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We present an argument for the advantages of using qudits over qubits for scalar Quantum
Electrodynamics in (1 + 1)d. We measure the mass gap using an out of time correlator as a
function of noise coming from an amplitude damping error channel and a generalized Pauli channel
decoherence channel for both qubits and qutrits. For the same error in determination of the mass,
the qutrit simulations can tolerate 10 to 100x larger gate noise than a qubit simulations. We find
that 20 per-cent accuracy on the mass gap could be possible in the near future with a qutrits but
is infeasible using qubits.

I. INTRODUCTION

There are many successes of Euclidean lattice QCD,
LQCD, in the past decades for high energy physics. In
particular these calculations have been able to provide
determinations of static quantities such as hadron masses
and decay rates [1, 2]. However, LQCD has been unable
to predict dynamical quantities such as inelastic scatter-
ing cross-sections above four particle inelastic thresholds
and real-time dynamics due to sign problems[3]. While
recent work has been done to address these problems [4–
8], quantum computing provides an avenue for advantage
over classical computing by circumventing this signal-to-
noise problem entirely [9–12].

Real-time simulations of QCD in 3 + 1 dimensions are
decades away; quantum hardware is still too noisy and
some necessary algorithmic tools are still missing. There-
fore, it is crucial to develop algorithms, regularization
schemes, and resource requirements with simpler models
that can inform future work. [13] proposed a road map
that proved successful for LQCD. This road map starts
with simple (1 + 1)d spin chains and gauge theories cou-
pled to matter, both of which are already the focus of
much study [14–33] and proceeds through models of ever
increasing complexity eventually culminating in LQCD
in (3 + 1)d. The next part involves (2 + 1)d Abelian
gauges theories. Studies of the simplest model, Z2, are
in progress as well [34–40]. Z2 gauge theories and Ising
spin models are useful toy models to begin testing quan-
tum computers, because their symmetries match nicely
with widely available qubit hardware. However, for high
energy physics, significant work toward best practices for
more complicated Abelian and non-Abelian gauge simu-
lations is another step that needs to be taken.

While fermions can be easily mapped to a quantum
computer [41, 42], it is more difficult to map scalar fields
and Abelian and non-Abelian gauge theories which pos-
sess continuous degrees of freedom. These theories need
to be digitized and in order to map them to a quan-
tum computer. Methods for digitizing for Abelian and
non-Abelian gauge theories [43–63] and scalar theories
[11, 64–66] are currently being actively studied. Abelian
theories such as U(1) can be approximated by the dis-
crete group ZN . While any choice of N can be used to

approximate U(1), in order to ensure the existence of the
massless U(1) phase at least N ≥ 5 is necessary if using
naive actions [67–72], while improved actions let us use
courser truncations [73]. Non-Abelian theories such as
SU(2) and SU(3) can be approximated by crystal sub-
groups [54–56, 74–78]. In many of the U(1) approxima-
tions and all the discrete subgroup approximations the
local Hilbert space for the link variables is not a power
of 2. This becomes a problem for qubit based quantum
computers; there are extra unused degrees of freedom
on the qubits encoding the link that can become popu-
lated by quantum gate approximations or quantum noise.
Both of these have the result of creating unphysical quan-
tum states. In addition, most qubit based quantum com-
puters today have a nearest neighbor connectivity that
hampers studying models whose local Hilbert spaces have
dimension larger than 2. This frequently requires the in-
clusion of swap gates. For this reason it is more desirable
to have a quantum object or group of objects with a
Hilbert space of the same dimension as the local Hilbert
space of the gauge link. This can be addressed by qudits,
a generalizations of qubits with d-states.

Much work has been done on qubit based hardware
since it is what is most widely available, however recent
studies have shown that qudit (d-state quantum objects)
based algorithms are frequently more efficient for quan-
tum computing [50, 79–87]. In addition there have been
recent proof of principle implementations of qutrits [88–
95] and cavity QED for qubit-qudit couplings [96–102].
In the context that this paper examines the benefits of
qubit versus qutrit encodings for noisy quantum comput-
ers using (1 + 1)d scalar QED, sQED, as a first step.

