Observation of the B_c^+ meson in PbPb and pp collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV

The CMS Collaboration

Abstract

The B_c^+ meson is observed for the first time in heavy ion collisions. Data from the CMS detector are used to measure the production of the B_c^+ meson in lead-lead (PbPb) and proton-proton (pp) collisions at a center-of-mass energy per nucleon pair of $\sqrt{s_{_{NN}}} = 5.02$ TeV, via the $B_c^+ \rightarrow (J/\psi \pi^+) \pi$ decay. The B_c^+ nuclear modification factor, derived from the PbPb-to-pp ratio of production cross sections, is measured in two bins of the trimuon transverse momentum and of the PbPb collision centrality. The B_c^+ meson is shown to be less suppressed than other quarkonia and most of the open heavy-flavor mesons, suggesting that effects of the hot and dense nuclear matter created in heavy ion collisions contribute to its production. This first observation of the B_c^+ meson in heavy ion collisions sets forth a new promising probe of the interplay of suppression and enhancement mechanisms in the production of heavy-flavor mesons in the quark-gluon plasma.

Submitted to Physical Review Letters
The very high temperatures and densities reached in high-energy heavy ion collisions allow quarks and gluons to form a deconfined state of matter, often referred to as the quark-gluon plasma (QGP). Among the various signatures of the QGP formation, the suppression of heavy quarkonia (e.g. J/ψ or U mesons) due to the screening of the heavy-quark potential at high temperature has been intensely studied since its proposal by Matsui and Satz [1]. A strong J/ψ suppression was indeed observed in heavy ion collisions at the Super Proton Synchrotron [2] and at the Relativistic Heavy Ion Collider [3], qualitatively consistent with color screening effects. However, a smaller suppression was reported in lead-lead (PbPb) collisions at the Large Hadron Collider (LHC) [4], despite the higher temperatures reached. This observation is interpreted as arising from the formation of bound states of charm quarks originating from different hard scatterings, a mechanism referred to as recombination [5, 6]. By contrast, the bottomonium LHC data show no evidence for recombination, consistent with the relatively small b-quark production cross section. In addition, the suppression of $U(nS)$ states is sequential (more suppression for smaller binding energies) [7], as expected from color screening.

Quantifying the effects of the QGP on heavy-quark bound states thus remains a key challenge. The B^+_{c} meson is composed of a charm and an anti-beauty quark, and is intermediate in size and binding energy between the J/ψ and $U(1S)$ mesons [8]. Therefore, it constitutes an important probe of the heavy-quark interactions, and bridges the gap between charmonia and bottomonia.

Recombination processes can also affect the rate of B^+_{c} production. While the production rate of J/ψ mesons from heavy-quark recombination should scale quadratically with the number of charm quarks inside the QGP volume, this scaling will only be linear for B^+_{c} mesons. However, as their production cross section in proton-proton (pp) scatterings is small, owing to the dominant production mechanism requiring both b and c pairs, the enhancement of B^+_{c} production in heavy ion collisions may greatly exceed that of the J/ψ meson [8, 9]. These recombination effects would manifest more strongly at low transverse momentum (p_T) [8].

For $p_T (m(B^+_c))$, B^+_{c} mesons are produced predominantly via heavy-quark fragmentation, and are therefore sensitive to the energy loss of a massive color triplet charge in the QGP, as observed for other B mesons [10-11]. J/ψ mesons from B decays [12], and D mesons [13-14]. On the contrary, prompt J/ψ production for $p_T (m(J/\psi))$ [12-15] probes the energy loss of a massive color octet state [16]. Therefore, comparing the B^+_{c} yield with that of other heavy flavor mesons at large p_T can probe both the mass dependence of energy loss (from a possible dead-cone effect [17]) and its color charge dependence.

