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Abstract. We present 3D calculations for dielectric haloscopes such as the currently envi-
sioned MADMAX experiment. For ideal systems with perfectly flat, parallel and isotropic
dielectric disks of finite diameter, we find that a geometrical form factor reduces the emitted
power by up to 30 % compared to earlier 1D calculations. We derive the emitted beam shape,
which is important for antenna design. We show that realistic dark matter axion velocities of
10−3c and inhomogeneities of the external magnetic field at the scale of 10 % have negligible
impact on the sensitivity of MADMAX. We investigate design requirements for which the
emitted power changes by less than 20 % for a benchmark boost factor with a bandwidth of
50 MHz at 22 GHz, corresponding to an axion mass of 90 µeV. We find that the maximum
allowed disk tilt is 100µm divided by the disk diameter, the required disk planarity is 20 µm
(min-to-max) or better, and the maximum allowed surface roughness is 100 µm (min-to-max).
We show how using tiled dielectric disks glued together from multiple smaller patches can
affect the beam shape and antenna coupling.
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1 Introduction

The QCD axion arises naturally as a solution of the strong CP problem of the Standard
Model (SM) of particle physics [1–3]. It is furthermore one of the most appealing candi-
dates for cold dark matter (CDM) [4–14] with a viable mass range from ma = 10−13 eV to
10−2 eV [15]. Depending on the axion-photon coupling gaγ , cavity experiments have excluded
a small mass range around a few µeV [16, 17], with a huge range in mass remaining unprobed.
Axion masses larger than 26µeV are motivated by the post-inflationary Peccei-Quinn sym-
metry breaking scenario [9–11, 13, 15, 18–21]. The MADMAX (MAgnetized Disk and Mirror
Axion eXperiment) dielectric haloscope [22–24] is one of the most ambitious initiatives tar-
geting the axion mass range around 100µeV. For other experiments in this and other mass
ranges, see [23, 25–28, 28–43], for a review cf. [15, 44, 45].

In the presence of a strong external B-field, axions are converted into electromagnetic
radiation at interfaces of media with different dielectric constants ε. The MADMAX exper-
iment consists of a metallic mirror and many parallel dielectric disks in vacuum leading to
electromagnetic radiation from each interface separating regions with different ε. Depend-
ing on the disk positions the radiation from different interfaces can interfere constructively
and excite resonances between the dielectric disks, although with significantly lower quality
factors as cavity experiments. The power boost factor β2 describes the enhancement of the
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power emitted by the mirror together with the set of dielectric disks (booster) with respect
to the radiation emitted by a perfect mirror of the same area and under the same B-field.
Previous one dimensional (1D) calculations [22] showed that with 80 lanthanum aluminate
(LaAlO3) disks (ε ≈ 24) a power boost factor of ≈ 5× 104 can be achieved over a bandwidth
of 50 MHz, leading to an emitted power of

Pγ = 1.6× 10−22 W

(
β2

5× 104

)(
A

1 m2

)(
Be

10 T

)2 ( |Caγ |
1

)2 ( ρa

0.45 GeV cm−3

)
, (1.1)

where A is the surface of the dielectric disks, Be the strength of the external magnetic
field, ρa the local cold dark matter density and |Caγ | a model-dependent coupling constant
proportional to the axion-photon coupling gaγ as defined in [22], with typical values of |Caγ | ≈
1.9 (KSVZ model [46, 47]) or |Caγ | ≈ 0.7 (DFSZ model [48, 49]).

It is of central importance to understand the systematic uncertainties in the power boost
factor β2. Previous work has relied on a 1D model for β2 [22], while three dimensional (3D)
effects have only been taken into account for smaller systems with up to one dielectric disk [50,
51]. The work presented here extends these studies to systems with multiple dielectric disks as
envisioned for MADMAX. We present simulations taking some of the most important realistic
boundary conditions for an open booster (disks surrounded by free space) into account, i.e.,
first of all the fact that the disks are of finite size (ideal 3D booster), but also implications
from a finite axion velocity, magnetic field inhomogeneities, mechanical tolerances, imprecise
disk geometries, tilts and tiled disks (non-ideal booster). To this end we apply the finite
element method by using the azimuthal symmetry of the booster (2D3D FEM), as well as
the Recursive Fourier Propagation method, both introduced in [50]. In addition, we use the
Mode Matching formalism briefly described in the next chapter. For a comparison showing
their consistency see appendix A.1.

The paper in large parts is based on results from two PhD theses [52, 53]. It is structured
as follows: In section 2 we identify eigenmodes independently propagating inside the system,
which form the basis for our description of the booster. Section 3 deals with finite-diameter
but perfectly parallel and flat dielectric disks to which we refer as the ideal 3D case. Finally
in section 4 we study non-ideal effects including effects from a finite axion velocity, B-field
inhomogeneities, disk tilts and surface inaccuracies. We also discuss dielectric disks glued
together from smaller uniform patches (tiled disks).

2 System Modes

At first order in the axion-photon coupling gaγ the axion-Maxwell equations can be written
(using natural units with ~ = c = 1 and the Lorentz-Heaviside convention α = e2/4π) as a
wave equation for the electric field E using time-harmonic fields as [50]

−∇2E +∇(∇ ·E)− εω2E = ω2 gaγBea, (2.1)

where ω = 2πν = ma is the angular frequency and ε is the permittivity. The permeability is
assumed to be µ = 1. The axion field a on the right hand side acts as a source of electric fields,
through its coupling constant gaγ and external magnetic field Be. For ε and Be constant
over lengths much larger than the free photon wavelength λ = 2π/ω [50, 54, 55], a solution
is given by the axion-induced field

Ea = −gaγBea

ε
. (2.2)
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Figure 1: Modes of the circular dielectric haloscope. Left: Fundamental mode m = 1, ` = 0.
Main panel: Spatial field distribution. Side and bottom panels: Fields on the x and y axis
(at y = 0, x = 0, respectively) (blue solid lines) and fields corresponding to a Gaussian
beam [58] with a beam waist radius of w0 ≈ ø/3 (gray dashed lines), discussed later in
section 3. Right: Same as main panel on the left, but for higher modes with ` = 0.

The axion-induced field Ea has a discontinuity at a boundary between regions with different ε
and hence does not solve eq. (2.1) anymore. The full solution is obtained by adding emitted
electromagnetic radiation from the boundary compensating the discontinuity [22]. In all
figures throughout this paper the electric fields are shown in units of E0 ≡ max |Ea| at a
fixed instant of time if not stated otherwise.