A gauge invariant representation of this model was ini-
tially studied in [46–49]. This work extends the study
done in [50] by looking more closely at emulations of
NISQ era machines to simulate sQED. In order to study
this comparison we will measure the mass gap as an ex-
ample to show how qutrits are better for quantum simu-
lations than qubits.

This paper is organized as follows. Sec. II lays out
background theory and Hamiltonian for sQED and the
observable that will be measured. Sec. IV outlines the
circuit costs and the set of native gates used in this paper.
Sec. V briefly outlines the two quantum noise models,
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and the results of using these noise models with strengths
across multiple orders of magnitude for qubit and qutrit
machines are discussed in Sec. VI. Sec. VII closes out
this work and discusses the outlook for qubit versus qutrit
based quantum computers for simulating sQED on a dig-
ital quantum computer.

II. THEORY

Following references [46–49] and summarizing [50], the
Euclidean action for the sQED in (1 + 1)d is

S =− 1

g2asaτ

∑
x

∑
ν<µ

ReTr(Ux,µν)

− aτ
as

∑
x

(
φ†xUx,sφx+ŝ + h.c.

)
− as
aτ

∑
x

(
φ†xUx,τφx+τ̂ + h.c.

)
.

(1)

The bare mass of the fundamental scalars is an additive
constant because the magnitude of the scalars has been
fixed to unity. In Eqs. (1), g2 is the gauge coupling, as is
the spacial lattice spacing, and at is the temporal lattice
spacing. The compact fields Ux,µ and φx are defined as

Ux,µ = eiAx,µ and φx = eiθx . (2)

The derivation of the Hamiltonian is carried out in
detail [46–49]. The derivation involves integrating out
the matter fields. Using tensorial methods the transfer
matrix is used to take the time continuum limit. In this
limit we end up with the rotor Hamiltonian,

Ĥ = ĤV + ĤK (3)

where

ĤV =
g2as

2

Ns∑
i=1

(L̂zi )
2 +

1

2as

Ns∑
i=1

(L̂zi − L̂zi+1)2 (4)

is the gauge and potential terms,

ĤK = − 2

as

Ns∑
i=1

Ûxi , (5)

are the matter dynamics terms, and the effect of the op-
erators L̂z and Ûx on the rotor states |n〉 are

L̂zi |n〉i = n|n〉i (6)

and

Ûxi |n〉i =
1

2

(
|n− 1〉i + |n+ 1〉i

)
. (7)

The Hilbert space operators in Eqs. (6) and (7) act on are
formally infinite dimensional. In this work we will work in
lattice units where as = 1. In addition we choose g2as =

5 so that the effects of higher order states are negligible
due to the (L̂z)2 term making higher rotor states less
energetically favorable [49, 50].

Up to this point the Hilbert space the operators in
Eq. (3) act on is infinite. In practice this Hilbert
space needs to be truncated so that it is practical to
implement on a quantum computer due to memory con-
straints. The structure of the operators in this model are
naturally truncated to an odd-dimensional local Hilbert
space. This is to avoids an asymmetry in quantum states
of the links, i.e. the states range from −m to m rather
than −m+1 to m, where m is the maximal value allowed
on a link. For this reason the simplest mapping for this
model would require 3 states. If we consider trunctat-
ing the U(1) symmetry to three states, we can map this
Hamiltonian onto two qubits or one qutrit. The allowable
quantum states on the given link are |±1〉 and |0〉. While
the work that follows uses qutrits, the same methodology
can be applied to higher dimensional operators as well.
In this way, the operators in Eq. (6) and Eq. (7) can be
written as the following matrices:

L̂zi =

1 0 0
0 0 0
0 0 −1

 (8)

and

Ûxi =
1

2

0 1 0
1 0 1
0 1 0

 . (9)

For a quantum simulation of a lattice field theory we need
to have some way to determine what the actual lattice
spacing is. If we want to extract continuum physics, it is
important to know what the lattice spacing is. Methods
for this in regard to quantum simulations are currently
being studied [103]. In order to determine the lattice
spacing typically the mass of some particle of interest is
used. This mass in Euclidean calculations is typically
extracted using a temporal correlator,

C(t) = 〈O(t)O(0)〉 = 〈ψ|Û†(t)ÔÛ(t)Ô|ψ〉. (10)

While [103] indicated it may not be necessary to use
quantum simulations to set the scale, calculations of
many different dynamical quantities will be effected by
the noise of quantum computers and using a real-time
correlator will provide a pessimistic estimate of the re-
sources required to extract results from a quantum cal-
culation.

