

Perfect efficiency and purity would yield values of 1.0 for each, so these histograms have
targets in the upper right corners. We can see that the event-averaged purity drops from 87% for
the dense to 85% for the sparse, while the event-averaged efficiency drops from 89% to 86%. The
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(a) Event-Averaged Efficiency (b) Event-Averaged Purity

Figure 8: The one-dimensional distributions for the event-averaged efficiency (a) and purity (b)
shown in figure 7. Each plot compares the dense and sparse network performances.

one-dimensional projections of figure 7 are shown in figure 8, where the event-averaged efficiency
and purity distributions are compared between the dense and sparse networks.

It is also useful to examine the individual interaction efficiencies, rather than the event-averaged
versions. The distributions for both the dense and sparse versions of Mask-RCNN are shown in
figure 9. Here we can see the sparse (red) distribution is worse than the dense (blue) distribution.
Notably the size of the peak at zero is the same for the two versions of the network. A true interaction
will have zero efficiency if the network has no prediction that masks part of it. The fact that the
two versions have the same sized peak at zero indicates that they each find the same number of
interactions, but the dense masks are somewhat more complete.

The efficiency calculation is modified slightly by weighting the pixels within an interaction
by their deposited charge. This version of the efficiency we term "charge efficiency" and is shown
in figure 10. Here we see a shift to the right for each distribution compared to their pixel-level
efficiency in figure 9. This indicates the network’s preference for clustering higher value pixels
corresponding to larger deposited charge, though this result may be due to the network being more
likely to grab the center of tracks in our image, where the higher value pixels lie, compared to the
halo of hits along a track’s edge. While not surprising, this is a useful feature as the physics quantity
we are dealing with is charge, not pixel count.

If we explore the interactions lying within the zero efficiency peaks in these plots then we find
two common failure modes. The first is made up of interactions that lie completely or significantly
in the unresponsive regions of the event image. Recall that roughly 10% of the MicroBooNE
LArTPC wires are unresponsive, corresponding to vertical lines of unresponsive regions in the
event images. True interactions within these regions are in the simulation, but have little in the way
of signal in the event image for the network to detect. An example of a true interaction simulated in
an unresponsive region of the image is shown in figure 11. It is unreasonable to expect the network
to be able to label such interactions.

The second failure mode that contributes to the zero efficiency peak are true interactions that
tend to be smaller in spatial extent compared to a typical simulated interaction, with less charge
across fewer pixels in the event image. An example of this is shown in figure 12. These interactions
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Figure 9: The interaction-level efficiency of the dense and sparse versions of Mask-RCNN as
measured on the validation set.

Figure 10: The interaction-level charge efficiency of the dense and sparse versions of Mask-RCNN
as measured on the validation set.

are reasonable to expect the network to find as there is nothing to obscure the interaction. However,
as they tend to be smaller, they are less likely to overlap with a neutrino interaction in the image or
confuse the network, and therefore are a less important part of the background.
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Figure 11: A zero-efficiency true interaction almost entirely in a region of unresponsive wires. The
white box shows a zoom-in of the area of interest, and within it, the colored box should contain
true neutrino interaction. However, because this interaction falls in an unresponsive region of the
detector, no deposited charge is seen inside the colored box.

Figure 12: Another failure mode for the zero-efficiency peak. Here the cosmic interaction is
relatively small in size compared to others in the event image. The colored box is the true
interaction, and the white box shows a zoom-in of the area of interest.

4.2 Interaction coverage

Now that we have explored a pixel-wise efficiency, we next examine interaction coverage
within a given event. We define a true interaction as being "covered" if its pixel-level efficiency
as defined in section 4.1 is greater than 80%. This means the network has to cluster the majority
of the interaction, while still leaving some room for error. Figure 13 compares the fraction of
true interactions that are covered in a given event for both the dense and sparse implementations
of Mask-RCNN. The dense network has a slight edge over the sparse version, but both networks
consistently cover the majority of true interactions within a given event.

It is also useful to examine the performance of Mask-RCNN as a function of the number of
true interactions in an event. This investigates whether the performance of the network falls off for
‘busier’ events with additional particle interactions cluttering up the image. To examine this, we
look at the number of covered true interactions as a function of the number of true interactions in
the events. Figure 14 shows this measurement for both the dense and sparse networks.