For simplicity (and when not using FEM methods as e.g. in section 4.4), we will neglect
free charges in the following by setting ∇ ·E = 0. This sets the second term in eq. (2.1) to
zero and the equation separates into three independent wave equations for each component of
E, i.e., it is sufficient to consider each component as a scalar field (scalar diffraction theory).
This approximation is valid for a dielectric haloscope with sufficiently homogeneous disks and
has explicitly been confirmed for the ideal system discussed in the next section, as we show
explicitly in appendix A.1. However, the calculations below can also be easily generalized by
solving for the modes of the vectorized equation, see e.g. [56, 57].

To begin with, consider a cylinder of dielectric material with radius R (diameter ø = 2R)
surrounded by vacuum forming a dielectric waveguide. In the limit of large radius R � λ
and large dielectric constant ε � 1, we obtain a model for one of the disks of the dielectric
haloscope. In this limit the electric fields drop to zero at the outer boundary r = R of the
disk. Explicitly, the solutions to the source-free scalar wave equations (i.e., eq. (2.1) with
∇·E = 0 and a = 0) are the eigenmodes which are illustrated in figure 1 and given by [56, 57]

Em`(r, φ) = Nm`J`(kc,m`r)ei`φ , J`(kc,m`R) = 0, (2.3)
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Axion Coupling Propagation
ø = 30 cm ø = 1 m

Mode (` = 0) |ηm`|2 kc,m` [m−1] δd,m` kc,m` [m−1] δd,m`

m = 1 69 % 16 2× 10−5 5 5× 10−7

m = 2 13 % 37 1× 10−4 11 2× 10−6

m = 3 5 % 58 2× 10−4 17 6× 10−6

m = 4 3 % 79 5× 10−4 23 1× 10−5

m = 5 2 % 100 7× 10−4 30 2× 10−5

m = 6 1 % 121 1× 10−3 36 3× 10−5

...

Table 1: Properties of the most important modes for a dielectric haloscope, as envisioned
for the MADMAX prototype (disk diameter ø = 30 cm) and final scale experiment (disk
diameter ø = 1 m). |ηm`|2 denotes the coupling of the uniform axion field under a uniform
magnetic field to the mode, kc,m` its transverse momentum and δd,m` the diffraction loss
parameter between the dielectric disks as defined in the text at 22 GHz.

with discrete radial mode indices m > 0 and azimuthal mode indices `. J` is the Bessel
function of the first kind of order `, and we take Nm` as a normalization factor such that∫
|Em`|2dA = 1. Here, kc is the transverse momentum, i.e., the momentum in the disk

plane. These modes are orthogonal and complete in the sense that we can expand any field
distribution inside of the disks into a set of these modes. Most importantly, they propagate
independently along the z-direction within the disks as

E(r, φ, z) =
∑
m,`

em`Em`(r, φ)e−ikz,m`z , kz,m` =
√
k2

0 − k2
c,m`, (2.4)

where em` are the coefficients for the mode expansion, kz,m` is the propagation constant and
k0 =

√
εω. In free space these eigenmodes of the dielectric disks in general do not propagate

independently anymore, because they are no longer solutions of the scalar wave equation
under the free space boundary conditions. Since they are orthogonal and complete, we still
can expand fields at r < R into these modes, but during propagation they mix with each
other, i.e.,

E(r, φ, z) =
∑

m,`,m′,`′

Pm
′`′

m` (z) em′`′ Em`(r, φ), (2.5)

with the linear map Pm
′`′

m` (z) between the modes. P can be calculated by using the scalar
diffraction theory in free space discussed in [50]. Pm

′`′
m` is the coefficient of the mode (m′, `′)

when expanding the field obtained after propagating the mode (m, `) for a distance z in
free space. One can generalize the 1D transfer matrix formalism for dielectric haloscopes
in [22] by having left-moving and right-moving fields for each mode in each region and by
directly including the mixing matrix P , see e.g. [52]. We refer to this kind of calculation
as Mode Matching, because on an interface between two media with different dielectric con-
stants the sum of modes describing the fields on one side needs to be matched with the
respective sum of modes on the other side.

In order to see which modes are relevant for a dielectric haloscope, we have to consider
their coupling to the axion-induced field Ea. Table 1 summarizes the most important modes
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for the dielectric haloscope for a uniform external magnetic field and negligible axion velocity.
The coefficients ηm` refer to the coupling of the mode to the axion-induced field Ea, i.e., they
are the coefficients of the modes when expanding Ea on the disk surfaces into the modes.
Explicitly,

ηm`(z) = 1
Na

∫
E∗m`(r, φ) ·Ea(r, φ, z) dA = 1

N ′
a

∫
E∗m`(r, φ) ·ε−1Be(r, φ, z) a(r, φ, z) dA, (2.6)

with a normalization factor N (′)
a such that

∑
|ηm`|2 = 1. For our axion haloscope actually

only the azimuthally symmetric (` = 0) lower modes with m = 1, 2, 3, 4 have a coupling
stronger than 2% to the axion-induced electric field. All modes with ` 6= 0 do not couple due
to symmetry, although imperfections may affect η, see section 4. When only considering these
relevant modes with m = 1, 2, 3, 4; ` = 0 even for disks with diameter ø = 30 cm at 22 GHz
the mixing between the modes, i.e., |Pm′`′

m` | for (m, `) 6= (m′, `′), is smaller than ≈ 8× 10−4.
So unless the system is tuned to be very resonant, the mixing can be neglected, i.e., Pm

′`′
m`

becomes diagonal and can be written as

Pm
′`′

m` ≈ exp (ikz,m`z − 1
2δd,m`kz,m`z) 1m

′`′
m` , (2.7)

where δd,m` is a diffraction loss parameter and all modes propagate essentially independently.
The parameter δd,m` can be suppressed by using disks with larger diameters, as expected.
If, on the other hand, the system is tuned to be very resonant for a specific mode, the
difference in kz,m` for the other modes will make them rapidly dephase, i.e., make all other
modes irrelevant.