The B^+_{c} meson was first observed in proton-antiproton collisions at the Tevatron in the B^+_{c} J/ψ ℓ^+ $\ell^- \nu$ decay mode [18]. Its ground and excited states were then studied in pp collisions at the LHC [19-23]. In this Letter, the first observation of B^+_{c} mesons produced in heavy ion collisions is reported, and their production yields are compared to those in pp collisions. The data were collected with the CMS detector in 2017 for pp and in 2018 for PbPb collisions at the same center-of-mass energy per nucleon pair, $\sqrt{s_{NN}} = 5.02$ TeV, corresponding to integrated luminosities of 302 pb$^{-1}$ and 1.61 nb$^{-1}$, respectively. The signal is reconstructed from the three muons in the B^+_{c} (J/ψ ℓ^+ $\ell^- \nu$) decay mode. While this mode features a neutrino that prevents a full reconstruction of the decay, it has a much larger branching fraction than decay channels that can be completely reconstructed [21]. In this Letter, charge-conjugate states are implied, and the quoted cross sections correspond to the sum of B^+_{c} and B^-_{c} mesons.

The results are presented in two kinematic regions that are defined in terms of the vector sum of the three muon momenta, and whose limits are chosen based on the single-muon acceptance of the CMS apparatus: a low-p_T bin, $6 < p_T < 11$ GeV with rapidity $1.3 < y < 2.3$, ...
and a high-\(p_T\) bin, \(11 < p_T < 35\) GeV with \(y < 2.3\). In simulations, the trimuon \(p_T\) is, on average, about 15\% smaller than the \(B^+_c\) \(p_T\). In PbPb collisions, the analysis is performed in the 0–90\% centrality range, where centrality refers to the fraction of the inelastic nucleus-nucleus cross section, with lower values denoting a larger overlap of the nuclei. The results integrated over the two kinematic regions are also presented, separated in the centrality ranges 0–20 and 20–90\%. To reduce potential biases, the analysis was performed in a “blind” way: the algorithms and selection procedures were finalized and formally approved using a quarter of the PbPb data, before examining the entire sample. Tabulated results are provided in a HEPData record [24].

The central feature of the CMS apparatus [25] is a superconducting solenoid providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Hadron forward calorimeters extend the pseudorapidity coverage to \(3 < \eta < 5\), and the sum of the transverse energy deposited in them is used to estimate the collision centrality. Muons are detected in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid and covering the \(\eta < 2.4\) range. Muons with \(p_T > 1.2\) and 3.3 GeV are reconstructed in the endcap and barrel regions, respectively [26]. For \(p_T = 1.2\) GeV muons in the endcaps, the transverse and longitudinal impact parameter resolutions are 150 and 400 \(\mu\)m, respectively, which improve to 20 and 40 \(\mu\)m for \(p_T = 10\) GeV muons in the barrel [27].

Events of interest are selected using a two-tiered trigger system [28]. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors [29]. The high-level trigger consists of a farm of processors running a fast version of the full event reconstruction software. The events used in this analysis were selected by triggers designed to collect all events containing a \(J/\psi\) meson, hence requiring two muons, without \(p_T\) requirements. Loose criteria on the single-muon quality and the dimuon mass and opening angle are also applied in the PbPb high-level trigger, as in Refs. [30, 31].

Monte Carlo (MC) simulations are used for various signal and background studies, and for estimating the acceptance and efficiency of the reconstruction, triggering, and selection. The \(B^+_c\) mesons are generated with BCVEGPY.2.2 [32], while their decays are handled with EVTGEN1.3 [33]. The underlying event is generated with PYTHIA8.212 [34], tune CP5 [35]. PYTHIA8 is also used to generate prompt and nonprompt (from B meson decays) \(J/\psi\) background samples. To simulate PbPb collisions, the generated events are embedded into simulated PbPb collisions created using HYDJET1.8 [36]. All samples are passed to GEANT4 [37] to simulate the detector response, and then reconstructed with the same software as the collision data.