While the ideal network would cover all of the interactions, we see that both versions of the
network produce a distribution slightly below the target line 𝑦 = 𝑥. The fact that these distributions
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Figure 13: The fraction of true interactions in events that have greater than 80% efficiency as
measured on the validation set.

(a) Dense Mask-RCNN (b) Sparse Mask-RCNN

Figure 14: The number of covered interactions is plotted against the number of true interactions.
A dashed line along 𝑦 = 𝑥 represents the absolute perfect performance, with all true interactions
being covered in each event. Out of an average of 20.8 true interactions per event, the dense network
covers an average of 18.2, while the sparse network covers 17.2.

are linear demonstrates that the network performance does not diminish as the number of true
interactions in a given event increases.
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4.3 Network comparisons discussion

In comparing the dense and sparse versions across these various metrics, we find that the
dense implementation performs better than the current version of sMask-RCNN. Viewing the two
efficiencies of the networks, the peak at 1.0 for the dense Mask-RCNN is larger, and narrower
than the peak in the sMask-RCNN distribution. Similarly the peak at zero-efficiency, representing
interactions that are missed, is smaller. The dense Mask-RCNN surpasses sMask-RCNN in average
efficiency as well with 89.1% compared to the slightly lower 85.9%. The dense network covers
87.1% of interactions compared to the sparse’s 82.7%, where "covered" is defined in section 4.2.

It is important to note that both versions of the network completely miss true interactions with
the same frequency. This is shown by observing the peak at 0 efficiency in figure 9. There we
see that each network misses about 4% of interactions. This means that while the metrics point to
worse performance for the sparse network, it still finds the interactions themselves, and still covers
them to largely the same extent. The difference is that it builds less complete masks of the true
interactions compared to the dense network, though it still finds part of them.

We note that it is difficult to track the effects of these differences on the training and learning
of the networks. As such, we cannot distinguish whether the difference in performance of the two
networks is due to the change from dense ResNet to sparse ResNet, the training on crops versus
entire event images, or a combination of both. However, we emphasize that sMask-RCNN’s ability
to cluster interactions is sufficient for us to compare its cosmic tagging ability to current methods
deployed in MicroBooNE, particularly given the speedup acquired by moving to submanifold
convolutions. Further, while the dense network’s performance does slightly outperform the sparse
network, MicroBooNE’s data processing prioritizes speed and the use of CPUs in order to scale to
the size of its datasets. Therefore, deploying the dense network is not a viable option. This means
that regardless of the performance of the dense version of the network, it is prohibitively slow to
run at the scale MicroBooNE’s dataset requires. Therefore for the analysis performed in section 5
we will only use sMask-RCNN.

5 Finding electron neutrinos with sMask-RCNN

In this section, we examine using sMask-RCNN in MicroBooNE to reduce the ratio of cosmic
ray background events to electron neutrino events. There are two approaches that we explore, one
designed to select neutrino interactions explicitly, and another designed to remove cosmic ray muon
interactions. The first, an "identification by positive" approach, would use the neutrino-class output
from sMask-RCNN and apply some threshold to select neutrino interactions. This approach is
discussed in section 5.1.

The other approach, "identification by negative", applies an event veto, which targets cosmic-
only events to flag them for removal. Then the remaining events are those with a neutrino, as well
as cosmic ray muons interacting in the detector during the beam window. Finally, we note that
while this article specifically targets electron neutrinos, the tools discussed can be adjusted to target
muon neutrinos in the same way.

Recall that the cosmic ray background in MicroBooNE is very large, and therefore must be
dealt with early on in any chain of reconstruction tools. To demonstrate the scale of this problem,
we define three different samples:

– 17 –



Table 3: The expected ratio of the two different neutrino sample events to off-beam background
events.

Type of event Ratio to off-beam sample events

General electron neutrino 1.52 × 10−2

Low energy electron neutrino 3.85 × 10−4

1. General Electron Neutrino Sample: Events containing a simulated electron neutrino inter-
action combined with cosmic ray muon background data.