3 Ideal 3D Booster

We first consider an ideal but 3D booster with disks of finite extent, which are however still
perfectly flat and parallel. We study two benchmark systems, tuned to an axion mass of
ma ≈ 90µeV (ν ≈ 22 GHz). The optimal boost factor bandwidth is given by a trade-off
between disk readjustment time for tuning, and actual data taking time. The minimum
bandwidth is further limited by losses. Here we consider a bandwidth of ≈ 50 MHz close to
preliminary estimates of the optimal bandwidth maximizing scan speed for MADMAX [24].
We consider a booster with 20 lanthanum aluminate disks (assuming an isotropic dielectric
constant of ε = 24) with a disk diameter of ø = 30 cm and thickness 1 mm as presently foreseen
for the MADMAX prototype; in addition, we examine an 80 disk system with a disk diameter
of ø = 1 m as envisioned in the final MADMAX setup [24, 59]. All presented simulations
assume free space surrounding for simplicity, see also [50, 60]. This setup is expected to
maximize diffraction losses. Detailed studies on the impact of using other different boundary
conditions, e.g., conducting walls, will be discussed in future works.

Figure 2 shows the power boost factor of such systems in terms of total emitted power
(solid blue) and the power which can be coupled to an antenna receiving Gaussian beams
as defined in [58] with beam waist radius w0 ≈ ø/3 (dashed blue) compared to the 1D
result (dashed gray). The double-peak or four-peak substructure, respectively, corresponds
to different contributing resonances, for more details see [22]. Results from different numerical
methods, i.e., 2D3D FEM, Recursive Fourier Propagation and Mode Matching are consistent
up to percent level, which is negligible for the experiment’s sensitivity to axion CDM and the
axion-photon coupling |Caγ |. This confirms the validity of the scalar diffraction theory for
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Figure 2: Power boost factor β2 considering dielectric disks of finite size with spacings tuned
to cover a bandwidth of ≈ 50 MHz at around 22 GHz (ma ≈ 90µeV), in terms of the 1D
analytical result following [22] (gray dashed line), total emitted power in 3D (solid blue line),
the power which can be coupled to a Gaussian beam antenna (dashed blue line) and total
emitted power contributed by different modes (differently colored hatched regions). Left:
For 20 disks with a diameter of 30 cm as in the proposed MADMAX prototype (antenna
w0 = 10 cm). Right: For 80 disks with a diameter of 1 m as in the proposed MADMAX final
experimental phase (antenna w0 = 30 cm). Consistently obtained with different numerical
methods (2D3D FEM, Recursive Fourier and Mode Matching), see appendix A.1.

the idealized system, since the 2D3D FEM method directly solves the full vectorized wave
equation (2.1). For more details see appendix A.1.

Turning our attention to the results themselves, we first notice that the boost factor
curve is shifted to higher frequencies compared to the 1D calculation. This is easily un-
derstood considering the phase evolution of the different modes along the booster. Due to
the transverse momentum kc of the modes the phase changes slower along the z-direction
compared to the 1D case according to eq. (2.4). Therefore, in order to have the same res-
onant behavior as in 1D one needs to “speed up” the phase evolution by going to slightly
higher frequencies. For the lower modes (m, `) with small transverse momenta kc � kz the
frequency shift compared to the 1D calculation is

∆νm` ≈
1

8π2

k2
c

ν
≈ 13 MHz

(
j`,m
j0,1

)2(30 cm

ø

)2(22 GHz

ν

)
, (3.1)

where j`,m is the m-th zero of J`, which roughly scales linearly with m. Since higher modes
have higher transverse momenta, cf. table 1, the shift is more pronounced for higher modes.
As each mode propagates essentially independently through the system, no matter how the
disk spacings in the system are tuned, for a fixed disk diameter the different modes always
appear at the same frequency shifts relative to each other. The bandwidth above which
higher modes start to become relevant is therefore ∆νβ ≈ ∆ν2 0−∆ν1 0, which gives 55 MHz
for the prototype booster and 5 MHz for the full-scale booster, consistent with figure 2.
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Now considering the power emitted by the system, we see that in 3D the boost factor
is reduced compared to the 1D calculations. Since all modes are orthogonal, the total power
emitted is simply the sum of the power carried by each mode, as indicated by the stacked
hatched regions in figure 2. In the benchmark case for the MADMAX prototype (left) we
see that the second mode is already shifted by almost the full bandwidth of the boost factor
itself and we essentially only get the power contributed by the first mode within a 50 MHz
bandwidth. Since this mode couples to 69 % (independent of disk diameter) to the axion
field, the boost factor is reduced by up to 30 % compared to the 1D case. This effect should
be seen as a reduced coupling efficiency (form factor) of the system to the axion field and not
as (diffraction) loss. Indeed, the diffraction loss of the first mode arising from the finite disk
size in this case is smaller than δd ≈ 10−5 at this frequency (see table 1) which is negligible.
This may not hold anymore when we consider the geometrical inaccuracies in section 4.

Lastly, we have to consider how to couple the power leaving the booster with an antenna
into a receiver. The fundamental mode has a frequency-independent 97% matching ratio
with a Gaussian beam [58] with a beam waist radius of w0 ≈ ø/3, see also figure 1 (left). We
therefore consider the coupling efficiencies to Gaussian beam antennas with this beam shape
in this paper. Hence, in case only the fundamental mode contributes, we can achieve very
good coupling efficiencies. In case the total power is also carried by higher modes, like in
the 80 disk calculation in figure 2 (right), one can only receive significant power provided by
the fundamental mode with the Gaussian antenna. This contribution is still & 70 % of the
total power due to the coupling of the axion field to the fundamental mode. However, small
couplings of the higher modes to the Gaussian may interfere destructively when coupled to
the antenna, further decreasing the received power. In principle it is possible to design an
antenna which is matched to a more optimal combination of modes, as long as their relative
phase stays roughly constant over the boost factor bandwidth – or in other words the total
beam shape does not change drastically with frequency. For the initial stage of dielectric
haloscopes this may already be a too elaborate approach. In summary, as long as the boost
factor bandwidth is smaller than the difference between the frequency shifts of the first two
modes, the optimal antenna is one that couples only to the fundamental mode. In particular,
for the MADMAX prototype, designed for the frequency range from 18 to 24 GHz, an antenna
system which couples to a Gaussian beam with beam waist radius of approximately 10 cm is
close to optimal.

Not considered here, but crucial for a final experimental realization, might be possible
reflections on the antenna, especially those of the higher modes, which after the reflection may
couple and interfere destructively with the fundamental mode. For MADMAX such reflection
effects have been already experimentally studied in [61]. There it was demonstrated on a
5-disk setup that adverse effects due to reflections may be significantly reduced by absorbing
unwanted radiation in the vicinity of the antenna and calibrating out residual reflections
using a dedicated model.