The \(B^+_c\) \((J/\psi + \cdots) +\) decay features three muons originating from the same displaced vertex, an opposite-sign muon pair consistent with the \(J/\psi\) mass, and a trimuon invariant mass \(m\) between \(m_{J/\psi} + m_{B^+_c} < 3.2\) GeV and \(m_{B^+_c} = 6.3\) GeV. Three main background sources can mimic this topology. Fake \(J/\psi\) events arise when neither of the opposite-sign muon pairs originate from a \(J/\psi\) decay. It is estimated by summing the trimuon mass distributions obtained in the lower and higher dimuon mass sidebands. The second category (\(B\) decays) comes from \(b\)-hadrons (excluding \(B^+_c\)) decaying to a true \(J/\psi\) meson associated with a muon (usually a misidentified hadron) from the same \(b\)-hadron decay. It is estimated via simulation, where the \(p_T\) spectrum is corrected using nonprompt \(J/\psi\) production measurements [12]. Its normalization is unconstrained to cover a possible mismodeling of the muon misidentification rate. The third contribution (\(rotated J/\psi\)) combines a true \(J/\psi\) meson with a muon candidate (usually an uncorrelated misidentified hadron) from another decay. It is estimated in data by
rotating the momentum and decay vertex of J/ψ candidates around the collision vertex before associating them with third muon candidates. Several azimuthal rotation angles are used, with or without inverting rapidity. In PbPb collisions, the associated muons are mostly uncorrelated with the J/ψ meson, so the distributions from various rotation angles are identical (within statistical uncertainties) and averaged, with a data-derived normalization (fixed in the fit). In pp collisions, significant residual J/ψ correlations lead to different distributions for different rotation angles, which is accounted for by considering various mixes of these distributions.

The offline selection includes the same event-level and single-muon identification criteria as in Refs. [30, 31]. Loose kinematic acceptance criteria are applied to the muon candidates, matching the efficient region for the two triggering muons, and even looser for the third one. At least one of the two opposite-sign dimuon combinations must have an invariant mass in the J/ψ peak region, or in the sidebands used for background estimation. The sideband and peak regions are both asymmetric to account for radiative tails, and are separated by small gaps. The total sideband width equals that of the peak region, from 180 to 260 MeV depending on the muon pseudorapidity (which affects the mass resolution). For the trimuons having two opposite-sign dimuons in the studied mass regions (5-6% of the overall sample), the two corresponding trimuon candidates are kept, weighted by the probability of the chosen dimuon to be a true J/ψ meson. This probability is extracted from the dimuon mass distribution from events with only one J/ψ candidate in the signal or sideband regions.

Requirements are also set on the probability of the trimuon vertex fit, the significance of its displacement from the collision vertex, the angle between the trimuon momentum and the segment joining the collision and trimuon vertices, the invariant mass corrected for the momentum of the neutrino transverse to the B_{s}^{+} momentum direction, and the sum of the angular separations $\Delta R = \Delta \eta^2 + \Delta \phi^2$ between the three muon pairs.

After the selection, the simulated signal and the three background samples are used to train a boosted decision tree (BDT) using the TMVA package [38]. This combines the discriminating power of eight variables: the five discussed in the previous paragraph, the imbalance between the p_T of the J/ψ and of the third muon, the ratio of the ΔR of the J/ψ muons to the sum of the ΔR values from the other two dimuon combinations, and the significance of the displacement from the collision vertex for the non-J/ψ muon.

Candidates with very low values of the resulting discriminant BDT variable (hence very high background probability) are rejected, losing only 0.1% in signal efficiency. For each analysis bin, three intervals of increasing BDT values are set to contain about 25, 40, and 35% of the expected signal, with increasing purity. These boundaries are chosen so that the first and last intervals are dominated by background and signal, respectively. Using ROOFIT [39], a binned likelihood fit of the pp or PbPb trimuon mass distributions is performed with templates from the signal and the three backgrounds, simultaneously in the three BDT intervals, and in either two kinematic bins, two centrality bins, or the whole kinematic range. The BDT distribution of the sum of the fitted templates is checked against that of data, and, in pp collisions, corrected before re-running the template fit.