2. Low Energy Electron Neutrino Sample: The same as sample 1 but only for electron
neutrinos with energy less than 400 MeV.

3. Off-Beam Sample: Data taken by the detector in anti-coincidence with the neutrino beam.
This means there is no beam neutrino interaction present. This sample represents the cosmic
ray-only background events.

The expected ratios of samples 1 and 2 to sample 3 are depicted in table 3. These ratios are
instructive, as they indicate the initial signal to cosmic ray background event ratio for analyses that
seek to remove cosmic ray-only events. These ratios only depict events. Each event contains O(20)
cosmic ray muon interactions, and either zero or one neutrino interaction. So the true ratio of
cosmic ray muon interactions to electron neutrino interactions is roughly 20 times higher than the
ratio of event types. As the purpose of this article is to develop techniques to reduce the significant
cosmic ray muon background, we ignore other backgrounds to an electron neutrino signal, such as
muon neutrino events.

While the analysis in section 5.1 uses the validation data used thus far in this article, section 5.2
uses the general and low energy electron neutrino samples and cosmic ray-only sample described
above. The validation data contains only simulated interactions, including CORSIKA-simulated
cosmic ray muons. However, the three new datasets contain cosmic ray muons from data, rather
than simulation. In previous sections, where we need information about the individual cosmic ray
muon interactions for the metrics, it is necessary to use simulated cosmic ray muons. However,
this is not the case for the event veto described in section 5.2. Therefore it is better to use cosmic
ray interactions from data, as there is no reliance on the simulation’s ability to properly emulate a
cosmic ray muon.

5.1 Electron neutrino identification

We examine the electron neutrino "identification by positive" approach by looking at the
efficiency and purity as defined in section 4.1, broken down by the two class categories: cosmic
ray muons and electron neutrinos. Figure 15 shows the efficiency metric (defined in eq. 4.1)
for simulated electron neutrino interactions, separated by class. The average efficiency is 76.8%
for electron neutrinos, and 86.1% for cosmic ray muons. If the network proposes no neutrino
interactions, then the efficiency of that event’s neutrino interaction is 0. Each class has a peak at
0, but the cosmics also have a peak at 100%, whereas the neutrino interactions peak at just over
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90%. In the context of neutrino interactions, the interaction has some number of prongs, where
a ‘prong’ refers to a shower, or track coming out of the neutrino interaction vertex. It is possible
that, for neutrino interactions with at least two prongs, the network fails to mark a shorter prong, or
partially masks the track-like portion of an electromagnetic shower with both track- and shower-like
topology. Particularly long tracks are also difficult to capture completely due to rescaling within
sMask-RCNN, which may lead to the ends of the track getting truncated.

Figure 15: The efficiency of sMask-RCNN broken down by class. The average efficiency is 76.8%
for electron neutrinos, and 86.1% for cosmic ray muons. Statistical uncertainty bars are shown.

Figure 16 is also separated by class, but shows the charge efficiency. The average charge
efficiency for electron neutrinos is 77.9%, and 86.8% for cosmic ray muons. Both overall and for
each class individually the network has a better charge efficiency than standard efficiency, indicating
that the interaction masking prioritizes clustering pixels corresponding to larger charge deposition
regardless of class.

We see from these two efficiency breakdowns that the network’s ability to find an interaction is
not strongly tied to the type of interaction, as the peak at zero efficiency is the same for each class.
However the masks for cosmic interactions are more complete than those for neutrino interactions.

The purity of sMask-RCNN predicted interactions (defined in eq. 4.2) is broken down by class in
figure 17. The average purity is 64.9% for electron neutrinos and 84.7% for cosmic ray muons. Here
we see an issue with using this version of sMask-RCNN in an identification by positive approach.
The peak at zero purity for the neutrino class indicates that, in events that contain simulated neutrino
interactions, roughly 22% of predicted interactions labeled neutrinos are actually placed on cosmic
ray muons. This implies selecting only predicted neutrino interactions yields a ratio of electron
neutrinos to cosmic ray muons of 78:22. However, this only applies if the identification were
restricted to events that definitely contain a neutrino. When factoring in the significant number of
events in the data that contain no neutrino interaction, as indicated by table 3, the number of falsely
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Figure 16: The charge efficiency of sMask-RCNN broken down by class. The average charge
efficiency for electron neutrinos is 77.9%, and 86.8% for cosmic ray muons. Statistical uncertainty
bars are shown.

identified neutrinos grows much worse.
We can imagine ways to improve this identification by positive approach, from increasing the

required confidence score the classifier in sMask-RCNN has in a predicted interaction, to retraining
the network with increased penalties for falsely predicting the neutrino class. However, these were
set aside in favor of exploring the identification by negative approach in the subsequent section.