4 Non-Ideal Effects

A realistic system will always have inaccuracies, contrary to what was assumed in the previous
section. Therefore, in the following we study the influence of axion velocity effects and
inhomogeneities of the external magnetic field (causing changes to the axion-induced field Ea),
as well as geometrical imperfections (tilts, planarity, surface roughness and tiling of the disks).
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Figure 3: Effect of transverse axion velocity on the benchmark boost factor for the full-
scale MADMAX booster. Left: Power boost factor β2 for different fixed transverse axion
velocities (different colors). The boost factor corresponding to the total emitted power is
denoted by the solid lines while the amount which can be coupled to a w0 = 30 cm Gaussian
beam antenna is indicated by the dashed lines. Right: Beam shape in terms of the electric
field of the emitted wave from the booster at a frequency of 22.103 GHz for an exaggerated
transverse axion velocity of vx ≈ 10−2c (around 10 times larger than typical CDM velocities),
in order to make the effect on the beam shape visible. The side panels show the field at the
x and y axes (at y = 0, x = 0, respectively) as a blue line and the field when setting the
velocity to zero as a dashed gray line. We show the fields at a fixed instant of time.

4.1 Axion Velocity

With non-zero axion velocity va the axion field a and therefore also the axion-induced electric
field Ea acquire a spatial phase factor exp(−imavax) over the setup. A velocity along
the booster axis causes phase differences between the disks and has been studied already
in [62, 63]. A transverse velocity va,‖ tilts the otherwise perpendicular angle of emission
from the individual disks [64–66]. We can study the effect of this tilting by decomposing
the axion-induced field into the above modes and observing how the coupling efficiencies ηm`
change with transverse velocity. For the fundamental mode one finds analytically

∆|η10|2

|η10|2
≈
j2
0,1 − 4

2 j2
0,1

(
mava,‖R

)2 ≈ 1 %

(
ma

100µeV

)2 ( va,‖

10−3c

)2 ( ø

1 m

)2

. (4.1)

This holds for small axion velocities, i.e., mava,‖R� 1, which is applicable for the MADMAX
boosters below about ma < 500µeV. An exact result can be found in appendix B. Below
ma = 100µeV the effect on the full-scale MADMAX sensitivity is negligible. Although the
effects may become more relevant for higher masses of ma = 100 − 400µeV, still & 90 % of
power is left in the fundamental mode. In particular, one would have to take the average of
the signal power over the CDM velocity distribution rather than just considering one velocity.
Typical data-acquisition times for MADMAX before tuning to the next frequency band are
expected to be at the order of a few days [24]. Since the earth rotates within the CDM ‘wind’,
some of the velocity effects will average out and make the above reduction even milder.
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The effect on the boost factor is explicitly demonstrated on the benchmark boost factor
for the full-scale MADMAX booster in figure 3 (left) for an axion velocity exaggerated by
up to one order of magnitude compared to realistic CDM velocities of va ≈ 10−3c. We see
that the received power (dashed lines) is degraded while the total power emitted by the
haloscope (solid lines, almost on top of each other) remains almost unchanged, but is in
the modes that do not couple to the antenna. No curve is shown for va = 10−3c, since
already va = 2× 10−3c does not significantly change the boost factor compared to the zero
velocity case. For even higher axion velocities (not shown) nearly all power is contained
in higher modes. Since they have higher kc the total power boost factor shifts to higher
frequencies. Higher modes are more prone to diffraction losses and the inaccuracies of the
setup described in the following sections. Therefore, also the total power emitted is reduced
for higher velocities. For realistic CDM velocities of va ≈ 10−3c, however, our benchmark
boost factors are not changed significantly.

A finite axion velocity slightly tilts the emissions from individual disks. Therefore, the
center of the beam emitted from the booster shifts away from the center of the disk as shown
in figure 3 (right). This effect could in principle be used to build a velocity-sensitive haloscope
after the discovery of the axion and to investigate and measure properties of the local dark
matter halo, see for example [63, 64].

4.2 Magnetic Field Inhomogeneity

Analogous to the velocity effects above, a transverse inhomogeneity of the magnetic field im-
plies a corresponding inhomogeneity in the axion-induced field Ea. Therefore, it changes the
amount of power coupled into the different modes. For example a magnetic field proportional
to the beam shape of the fundamental mode would cause the coupling efficiency of the first
mode to be |η10|2 = 100 %. Realization of such a magnet is, however, technically challenging
and may increase magnet cost significantly. Here we consider a magnetic field amplitude
with azimuthal and radial inhomogeneity, which is motivated by the symmetry of typically
considered dipole magnets. We consider such a magnetic field parametrized by

Be(r, φ) = B0

[
1 + h sin(kφ)

r2

R2

]
êy, (4.2)

where B0 is the magnetic field amplitude, h is the maximum relative scale of the inhomo-
geneity on the disk, R = ø/2 and k is a non-zero positive integer. For small h � 1 one can
show that the relative change in the coupling coefficients of the ` = 0 modes happens only
at second order in h and is given by

∆|ηm0|2

|ηm0|2
≈ −1

6
h2, (4.3)

i.e., radial symmetric transverse inhomogeneities at the 10 % level leave the mode coupling
coefficients unchanged well below the percent level. Therefore, such inhomogeneities have
insignificant impact on sensitivity. This result has been confirmed with explicit numerical
calculations using Recursive Fourier Propagation.

4.3 Geometrical Inaccuracies of the Dielectric Disks

Next we consider geometrical inaccuracies such as disk tilts, disk planarity and surface rough-
ness. These mainly affect propagation of electromagnetic waves within the booster. If the
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distance between two interfaces varies as ∆z(r, φ) in the plane parallel to the disk surfaces
(transverse thickness variation), the corresponding phase changes during propagation give
rise to additional mode mixing as

Pm
′`′

m` =

∫
E∗m`(r, φ)Em′`′(r, φ) exp [ik0∆z(r, φ)] dA, (4.4)

where we have left out the propagation and corresponding diffraction by a distance z in this
formula for clarity (it is included in the simulations below). The phase factor is most relevant
at places where both E∗m`(r, φ) and Em′`′(r, φ) are maximized. Therefore, inaccuracies in the
center of the disks are in general most relevant.