The results of the fits in the three BDT intervals and integrated over the two kinematic regions are shown for pp and PbPb collisions in Fig. 1. In each BDT bin, the signal purity and the measured yield, $N(B_{c})$, are given. The wrong-sign distributions, containing three same-sign muons in data, are superimposed to illustrate that the purely combinatorial background is easily rejected. The absolute normalizations of the fake J/ψ sample, and of the rotated J/ψ sample in PbPb collisions, are provided by the data. In PbPb collisions, the rotated and fake J/ψ samples dominate the background. In pp collisions, the region above the B_{c}^{+} mass strongly
mass templates, such as controlling the statistical uncertainties with the Barlow-Beeston procedure. The latter are implemented via nuisance parameters allowing variations of the trimuon mass templates, such as controlling their statistical uncertainties with the Barlow-Beeston procedure.

Figure 1: Template fit of the trimuon mass distributions in the three BDT bins, for the pp (top row) and PbPb (bottom row) data samples integrated over the two studied kinematic regions. The lower panels show the pull between the data and the fitted distributions.

The signal yields extracted from the fit are corrected for the acceptance and efficiency of the reconstruction, triggering, and selection. These are calculated in each analysis bin as the fraction of simulated signal trimuons that pass the entire analysis chain. The simulated efficiencies of single muon reconstruction, identification and triggering are corrected by a tag-and-probe method using the J/ψ resonance, similarly to Refs. [12, 30]. The acceptance and efficiency are evaluated iteratively by first performing the $p_T^{\mu\mu\mu}$-differential analysis using the original simulation. The resulting corrected yields are fitted to correct the $p_T^{\mu\mu\mu}$ spectrum of the simulation before a second run of the analysis. This $p_T^{\mu\mu\mu}$ spectrum is then corrected again based on the second-step results, notably improving upon the initial acceptance and efficiency estimation.

The corrected yields are divided by the pp integrated luminosity [40] or by its PbPb equivalent, the number of minimum bias PbPb hadronic collisions N_{MB} times the nuclear overlap function T_{PbPb} from Ref. [41]. The PbPb-to-pp ratio of these pp-equivalent normalized yields then provides the nuclear modification factor, R_{AA}. In case of no modification by the medium, R_{AA} is expected to be equal to unity.

Uncertainties arise from different sources: statistical, background (shapes and normalizations), choice of the fit method, muon efficiency, B^+_ℓ kinematic (acceptance and efficiency), contamination from other B^+_ℓ decays, and overall normalization. The fit uncertainties, ranging from 5 to 9% in pp and 17 to 31% in PbPb collisions, include the purely statistical and the background uncertainties.
procedure [42], varying the fake J/ψ background between the lower and higher dimuon sideband, or varying the rotation angles in the rotated J/ψ sample. Variations of the fit method are also considered, such as changing the m or BDT bin size, neglecting the low-BDT bin, using a BDT variable whose m dependence is subtracted, or regularizing the low-statistics templates instead of using the Barlow-Beeston procedure. The resulting uncertainty remains below 7% (12%) in pp (PbPb) collisions. The muon efficiency corrections assessed by the tag-and-probe method result in a subdominant uncertainty of 2 to 5%.

Since the B⁺ kinematic distributions are not precisely known, acceptance and efficiency corrections are recalculated 1500 times with pT spectra fitted on variations of the measured pT -differential yields within the above-mentioned uncertainties. For the pT -integrated results, the root-mean-square (RMS) of the varied acceptance and efficiency corrections, of order 7 and 24% for pp and PbPb collisions, respectively, is used as the systematic uncertainty related to the B⁺ kinematics. For the pT dependence, these variations are correlated with the other uncertainty sources, so the combined uncertainty is assessed as the RMS of the varied corrected yields. The correlation between the variations of the spectrum and of the acceptance and efficiency is small or negative for the PbPb high-pT bin and for both pp pT bins, so that the uncertainties with or without this systematic effect are similar. This correlation is large and positive for the PbPb low-pT bin, inducing an additional 12 to 31% uncertainty. The uncertainty in the PbPb over pp ratio is the RMS of the ratios of the relevant varied quantities.