5.2 Cosmic-only event veto

The topology of a muon interaction is much more consistent than that of electron neutrino
interactions, due to an electron neutrino interaction’s variety of final states. A muon creates a track
in the detector, and then will either pass through the detector, capture, or create a Michel electron
shower at the end, whereas an electron neutrino can interact in argon in many different ways,
creating a variety of different daughter particle scenarios. This is consistent with the improved
performance of the network labeling cosmic ray muons compared to electron neutrinos, evident in
section 5.1, where the network must learn to recognize the many different patterns and topologies
that make up the electron neutrino class label. Therefore, relying on sMask-RCNN’s cosmic ray
muon clustering rather than its neutrino clustering may be preferable. As such, the identification
by negative approach, which only relies on an understanding of the cosmic ray background, may be
more effective.

To study this, we implement an event veto. The goal of this veto is to use sMask-RCNN outputs
to separate entire events into those that contain only cosmic ray background, and those that contain
an electron neutrino interaction among cosmic rays in the beam window. This task is tested by
using this event veto to separate the cosmic ray-only data sample from the general and low energy
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Figure 17: The purity of sMask-RCNN broken down by class. Predicted interactions with zero
purity are misclassified, for example a true neutrino labeled as a cosmic ray. The average purity
is 64.9% for electron neutrinos and 84.7% for cosmic ray muons. Statistical uncertainty bars are
shown.

electron neutrino samples. If this veto were perfect, then the only cosmic ray muons left would
be the O(20) interactions per event containing a neutrino interaction. These remaining cosmic ray
muons can then be dealt with further down the reconstruction chain.

In order to provide a comparison to current methods used in MicroBooNE, we analyze this
event veto using several different versions of cosmic ray tagging. For the first tagger, we include all
cosmic ray interaction pixels predicted by sMask-RCNN with a confidence score greater than 0.20.
Reducing the confidence score requirement relative to earlier sections of this article allows more
cosmic removal at the expense of including multiple overlapping cosmic interaction predictions.
Decreasing the confidence score requirement does not significantly impact the electron neutrino
efficiency. For individual interaction labeling, shown earlier in the article, this would be problematic.
However, for the event veto described below, we are concerned with removing entire events.

For the next tagger, we add the pixels tagged as cosmic ray muons by MicroBooNE’s Wire-Cell
Q-L described in section 2.2. This adds information from the PMT light collection system and the
two LArTPC induction planes, none of which is used by sMask-RCNN. Therefore by comparing
sMask-RCNN alone to this combined tagger, we can see the additional value provided by the light
information, as well as demonstrate the effectiveness of sMask-RCNN operating in a regime with
less information. Recall WC Q-L matching is a piece of the full WC cosmic tagger. We repeat
the following analysis with the full WC cosmic tagger at the end of this section, exploring two
additional tagger configurations.

A perfect tagger would tag every pixel containing deposited charge associated with cosmic ray
muons. All that would remain in the event image would be pixels holding charge corresponding
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(a) Cosmic tagging by sMask-RCNN alone (b) With WC Q-L matching

Figure 18: The size of the largest cluster found by DBScan after cosmic tagging.

to a neutrino interaction, if present. However, with the expectation of imperfect performance, we
re-cluster the untagged pixels via a "density-based spatial clustering of applications with noise"
(DBScan) algorithm [26]. This means that first we perform our cosmic ray muon tagging, remove
those pixels from the image, then run DBScan on the resulting image.