We parametrize ∆z as a random function where σ is the root-mean-square of the ele-
vation and ξ the transverse correlation length, i.e., the standard deviation characterizing the
radius of a typical bump, cf. figure 4. For large ξ � k−1

c,m` we can approximate

Pm
′`′

m` ≈ exp(ik0〈∆z〉) (P0)m
′`′

m` , (4.5)

where 〈...〉 denotes the average and P0 is the mixing matrix for the unperturbed system.
Thus in the limit of large ξ there is only an overall phase error analogous to a misplacement
of the disks. On the other hand, for small ξ � k−1

c,m`, one finds

Pm
′`′

m` ≈ (1− 1
2k

2
0σ

2) (P0)m
′`′

m` , (4.6)

where the system is dominated by an effective loss, while the phase errors are averaged out.
This effective loss can be parameterized within the disks as (analogously to the definition of
δd in eq. (2.7))

δ∆z ≈ 2π

(√
εσ2

λd

)
≈ 2× 10−3

(
σ

30µm

)2(1 mm

d

)( ε
24

) 1
2
( ν

22 GHz

)
, (4.7)

with the disk thickness d. The equation holds analogously within the free space gaps, but
there it gives around two orders of magnitude smaller δ∆z (because of ε = 1 and d ≈ cm
there). The effects in both of these limits for ξ can be estimated using 1D calculations as
in [22]. For the intermediate range where ξ ≈ k−1

c,m` both phase errors and effective loss are
relevant. In addition, P will not be well approximated by a diagonal matrix anymore (‘mode
mixing’), which gives the strongest design constraints, as we will see below. We evaluate
representative elements of the mixing matrix for different correlation lengths explicitly in
appendix C.

We extend these estimates with explicit numerical results shown in figure 4. We survey
the effect on the benchmark power boost factor for both the MADMAX prototype (left col-
umn) and full-scale MADMAX (right column). To this end we consider uniformly distributed
random tilts γ of the dielectric disks around both x and y axis through their center (first
row), non-planar disks (ξ = ø/10, second row) and surface roughness (ξ ≈ λ/4, third row).
For each case we take many random samples of a respectively deformed booster and calculate
the boost factor times antenna coupling for a Gaussian beam antenna as discussed above.

Calculations with 20 disks are feasible with both Recursive Fourier Propagation and the
Mode Matching methods and lead to consistent results, cf. also appendix A.2. For surface
roughness Mode Matching gives more conservative results. 80 disk calculations have been
only feasible with the Mode Matching method, as too many iterations are needed to achieve
convergence with Recursive Fourier Propagation.
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Figure 4: Effect of different geometrical disk inaccuracies on the benchmark power boost
factor times antenna coupling assuming a Gaussian beam with w0 ≈ ø/3. The left column
shows the results for a 20 LaAlO3 disk booster with 30 cm disk diameter, the right column
shows the results for a 80 LaAlO3 disk booster with 1 m diameter. The top row shows
randomly tilted disks, where the maximum tilt in both x and y direction of each disk is as
indicated in the legends. The middle row shows non-planar disks (thickness variations with
correlation length of ξ ≈ ø/10) of scale σ as indicated in the legends. The bottom row shows
the same but for a correlation length of ξ ≈ λ/4 (surface roughness). The solid lines each
refer to the ensemble mean and the shaded regions each to the range between the 16 % to 84 %
percentiles (1σ for a Gaussian distribution). Different colors refer to different magnitudes of
distortion as specified in the respective panel legend.
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In order to leave the power boost factor β2 unchanged on the level of . 20 % for each
individual effect considered alone, we conclude that tilts at the order of γ . 100µm/ø are
required, planarity on length scales of ξ ≈ ø/10 should be σ . 5µm and surface roughness is
allowed to be σ . 20µm. In an engineering context often the deviation between the minimum
and maximum (min-to-max) ∆zmin−max is quoted instead of σ. We note that for planarity
∆zmin−max ≈ 4σ, and surface roughness ∆zmin−max ≈ 6σ.

By defining the tilt around a central axis we have 〈∆z〉 = 0 and thus suppressed phase
errors for the tilts here. This separates the requirement on the tilt from the overall posi-
tion accuracy of the dielectric disks, which gives more stringent constraints (. 5µm in this
case [52, 62]). The strongest design constraints in this section arise for planarity. This is
intuitive, since the considered transverse thickness variations ∆z appear on similar length
scales ξ as the most relevant modes, maximizing mode mixing effects. The results for surface
roughness are consistent with 1D calculations taking losses at the order estimated in eq. (4.6)
into account. These constraints remain approximately unchanged when increasing the num-
ber of dielectric disks from 20 to 80 disks but keeping the desired boost factor bandwidth
the same. This is expected, since a bandwidth of 50 MHz naively corresponds to a resonance
with the beam experiencing about 20 GHz/50 MHz ≈ 400 bounces before leaving the booster
independently of how many disks are actually installed.

These results are expected to generalize to boost factors at other frequencies with the
same relative boost factor bandwidth (ν/∆ν ≈ 400) when written in units of the wave-
length λ. This can for example be seen from eq. (4.4), which gives the same P at different
frequencies when scaling ∆z accordingly. The above constraints then read: maximum tilts
at the order of γ . 7× 10−3λ/ø, planarity of σ . 4× 10−4λ (on length scales of ξ ≈ ø/10)
and maximum surface roughness of σ . 1.5× 10−3λ.

These results hold when considering each effect alone. Since the deformations at dif-
ferent length scales are statistically independent, the systematic uncertainty in the boost
factor will approximately add in quadrature. Hence, when combining the above constraints,
they are expected to tighten by a factor of around

√
3 ≈ 1.7. On the other hand, in an

experimental setup one would for example measure the reflectivity in order to constrain the
boost factor. Such measurement can be used to realign (tune) the dielectric disks to more
optimal positions [50]. Preliminary calculations show that this could approximately soften
the planarity constraints by a factor of 2.

Besides the effect on the power boost factor we show the impact on the beam shape of
these effects in figure 5. It is evident that the different deformations alter the beam shapes
on a similar scale as the size of distortions of the disks in the booster as expected.

4.4 Tiled Dielectric Disks

In order to achieve dielectric disks with a diameter of & 1 m and low loss, the MADMAX
collaboration is also investigating the possibility of gluing together smaller hexagonal patches
of LaAlO3 (ε ≈ 24) wavers with a diameter of around 5 cm [24, 59]. The gaps between the
tiles are filled with glue (ε ≈ 5, similar to Stycast 2850FT [67]) and have a thickness of
around 0.2 mm, cf. figure 6 (left). In this section we present a first study of the impact of
such a tiling on the prototype and full-scale MADMAX benchmark boost factors.