The contamination from other B± decays, such as B± J/ψ (cBARBAR) or B± (cBARBAR) J/ψ (cBARBAR), where X denotes any decay product(s), is estimated to be below 4.5%, and to have largely cancelling pp and PbPb contributions. The overall normalization uncertainty arising from the luminosity and centrality determination ranges from 1.9 to 3.8%. The leading uncertainties in the pT -differential and pT -integrated measurements are from the fit and the B± kinematics, respectively.

The significance of the B± signal in PbPb collisions, calculated from the fit likelihood ratio and including the fit method uncertainty, is well above 5 standard deviations. The left panel of Fig. 2 shows the measured B± meson pT -differential cross sections in pp and (pp-equivalent) PbPb collisions. The two bins of the trimuon pT correspond to different rapidity ranges. The markers of the pT bins are placed according to the Lafferty–Wyatt prescription [43]. The bin-to-bin correlation factor γ2 is also displayed. The filled and empty rectangles show the fit and total uncertainties, respectively. The ratio between the low-pT and high-pT regions equals 18.2±1.3 in pp data and 24.1 in the BCVEGPY2.2 simulation, suggesting that the latter overestimates the spectrum steepness.

The other panels of Fig. 2 show the B± nuclear modification factor, i.e., the ratio of the (pp-equivalent) PbPb to pp cross sections, both as a function of pT (middle) and of centrality (right). The markers of the pT bins are placed at the average of their values for pp and PbPb collisions, while the centrality bin markers are placed at the minimum bias average number of participants Npart. The filled and empty rectangles, respectively, show the bin-to-bin-uncorrelated and total uncertainties, such that the uncertainty in the difference of the two bins is the quadratic sum of uncorrelated uncertainties.

In the high-pT region, the B± shows a moderate suppression, while the low-pT modification factor stands above unity and above the high-pT region, respectively, by 1.2 and 1.8 standard deviations, consistent with a large enhancement of the integrated production and a softening of the pT spectrum in the QGP. No significant variation is observed as a function of centrality. As shown in Appendix A except for the B± meson [11], other heavy mesons in these pT ranges typically show more suppression than our measurement [47][10][12][14]. which may indicate
that heavy-quark recombination is a significant B_c^+ production mechanism in the QGP. An unpublished study based on Ref. [44] predicts an $R_{AA}(B_c^+)$ about ten times smaller than our measurement in the studied kinematic region, presumably because it ignores the recombination of B_c^+ excited states.

In summary, the first observation of the B^+_c meson in heavy ion collisions is presented, using the \(B^+_c \rightarrow (J/\psi \rightarrow \mu^+\mu^-)\mu^+\nu\mu \) decay. The production cross sections in lead-lead and proton-proton collisions and the nuclear modification factor derived from their ratio are measured in two bins of the trimuon transverse momentum, and in two ranges of the heavy-ion centrality. This unique beauty-charm state can help disentangle the enhancement (possibly dominant in central events at low-p_T) and suppression (dominant at high-p_T) mechanisms at play in the evolution of heavy quarks through the quark-gluon plasma.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); Minciencias (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); MnCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United
References

A Comparison of the nuclear modification of B_c^+ vs. open and hidden heavy flavor mesons

Figure A.1: Nuclear modification factor of the B_c^+ meson compared to that of light charged hadrons, and B^+, B_s and D^0 mesons, as a function of the measured transverse momentum. The total uncertainty is shown for the B_c^+ meson, whereas the statistical (bars) and systematic (filled rectangles) uncertainties are shown for the other hadrons.