DBScan will output clusters of remaining pixels for each event. These pertain to portions
of cosmic ray muon interactions not fully tagged, and the neutrino interaction if present. In the
case where both neutrino and cosmic ray muon clusters are present, one large cluster will usually
represent the neutrino interaction and several smaller clusters represent the untagged parts of muons.
This means the size of the largest cluster is a metric that we can use to isolate events containing
neutrino interactions. Figure 18 shows the size of the largest of these clusters for sMask-RCNN
with and without the WC Q-L matching algorithm. Each figure shows the distribution of the three
key samples described above.

Examining the distributions of these three samples, we see a difference between the off-beam
sample, which represents the cosmic ray-only event background, and the two electron neutrino
samples. Notably, the off-beam sample generally has a smaller number of pixels in the largest
cluster found by DBScan. In figure 18a, we see that the sMask-RCNN tagger produces a distinctly
shaped distribution for each sample. The off-beam sample has a peak closest to zero, the low energy
sample is shifted slightly to the right, and the general electron neutrino sample is shifted further.
This reinforces the expectation, as the neutrino pixels remain in the image untagged, allowing for
DBScan to find larger clusters. Examining sMask-RCNN with the WC Q-L matching algorithm
in figure 18b, we see a shift to the left in all three distributions, placing a strong peak at zero,
indicating that the combined tagger frequently labels more pixels as belonging to cosmic ray muon
interactions than the sMask-RCNN-based tagger alone. This is particularly notable in the case of
the off-beam sample, where the peak at zero accounts for almost 70% of the sample, compared to
about 16% of the low energy sample, and about 6% of the general electron neutrino sample.

Using this metric for the size of the largest remaining cluster, we can create a receiver operating
characteristic (ROC) curve to demonstrate the efficiency and rejection power of the different cosmic
tagging methods when applied as an event veto. A ROC curve is a measure of signal retention
or signal efficiency on one axis, and background rejection on the other. A curve is created by
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(a) General electron neutrino sample (b) Low energy electron neutrino sample

Figure 19: ROC curves for the sMask-RCNN with and without WC Q-L matching based on a
requirement on largest cluster size. Curves are shown for the two electron neutrino samples against
the off-beam background.

incrementing some requirement, which slowly decreases retention and increases rejection. Ideally
the curve has points in the upper right region of the plot such that signal retention and background
rejection are both high.

We reiterate that we want to explore this quantity — largest remaining cluster — as an event-
level discriminant. As such, it will be the value we increment to create ROC curves. Specifically,
these curves are made by applying a requirement to filter events that do not contain a DBScan cluster
of size greater than 𝑋 , where 𝑋 is incremented from no requirement, to 0, and then incremented by
10 pixels thereafter. The resulting signal retention and background rejection rates give points for the
curves. In figure 19, we show the ROC curves for the signal retentions of the general and low energy
electron neutrino samples versus the rejection of the off-beam cosmic ray muon background sample.
Curves are made for the two different tagging methods. We observe that the combined version of
a cosmic tagger using both sMask-RCNN and WC Q-L matching yields a better combination of
signal efficiency and background rejection.

For the low energy sample each tagging method performs worse compared to the general sample.
However, this is not surprising as the lower energy electron neutrino interactions correspond to less
charge deposited in the event image and fewer neutrino pixels in the event. This means that the
remaining DBScan clusters related to the lower energy neutrino interactions will be smaller, and
harder to isolate from the untagged off-beam cosmic ray muon sample’s distribution.

Examining the ROC curve for sMask-RCNN with WC Q-L matching in figure 19a, we are
able to achieve a general electron neutrino signal efficiency of 90.2% while rejecting 94.9% of the
off-beam cosmic background if we remove events that do not have a cluster of at least 130 pixels
after the taggers are run. For the low energy electron neutrino sample in figure 19b we can achieve
a signal efficiency of 60.5% for the same requirement, though a reduced requirement on remaining
cluster size could be applied to increase the efficiency at the cost of rejection power, as indicated
by the combined curve.

We also examine the effect of adding sMask-RCNN’s cosmic finding to the state-of-the-art
complete WC cosmic tagger. This means that we take the event vetoes and cosmic tagging of the
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(a) Cosmic tagging by the WC cosmic tagger alone (b) With sMask-RCNN

Figure 20: The size of the largest cluster found by DBScan after cosmic tagging. Note the
logarithmic scale.