The large difference between dielectric constants on short scales across the glued gaps
invalidates the assumption of zero net charge and leads to polarization effects as already seen
in [50]. In order to apply the formalism described above, we need to derive a set of eigenmodes
of the tiled disks. This can be done semi-analytically with a transfer matrix formalism [56],
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Figure 5: Effect of different geometrical imperfections on the beam shape, for the 20 disk
prototype booster as in figure 4 at a frequency of 22.03 GHz. The effect of a maximum disk
tilt of 100µm/ø is shown on the left, the effect of a non-planar disks (σ = 10µm, ξ = 35 mm)
in the middle and the effect of a surface roughness (σ = 20µm, ξ = 4 mm) on the right. The
main panels show the electric field, while the sub-panels show cuts through the x and y axes
(at y = 0, x = 0, respectively). The blue curve shows the electric field of the plotted case,
while the light gray curve show the ideal case without any distortion of the booster.

Figure 6: Left: Photo of the first tiled LaAlO3 disk from the MADMAX collaboration [59].
Right: Our parameterization of an azimuthally symmetric tiled disk (gluing gaps in blue).
dgap refers to the thickness of the gluing gaps, rgap to their radial distance. The outermost
tile has a 1 cm larger width here.
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without tiling (matching figure 2) in blue, the ones for the considered concentric tiling in
red. The gaps between the tiles are dgap = 0.2 mm thick and filled with a ε = 5 glue. The
curves refer to the total emitted power. Left: Power boost factor for the case of 20 disks with
a diameter of 30 cm as in the proposed MADMAX prototype (antenna w0 = 10 cm), with
a radial distance of rgap = 4 cm between 4 individual tiles. Right: Power boost factor for
the case of 80 disks with a diameter of 1 m as in the proposed MADMAX final experimental
phase (antenna w0 = 30 cm), with a distance of rgap = 6 cm between 9 individual tiles.

but tends to become numerically unstable due to, again, the large relative differences in
dielectric constants. This is outside the scope of this work and is left for future studies.

However, we can efficiently simulate an azimuthally symmetric geometry with the
2D3D FEM approach introduced in [50]. Therefore, here we consider azimuthally sym-
metric, concentric tiles as shown in figure 6 (right). The parameter rgap describes the radial
distance between two tiles and the gap thickness between two tiles is set to dgap = 0.2 mm.
For the prototype we set rgap = 4 cm to approximate the structure shown in figure 6 (left)
(corresponding to three gluing gaps for ø = 30 cm, the outermost tile has a width of ≈ 5 cm).
For the full-scale MADMAX setup we assume disks with rgap = 6 cm, corresponding roughly
to the largest possible diameter of LaAlO3 crystals with currently available crystal growing
techniques [68] (eight gluing gaps for ø = 1 m, width of the outermost tile ≈ 5 cm).

Figure 7 shows the result of this calculation for the prototype (left) and full-scale (right)
MADMAX benchmark boost factors analogously to figure 2. First, we see that the achievable
power boost is only mildly reduced at the level of a few percent compared to the ideal 3D
calculation in terms of total emitted power. In addition, the boost factors of the untiled
and tiled systems are shifted against each other in frequency. This is consistent with the
expectation of additional transverse momentum to the electromagnetic wave obtained from
the tiling structure. The shift is much smaller than in the case where each tile would be
totally electromagnetically decoupled from each other. In this case the shift according to
eq. (3.1) would naively increase by a factor of (ø/rgap)2 ≈ 60 (for the prototype) and ≈ 300
(for the full-scale experiment).
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horizontal axis in figure 7 (right).

Next, we consider the emitted beam shape. For the MADMAX prototype the emitted
power can still be received with a high efficiency of > 90 % using the Gaussian beam antenna
discussed above. However, for the full scale MADMAX we find that the beam shape is
significantly altered due to polarization effects caused by the tiling. This is demonstrated
in figure 8 where we show the emitted beam shapes of the final scale MADMAX booster
at representative frequencies for the full-scale MADMAX boost factor as in figure 7 (right).
The electric fields have a non-negligible x-component, although the external magnetic field is
polarized in y-direction, Be ∝ êy. At the lower frequency the beam shape is approximately
proportional to cosφ êφ, at the higher frequency it is dominated by a sin φ êr component.
At intermediate frequencies it contains both polarizations but at arbitrary phase. Adding
them in phase would give a field polarized in y-direction as desired, i.e., contributions from
both r and φ polarizations appear shifted with respect to each other in frequency. The
x-component always obeys a quadruple structure as we have already seen in [50], cf. also
appendix D. Fields ∝ êr are orthogonal and ∝ êφ parallel to the glue gaps and hence need
to obey different electromagnetic boundary conditions. Our observations are consistent with
r and φ polarized waves therefore having different propagation constants within the booster
analogous to propagation in e.g. anisotropic media.

Using the same Gaussian antenna as proposed in the previous sections would therefore
reduce the antenna coupling by roughly a factor of 2 or more depending on frequency for the
considered full scale MADMAX setup. However, this reduction may be mitigated to some
extent by optimization of the antenna shape or disk tiling geometry, as polarization effects
may be reduced by using the proper orientation of gaps and shape of tiles. Since resolving the
modes for a tiled disk is numerically challenging as described above, studies on alternative
tiling designs are not presented here and left for future work.

In addition, reducing the gap size can reduce tiling effects. Also, tiling effects are
reduced when decreasing the difference of dielectric constants between the glue and the disks
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by, for example, using a higher-ε glue. Alternatively, it is possible to resort to dielectrics
with lower dielectric constant ε, which can also be grown to larger diameters. For example,
using sapphire (ε ≈ 9) instead of lanthanum aluminate (ε ≈ 24) could thus be a realistic
alternative to circumvent significant tiling effects, while reducing the power boost factor by
acceptable ≈ 30 %. We also note that other communities have experience in building meter-
scale telescope lenses with high accuracy and without the need of tiling [69]. MADMAX
could potentially compensate a reduction in β2 to some extent by using proportionally more
dielectric disks, corresponding to a respective increase in axion-photon conversion volume [22].
Finally, it is noted that MADMAX sensitivity estimates, e.g. in [24], use a conservative system
noise temperature of 8 K, which can likely be improved for example by using traveling wave
parametric amplifiers [59, 70] and would allow for using smaller boost factors.