Figure A.2: Nuclear modification factor of the B_c^+ meson compared to that of the ground and first excited states of charmonia and bottomonia, as a function of the measured transverse momentum. The total uncertainty is shown for the B_c^+ meson, whereas the statistical (bars) and systematic (filled rectangles) uncertainties are shown for the other hadrons.
B The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussels, Belgium

Université Libre de Bruxelles, Brussels, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista (a), Universidade Federal do ABC (b), São Paulo, Brazil
C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, D.S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova,
G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

Beihang University, Beijing, China
T. Cheng, T. Javaid, M. Mittal, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, G. Bauer, C. Dozen, Z. Hu, J. Martins, Y. Wang, K. Yi

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. An, Y. Ban, C. Chen, A. Levin, Q. Li, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China
M. Lu, Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao, H. Okawa

Zhejiang University, Hangzhou, China, Zhejiang, China
Z. Lin, M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar González

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljević, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrir
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
S. Elgammal¹⁴, A. Ellithi Kamel¹⁵

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
M.A. Mahmoud, Y. Mohammed

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, H. Petrow, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
I. Lomidze, T. Torishvili, Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Dodonova, D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghosh
INFN Sezione di Padova a, Padova, Italy, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzi a, N. Bacchetta a, D. Bisello a, P. Bortignon a, A. Bragagnolo a, R. Carlin a, P. Checchia a, T. Dorigo a, U. Dosselli a, F. Gasparini a, U. Gasparini a, G. Grosso a, S.Y. Hoh a, E. Lusiani a, M. Margoni a, A.T. Meneguzzo a, J. Pazzini a, M. Presilla a, P. Ronchese a, R. Rossin a, F. Simonetto a, G. Strong a, M. Tosi a, H. Yarar a, M. Zanetti a, P. Zotto a, A. Zucchetta a, G. Zumerle a, b

INFN Sezione di Pavia a, Pavia, Italy, Università di Pavia b, Pavia, Italy
C. Aime a, B. Braghieri a, S. Calzaferri a, D. Fiorina a, P. Montagna a, b, S.P. Ratti a, b, V. Re a, C. Riccardi a, P. Salvini a, I. Vai a, P. Vitulo a, b

INFN Sezione di Perugia a, Perugia, Italy, Università di Perugia b, Perugia, Italy
P. Aksenov a, G.M. Bilei a, D. Ciangottini a, L. Fanò a, b, P. Lariccia a, b, M. Magherini b, G. Mantovani a, b, V. Mariani a, b, M. Menichelli a, F. Moscatelli a, A. Piccinelli a, b, A. Rossi a, b, A. Santocchia a, b, D. Spiga a, T. Tedeschi a, b

INFN Sezione di Pisa a, Pisa, Italy, Università di Pisa b, Pisa, Italy, Scuola Normale Superiore di Pisa c, Pisa, Italy, Università di Siena d, Siena, Italy
P. Azzurri a, G. Bagliesi a, V. Bertacchi a, L. Bianchini a, T. Boccali a, E. Bossini a, R. Castaldi a, M.A. Ciocci a, V. D’Amante a, R. Dell’Orso a, M.R. Di Domenico a, S. Donato a, A. Giassi a, F. Ligabue a, E. Manca a, G. Mandorli a, A. Messineo a, F. Palla a, S. Parolli a, G. Ramirez-Sanchez a, c, A. Rizzi a, b, G. Rolandi a, b, S. Roy Chowdhury a, c, A. Scribano a, N. Shafiei a, b, P. Spagnolo a, R. Tenchini a, G. Tonelli a, b, N. Turini a, d, A. Venturi a, P.G. Verdini a

INFN Sezione di Roma a, Rome, Italy, Sapienza Università di Roma b, Rome, Italy
P. Barria a, M. Campana a, b, F. Cavallari a, D. Del Re a, b, E. Di Marco a, M. Diemoz a, E. Longo a, P. Meridiani a, G. Organtini a, b, F. Pandolfi a, R. Paramatti a, b, C. Quaranta a, b, S. Rahatlou a, b, C. Rovelli a, F. Santanastasio a, b, L. Soffi a, R. Tramontano a, b

INFN Sezione di Trieste a, Trieste, Italy, Università di Trieste b, Trieste, Italy
S. Belforte a, V. Candelise a, M. Casarsa a, F. Cossutti a, A. Da Rold a, b, G. Della Ricca a, b, D. Soldi a, b, A. Staiano a, M. Tornago a, b, D. Trocino a, A. Vagnerini a, b