To measure the extract the mass of the lightest bound
state we need to measure the correlator,

C(t) = 〈Γ|eitĤ
∑
x

Û−x e
−itĤU+

0 |Γ〉. (11)

The operators Û± raise or lower the state |n〉 by one.
|Γ〉 is a state that has a roughly good overlap with the
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ground state when taken as a tensor product over all the
sites,

|Γ〉 = (| − 1〉+ b|0〉+ |1〉)/
√
N , (12)

where

b =
g2 + 1 +

√
(g2 − 1)2 + 32

4
(13)

and

N =
√

2 + b2. (14)

This state is chosen for the following reason. Since the
interaction term is is weak the ground state can roughly
be approximated by diagonalizing the operator(g2 + 1

2
+ 1
)

(L̂z)2 − 2Ûx.

Since |Γ〉 roughly approximates the ground state,

e−itĤ |Γ〉 ∼ e−itE0 |Γ〉, (15)

where E0 is the smallest eigenvalue of Eq. (3) Similarly

since Û+ will roughly excite the lightest bound state [50],∑
x

U−x e
−itĤ Û+

0 |Γ〉 ∼ e−itE1 |Γ〉. (16)

E1 is the eigenvalue of the lightest bound state. Com-
bining these two equations together will have Eq. (10)
given by

C(t) ∼ eit(E0−E1) = e−itm, (17)

where m is the mass of the particle. We will extract this
energy difference by taking a fast Fourier transform of
the time series correlator to generate a frequency spec-
trum. The mass will correspond to the largest peak in
the frequency spectrum.

In the following section we discuss the systematic er-
rors that will arise from using the correlator to set the
scale δt for a quantum simulation.

III. SYSTEMATICS

There are many systematic errors that are noticeable
for any NISQ era QFT simulation. These systematic er-
rors will come from two places: the Fourier transform
of the time series data, and Trotterization. These first
two types of errors are also going to exist in fault tol-
erant computers, while systematic and coherent errors
from gate operations will only be a NISQ era problem.

Given the corrrelator in Eq. (11), a Fourier transform
will take this time series data and provide an energy spec-
trum that should be sharply peaked around the desired

state of interest. In practice this is done by taking a fi-
nite number of time steps at a finite resolution of δt. The
lower bound on the uncertainty is therefore going to be

δEFFT = 2π/(δtNsteps), (18)

where δt is time resolution and Nsteps is the number of
sample in time. The time resolution, δt, directly imposes
an upper bound on the observable energy. Nsteps imposes
a finite resolution on the energy given a choice of δt. It
should be reiterated, the resolution in Eq. (18) is a lower
bound. In practice the imprecision of the source opera-
tors Û± will impose ancillary excitations and decreased
resolution of the peaks.

In practice implementing e−itĤ is impractical and we
will need to resort to Trotterization to implement the

time evolution. This involves approximating e−itĤ by

e−iδtĤ ∼ ÛTr(δt) = Ûz(δt)Ûzz(δt)Ûx(δt) (19)

where

Ûz(δt) = e−iδt(g
2/2+1)

∑
i(L̂

z
i )

2

, (20)

Ûzz(δt) = e−iδt
∑
i(L̂

z
i L̂

z
i+1), (21)

and

Ûx(δt) = e−iδt
∑
i(Û

x
i ). (22)

The Trotterization of the time evolution operator is going
to take us away from the correlator in Eq. (11) to

C(t;n) = 〈Γ|eitĤBCH
∑
x

U−x e
−itĤBCHU−0 |Γ〉. (23)

The term, ĤBCH , is the Baker-Campbell-Hausdorff
(BCH) Hamiltonian that is actually being simulated via
Trotterization [103]. This Hamiltonian is

ĤBCH =Ĥ − δt2

24

(
[2ĤK [ĤK , ĤV ]]

+ [ĤV , [ĤV , ĤK ]]
)

+O(δt3),

(24)

where Ĥ1 and Ĥ2 are defined in Eq. (4) and Eq. (5) re-
spectively. As a consequence, Trotterization will impose
anO(δt2) systematic error on the energies measured from
the correlator.