The above studies only present first estimates for a specific case of tiling. More detailed
studies are underway to understand the modes of a tiled booster and the dependencies on the
tiling design (such as glue thickness, orientation of tiling gaps, etc.) but also on frequency,
on boost factor bandwidth, on the disk diameter and on other parameters. They will provide
a clearer picture of the optimal disk design for the full-scale MADMAX booster.

5 Summary and Conclusion

In this paper we have studied 3D effects in dielectric haloscopes in terms of independently
propagating booster eigenmodes. We have derived expected beam shapes for the MADMAX
dielectric haloscopes for the first time. The electromagnetic fields inside the booster are not
well described by a plane wave, as in previous 1D calculations. However, for finite sized,
isotropic and perfectly flat disks the dominant contribution is from the fundamental mode
that has a coupling efficiency of 69 % to the axion-induced electric field. This mode can be
well received using Gaussian beam quasi-optics [58] matched to a Gaussian beam with a beam
waist radius of w0 ≈ ø/3 focused at the front-most disk of the booster. This can be achieved
by using a Gaussian beam horn antenna and one or more focusing mirrors, see e.g. [24, 58, 59].

MADMAX Prototype Full-scale MADMAX
20 disks, ø = 30 cm 80 disks, ø = 1 m

Antenna Beam Shape * Gaussian w0 ≈ ø/3

Transverse Axion Velocity va < 1.5× 10−2c va < 5× 10−3c
Transverse B-Field Homogeneity h . 10 %

Disk Tilts γ . 100µm/ø
Disk Planarity (ξ ≈ ø/10) . 20µm (min-to-max)
Disk Surface Roughness (ξ ≈ λ/4) . 100µm (min-to-max)

Concentric Tiling
(dgap = 0.2 mm, εgap = 5)

(4 radial tiles: ok)
(9 radial tiles:

coupling reduced)

* for coupling to the fundamental mode

Table 2: Summary of requirements for MADMAX dielectric haloscopes derived in this paper
such as to leave the benchmark boost factor (50 MHz bandwidth at 22 GHz corresponding to
ma ≈ 90µeV) unchanged at the level of 20 % or below.
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Moreover, we have derived analytical expressions to quantify the impact on dielectric
haloscopes from non-ideal effects such as non-zero axion velocity, magnetic field inhomogene-
ity and geometrical disk inaccuracies. We have also deduced explicit requirements for the
MADMAX dielectric haloscopes for a benchmark boost factor at 22 GHz (ma ≈ 90µeV) and
bandwidth of 50 MHz. Table 2 summarizes these parameters for both the MADMAX proto-
type and the full-scale MADMAX booster. All values corresponding to the non-ideal booster
reduce the boost factor by less than 20 % compared to the ideal 3D case. Realistic values for
axion velocities and magnetic field inhomogeneities are mostly unproblematic for MADMAX.
However, geometrical inaccuracies of the dielectric disks, such as tilts, non-planarities and
surface roughness, cause phase errors, mode mixing and effective losses, and therefore lead
to important design constraints. For fixed relative boost factor bandwidth corresponding
to 50 MHz at 22 GHz, the results hold approximately independent of the disk number in
the considered range between 20 and 80 disks, scale with disk diameter ø as indicated and
can be generalized to other frequencies, i.e., axion masses, by appropriate scaling with the
wavelength λ. We also have shown that concentric tiling does not reduce the boost factor
significantly but shifts it to higher frequencies and can affect the beam shape. Future stud-
ies will incorporate polarization effects caused by anisotropic dielectric constants and more
realistic tiling designs, such as hexagonally tiled disks.

These results are of significant importance for the experimental design of the MADMAX
booster and provide first quantitative design goals for booster manufacturing. In addition,
the results may be applicable to other dielectric haloscopes and similar setups such as OR-
PHEUS [71, 72], DALI [73] and LAMPOST [29].
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A Comparison of Numerical Methods

A.1 Ideal 3D Booster

In order to verify our numerical methods against each other, we have compared the result from
Mode Matching with the corresponding results from the Recursive Fourier Propagation and
2D3D FEM methods introduced in [50]. Figure 9 shows this comparison for the MADMAX
prototype benchmark boost factor discussed in this paper. The 2D3D FEM method solves
the full vectorized wave eq. (2.1), while the other methods assume a scalar diffraction theory
and neglect free charges in the following by setting ∇ · E = 0 here. The Mode Matching
method in addition neglects higher modes, here m > 5, ` > 2. The lower panel shows the
relative difference between the results from Recursive Fourier Propagation and 2D3D FEM
against the result from the Mode Matching method, while in the upper panel the boost factor
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obtained with Mode Matching is shown for orientation. The systematic differences are likely
due to the simplifying assumptions of the Recursive Fourier and Mode Matching methods.
Most prominently, the boost factors obtained by Recursive Fourier Propagation and FEM are
typically higher than results from Mode Matching. This is expected, since the Mode Matching
method neglects higher modes which may carry additional power. The differences are largest
in the regions where the boost factor itself is small. The boost factors are consistent up to
percent level within the boost factor bandwidth. This does not significantly affect sensitivity
and therefore is sufficient for this study.

It should be noted that the largest deviations indeed are outside the 50 MHz range of the
boost factor, where higher modes contribute. Analogous results have been obtained for the
MADMAX prototype within its designated frequency range at ν = (18, 20, 22, 24) GHz and
at 22 GHz for different boost factor bandwidths of (5, 10, 20, 50, 100, 250) MHz. In addition,
the comparison has also been performed for the full-scale MADMAX setup for the 50 MHz
benchmark boost factor at 22 GHz shown in figure 2 (right), leading to analogous results.

The agreement shows for the ideal 3D dielectric haloscopes consisting of multiple finite-
sized disks tuned to a boost factor over a bandwidth 10−3ν the simplifying physics assump-
tions of the Mode Matching and Recursive Fourier Propagation methods are valid, i.e., a
relatively low number of modes (in our case 4) is sufficient to approximate the fields inside
the system and a scalar diffraction theory neglecting effects from free charges is sufficient.
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Figure 9: Comparison of (solid curves) and boost factor times antenna coupling (dashed
curves) calculated with the three different numerical methods for the MADMAX prototype
benchmark boost factor as in figure 2 (left). The upper panel shows the boost factor calcu-
lated with the Mode Matching method for orientation. The lower panel shows the relative
difference between the result from Mode Matching and either the result from Recursive
Fourier Propagation (yellow) or 2D3D FEM (green).
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Figure 10: Comparison of boost factors (solid curves) and boost factor times antenna
coupling (dashed curves) calculated with Recursive Fourier Propagating and Mode Matching,
corresponding to a boost factor from the 20 disk MADMAX prototype as in figure 2 (left),
but now with random planarities of σ = 10µm, ξ = 35 mm for all disks. The upper panel
shows the boost factor calculated with the Mode Matching method for orientation. The lower
panel shows the relative difference between the result from Mode Matching and the result
from Recursive Fourier Propagation.