Kyungpook National University, Daegu, Korea
S. Dogra a, C. Huh a, B. Kim a, D.H. Kim a, G.N. Kim a, J. Kim a, J. Lee a, S.W. Lee a, C.S. Moon a, Y.D. Oh a, S.I. Pak a, B.C. Radburn-Smith a, S. Sekmer a, Y.C. Yang a

Chonnam National University, Institute for Univee and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon, Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park, Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo
Kyung Hee University, Department of Physics, Seoul, Republic of Korea, Seoul, Korea
J. Goh, A. Gurtu, Sejong University, Seoul, Korea
H.S. Kim, Y. Kim
Seoul National University, Seoul, Korea
University of Seoul, Seoul, Korea
Yonsei University, Department of Physics, Seoul, Korea
S. Ha, H.D. Yoo
Sungkyunkwan University, Suwon, Korea
M. Choi, H. Lee, Y. Lee, I. Yu
College of Engineering and Technology, American University of the Middle East (AUM), Egaila, Kuwait, Dasman, Kuwait
T. Beyrouthy, Y. Maghrbi
Riga Technical University, Riga, Latvia
T. Torims, V. Veckalns
Vilnius University, Vilnius, Lithuania
M. Ambrozas, M. Carvalho Antunes De Oliveira, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis
National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
N. Bin Norjoharudeen, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli
Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, M. León Coello, J.A. Murillo Quijada, A. Sehrawat, L. Valencia Palomino
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada
University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic
University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluć, B. Boimski, M. Górski, M. Kazana, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krokikowski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lykov, A. Nikitenko, V. Popov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
O. Bychkova, M. Chadeeva, A. Oskin, P. Parygin, S. Polikarpov, E. Popova

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, A. Ershov, A. Gribushin, A. Kaminskiy, O. Kodolova, V. Korotkikh,
I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, A. Kozyrev, I. Ovtin, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, V. Okhotnikov

Tomsk State University, Tomsk, Russia
V. Borshch, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

University of Colombo, Colombo, Sri Lanka

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan
C. Adloff, C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, K. Ocalan, M. Yalvac

Bogazici University, Istanbul, Turkey
B. Akgun, I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Özçelik, S. Tekten, E.A. Yetkin
Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
S. Cerci, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, Texas, USA

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, Alabama, USA
A. Buccillii, S.I. Cooper, D. Di Croce, S.V. Gleyzer, C. Henderson, C.U. Perez, P. Rumerio, C. West

Boston University, Boston, Massachusetts, USA

Brown University, Providence, Rhode Island, USA

University of Florida, Gainesville, Florida, USA

Florida State University, Tallahassee, Florida, USA

University of Illinois at Chicago (UIC), Chicago, Illinois, USA

The University of Iowa, Iowa City, Iowa, USA

Johns Hopkins University, Baltimore, Maryland, USA

The University of Kansas, Lawrence, Kansas, USA

Kansas State University, Manhattan, Kansas, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, K. Nam

Lawrence Livermore National Laboratory, Livermore, California, USA
F. Rebbasoo, D. Wright

University of Maryland, College Park, Maryland, USA

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA

University of Tennessee, Knoxville, Tennessee, USA
H. Acharya, A.G. Delannoy, S. Fiorendi, S. Spanier

Texas A&M University, College Station, Texas, USA

Texas Tech University, Lubbock, Texas, USA

Vanderbilt University, Nashville, Tennessee, USA

University of Virginia, Charlottesville, Virginia, USA
M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, A. Li, C. Neu, C.E. Perez Lara, B. Tannenwald, S. White, E. Wolfe