WC cosmic tagger, and add the cosmic tagging of sMask-RCNN to get a combined tagger. In
figure 20 we show the distributions of the largest cluster found by DBScan after running the WC
cosmic tagger with and without the cosmic ray muons found by sMask-RCNN. For the events that
are rejected by one of the WC cosmic tagger event vetos, the largest DBScan cluster is defined to
be zero.

The distributions of cluster size before and after adding sMask-RCNN to the WC cosmic tagger
show a shift to the left in the shape of the off-beam sample, indicating the added value of sMask-
RCNN in cosmic tagging. Without sMask-RCNN, there appears to be a slight peak beyond zero
that gets shifted to zero after sMask-RCNN is added. We observe minimal shift in the two electron
neutrino samples and each distribution still has a clear second peak separate from zero.

ROC curves for the WC cosmic tagger with and without sMask-RCNN are shown in figure 21.
However, as the WC cosmic taggers introduces several of its own event vetos, the point referring to
the loosest cut, with the most signal passed, does not allow all events through the veto. Instead it
starts with the signal efficiency and background rejection of the WC cosmic tagger, and adjusts as
we increase the strength of the DBScan cluster size requirement. We reiterate that the difference
between figures 21 and 19 is the additional event vetos added to WC Q-L matching to create the
WC cosmic tagger.

Examining these ROC curves we see that including sMask-RCNN on top of the WC cosmic
tagger does yield improvement to the background rejection at equivalent signal efficiencies. In the
general electron neutrino sample, for a signal efficiency of 80.1% the WC cosmic tagger rejects
99.0% of the background, whereas adding sMask-RCNN rejects 99.7% of the background at the
same signal efficiency. This represents a reduction of the remaining background by 70%. For the
low energy neutrino sample, a similar effect is seen, albeit at lower signal efficiencies.

In order to evaluate the difference between these two rejection strengths, it is important to recall
the imbalance between off-beam background events and electron neutrino signal events described
in table 3. The 99.0% rejection provided by the WC cosmic tagger corresponds to a general
electron neutrino signal to off-beam background ratio of 1.26, a vast improvement over the starting
ratio in the table. However, the addition of sMask-RCNN increases this signal to background
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(a) General electron neutrino sample (b) Low energy electron neutrino sample

Figure 21: ROC curves for the WC cosmic tagger with and without sMask-RCNN based on
a requirement on largest cluster size. Curves are shown for the two electron neutrino samples
against the off-beam background. Note the suppressed 𝑦-axis shown here demonstrates significant
improvement in background removal compared to figure 19.

ratio to 4.14 by improving the rejection power to 99.7%. For this same selection, the low energy
signal to background ratio is 0.015 with the WC cosmic tagger, and 0.56 with after the addition of
sMask-RCNN.

6 Conclusions

This article demonstrates a novel approach to cosmic ray muon tagging using sMask-RCNN.
We demonstrate the ability of this network to locate, identify, and cluster particle interactions in the
MicroBooNE LArTPC. We analyze the ability to cluster both the topologically simple cosmic ray
muon interactions, as well as highly varied electron neutrino interactions.

We modify the original Mask-RCNN framework by substituting sparse submanifold convolu-
tions in the ResNet portion of the network to create sMask-RCNN. Due to the low pixel occupancy
of MicroBooNE event image data this leads to a 20× speedup in ResNet processing time on a CPU,
as well as decreased runtime memory usage. This improvement is critical in allowing sMask-RCNN
to be deployed as a reconstruction tool on CPU farms to scale to high volume data samples that
particle physics experiments typically employ.

This analysis also includes several versions of an event veto. The strongest of these demonstrates
that adding sMask-RCNN to the state-of-the-art WC cosmic tagger which is currently used in
MicroBooNE reduces the cosmic ray-only event background by a further 70% and increases the
signal to background ratio of electron neutrino events to cosmic ray-only events by more than a factor
of three. This means that application of this technique to future measurements in MicroBooNE will
result in improvements over current MicroBooNE reconstruction.
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