A.2 Non-Ideal Booster

The calculations presented in section 4 are not feasible with the 2D3D FEM method, since
the azimuthal symmetry is broken for these non-ideal boosters. Therefore, explicit numerical
confirmation of the scalar diffraction theory for the non-ideal booster remains for future work.
However, the scalar theory holds in the limit where k ⊥ E, which is still a good approximation
for the MADMAX setups discussed here. In addition, we have compared results from Mode
Matching with results from Recursive Fourier Propagation for the 20 disk benchmark boost
factor as in figure 2 (left). Figure 10 shows the same result for an exaggerated pessimistic
planarity of σ = 10µm at a scale of ξ = 35 mm. The percent level differences are irrelevant
for sensitivity estimates. We also show a comparison for the planarity calculation between
the beam shapes obtained at the frequency with maximum boost in figure 11. The observed
differences are at smaller scales than the considered modes, i.e., mainly arise due to the fact
that the Mode Matching method is neglecting higher modes. The differences can be reduced
when taking into account more modes. Analogous results are obtained for velocity effects,
magnetic field inhomogeneities and tilts.

– 19 –



0.1 0.0 0.1
x [m]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

y 
[m

]
Recursive Fourier

0.1 0.0 0.1
x [m]

Matching Ratio: 96.4%

Mode Matching

4

3

2

1

0

1

2

3

4

El
ec

tri
c 

Fi
el

d 
E y

[E
0]

×102

Figure 11: Comparison of beam shapes obtained with the Recursive Fourier Propagation
method and Mode Matching for the boost factor from figure 10 at the maximum boost factor.
The matching ratio quantifies how much power an antenna would receive from one beam, if
the antenna is matched perfectly to the other beam in the comparison.

B Analytical Coupling Efficiencies for Velocity Effects

For ` = 0 the coupling efficiencies between the axion-induced field and the modes described
in section 2 is found to change with transverse velocity va,‖ as

∆ηm0

ηm0
= 1−

j0,m
[
mava,‖RJ0 (j0,m) J1(mava,‖R)− j0,mJ1 (j0,m) J0(mava,‖R)

]
J1 (j0,m)

([
mava,‖R

]2 − (j0,m) 2
) . (B.1)

C Explicit Mode Mixing Matrix Calculations for Transverse Disk Thick-
ness Variations

We have verified the initial estimates in section 4.3 by calculating the mixing matrix P
numerically for many realization of thickness variations ∆z(r, φ) and observing how it changes
with ξ. Figure 12 shows the result of such a calculation for σ = 10µm. Other σ give analogous
results. Here we used ≈ 103 samples for the thickness variation at each scale. Each sample
corresponds to one realization of thickness variation. Higher number of samples make the
lines in the figure smoother. Solid lines correspond to the average results while the shaded
regions around them to the region in which 70 % of all results ended up. The top panel

shows how the phase error for the fundamental mode, Φm = Arg
[
Pm,0m,0

]
, changes with ξ.

The phase increases with ξ and approaches the value expected for a misplacement of 10 µm
(horizontal dotted line) when ξ approaches the disk diameter ξ ≈ ø. The orange line in the

lower panel shows the lost power in the fundamental mode, 1 −
∣∣∣P 1,0

1,0

∣∣∣2, as a function of ξ.

Losses are large for low ξ and approach the value expected from eq. (4.6) (horizontal dotted
line). Lastly, the blue curve in the bottom panel shows the magnitude of the mixing between
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Figure 12: Behavior of various properties of the mixing matrix P as a function of the
correlation length ξ of 10µm thickness variations in a vacuum gap. The top panel shows

the phase shift of the fundamental mode due to the thickness variation Arg
[
P 1,0

1,0

]
in green.

The green horizontal dotted line corresponds the expectation from eq. (4.5). The lower panel
shows the lost power in P 1,0

1,0 , in red and the magnitude of the off-diagonal coupling P 2,0
1,0 in

blue. The horizontal dotted line corresponds to the expectation from eq. (4.6). The solid
lines correspond to the expectation value after averaging over many realizations of thickness
variations. The shaded regions correspond to the range of 70 % of the realizations of such
thickness variations.

the fundamental and the second mode,
∣∣∣P 2,0

1,0

∣∣∣2, as a function of ξ. It is maximized near the

region where ξ is comparable to the length scale of the modes. Since the length scales for the
m = 1 ... 4 modes are similar, analogous results are obtained for the other relevant modes of
the dielectric haloscope.

D Allowed Fields for Azimuthal Symmetry and Linearly Polarized Source
Term

In the case of an azimuthally symmetric geometry and a linearly polarized external B-field
in the y-direction, we can use the 2D3D approach introduced in [50]. The total solution is
obtained as a superposition

E = Ẽ+eiφ + Ẽ−e−iφ, (D.1)

where the fields Ẽ+ and Ẽ− are calculated numerically as described in [50]. It is important
to notice that the ± solutions obey the relations

Ẽ−r ≈ −Ẽ+
r , (D.2)

Ẽ−φ ≈ Ẽ+
φ , (D.3)

Ẽ−z ≈ −Ẽ+
z . (D.4)
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which have not been used in [50].

Using eq. (D.1)–(D.4) the êr, êφ and êz contributions to the total E are

Er ∼ Ẽ+
r (r, z) sinφ

cosφ
sinφ

0

 , (D.5)

Eφ ∼ Ẽ+
φ (r, z) cosφ

− sinφ
cosφ

0

 , (D.6)

Ez ∼ Ẽ+
z (r, z) sinφ êz. (D.7)

From eq. (D.5)–(D.7) we see that the r-polarized electric fields always have sin φ and the
φ-polarized ones cosφ dependence. We also note that the x-component of the fields obeys
always a quadrupole structure. The y-component of the r (φ) component obeys a vertical
(horizontal) dipole structure.
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