Wayne State University, Detroit, Michigan, USA
N. Poudyal

University of Wisconsin - Madison, Madison, WI, Wisconsin, USA

†: Deceased
1: Also at TU Wien, Wien, Austria
2: Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
6: Also at The University of the State of Amazonas, Manaus, Brazil
7: Also at University of Chinese Academy of Sciences, Beijing, China
8: Also at Department of Physics, Tsinghua University, Beijing, China
9: Also at UFMS, Nova Andradina, Brazil
10: Also at Nanjing Normal University Department of Physics, Nanjing, China
11: Now at The University of Iowa, Iowa City, Iowa, USA
12: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
13: Also at Joint Institute for Nuclear Research, Dubna, Russia
14: Now at British University in Egypt, Cairo, Egypt
15: Now at Cairo University, Cairo, Egypt
16: Also at Purdue University, West Lafayette, Indiana, USA
17: Also at Université de Haute Alsace, Mulhouse, France
18: Also at Tbilisi State University, Tbilisi, Georgia
19: Also at Erzincan Binali Yıldırım University, Erzincan, Turkey
20: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
21: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
22: Also at University of Hamburg, Hamburg, Germany
23: Also at Isfahan University of Technology, Isfahan, Iran
24: Also at Brandenburg University of Technology, Cottbus, Germany
25: Also at Forschungszentrum Jülich, Juelich, Germany
26: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
27: Also at Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
28: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
29: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
30: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
31: Also at Wigner Research Centre for Physics, Budapest, Hungary
32: Also at IIT Bhubaneswar, Bhubaneswar, India
33: Also at Institute of Physics, Bhubaneswar, India
34: Also at G.H.G. Khalsa College, Punjab, India
35: Also at Shoolini University, Solan, India
36: Also at University of Hyderabad, Hyderabad, India
37: Also at University of Visva-Bharati, Santiniketan, India
38: Also at Indian Institute of Technology (IIT), Mumbai, India
39: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
40: Also atSharif University of Technology, Tehran, Iran
41: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
42: Now at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
43: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
44: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
45: Also at Università di Napoli ‘Federico II’, Napoli, Italy
46: Also at Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Perugia, Italy
47: Also at Riga Technical University, Riga, Latvia
48: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
49: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
50: Also at Institute for Nuclear Research, Moscow, Russia
51: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
52: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
53: Also at St. Petersburg Polytechnic University, St. Petersburg, Russia
54: Also at University of Florida, Gainesville, Florida, USA
55: Also at Imperial College, London, United Kingdom
56: Also at P.N. Lebedev Physical Institute, Moscow, Russia
57: Also at INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy, Padova, Italy
58: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
59: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
60: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
61: Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
62: Also at National and Kapodistrian University of Athens, Athens, Greece
63: Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
64: Also at Universität Zürich, Zurich, Switzerland
65: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria
66: Also at Laboratoire d'Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
67: Also at Şırnak University, Şırnak, Turkey
68: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
69: Also at Konya Technical University, Konya, Turkey
70: Also at Istanbul University - Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
71: Also at Piri Reis University, Istanbul, Turkey
72: Also at Adiyaman University, Adiyaman, Turkey
73: Also at Ozyegin University, Istanbul, Turkey
74: Also at Izmir Institute of Technology, Izmir, Turkey
75: Also at Necmettin Erbakan University, Konya, Turkey
76: Also at Bozok Universitesi Rektörlüğü, Yozgat, Turkey
77: Also at Marmara University, Istanbul, Turkey
78: Also at Milli Savunma University, Istanbul, Turkey
79: Also at Kafkas University, Kars, Turkey
80: Also at Istanbul Bilgi University, Istanbul, Turkey
81: Also at Hacettepe University, Ankara, Turkey
82: Also at Vrije Universiteit Brussel, Brussel, Belgium
83: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
84: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
85: Also at IPPP Durham University, Durham, United Kingdom
86: Also at Monash University, Faculty of Science, Clayton, Australia
87: Also at Università di Torino, Torino, Italy
88: Also at Bethel University, St. Paul, Minneapolis, USA
89: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
90: Also at California Institute of Technology, Pasadena, California, USA
91: Also at Ain Shams University, Cairo, Egypt
92: Also at Bingol University, Bingol, Turkey
93: Also at Georgian Technical University, Tbilisi, Georgia
94: Also at Sinop University, Sinop, Turkey
95: Also at Erciyes University, Kayseri, Turkey
96: Also at Texas A&M University at Qatar, Doha, Qatar
97: Also at Kyungpook National University, Daegu, Korea