The uncertainty from the Fourier transform is plotted
in Fig. 1. In addition the regions corresponding to cer-
tain chosen accuracies and precisions (20, 10, and 5 per-
cent) that are bounded both by the Fourier transform and
the BCH Hamiltonian. These bounds are summarized in
Tab. I. The minimal number of Trotter steps increases
quickly with respect to the desired accuracy. Similarly
the required Trotter step size, δt, shrinks quickly as well.
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Accuracy δt < Min. Nsteps

20% 0.6 20

10% 0.36 50

5% 0.25 180

Table I. Maximal δt and minimum Nsteps to achieve a given
systematic accuracy on the mass gap. These bounds are de-
rived from Fig. 1
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Figure 1. Systematic error from Fourier transform as a func-
tion of the number of Trotter steps and Trotter step size. The
solid, dashed, and dotted white lines bound the region where
the accuracy and precision are sub 20, 10 and 5 per-cent ac-
curacy and precision.

IV. CIRCUITS

Qutrit circuits do not have a unique mapping onto
qubit circuits. Assuming that linear combinations for
the encoding are not used, there are twelve different dif-
ferent ways one can encode a qutrit state onto a pair of
qubits. In this work we use the mapping,

|0〉3 =|00〉2, |1〉3 = |01〉2, |2〉3 = |10〉2, (25)

although the end choice should not matter dramatically.
The subscripts here denote whether the state is a qubit,
|〉2, or a qutrit |〉3 state. A side effect of this mapping is
that the rotations between the states |0〉3, |1〉3, and |2〉3
do not need an entangling gate but the qubit states need
entangling operations to rotate between the states, |01〉2
and |10〉2. In addition encoding a qutrit onto a qubit
has an added difficulty that an unused fourth state |11〉2
remains. Including this state results in the un-physical
portions of the Hilbert space being reached when gate
noise is present that will allow coupling between the |11〉
state and the other states. This is nearly identical to the
problem in quantum simulation of gauge theories, where
noise can move the simulation out of the physical Hilbert
space [104–108]. There are ways to minimize these er-
rors on noisy quantum computer using proceedures such

Operator 1-qubit 2-qubit 1 qutrit 2-qutrit

Vg 3 2 2 0

CUg 54 54 5 2

e−iθ(L
z)2 1 0 2 0

e−iθU
x

6 2 5 0

e−iθL
zLz 4 26 4 3

Table II. Basic gate costs for the qubit and qutrit encodings
of each operator in the quantum circuit.

as Pauli Twirling and randomized compiling [109–112].
However Pauli Twirling and randomized compiling may
still not address the issue of populating the unphysical
state entirely. Because Pauli twirling transforms an error
channel into a stochastic one, random errors populating
the unphysical state could still be present or amplified
because there will always be a non-zero probability of
producing the |11 > state.

Two important, but not exclusive, factors when con-
sidering these two encodings for NISQ devices are: entan-
gling gate depth and idle time. Entangling gates are typi-
cally the longest and noisiest operation on a NISQ device,
therefore minimizing entangling gate depth is crucial for
any quantum simulation. Idle time is also a major con-
tributing factor. When qudits are idling the excited state
populations can dephase and decay. This is a greater is-
sue with qudits because they higher energy states decay
faster by 25 to 50 % [89, 90]. This decay can be mit-
igated in some ways by dynamic decoupling [113–115].
It is worth noting that cross-talk [80, 109, 116–119] is
an additional noteworthy source of noise in many quan-
tum computers but in transmon systems due to frequency
crowding [118, 119] but is a topic for later investigation
as it involves non-local and spectator errors that make
the noise models significantly more complicated.

The quantum circuits required can be split into two
parts: state preparation and Trotterization. For qubits,
the primitive gates are assumed to be parameterized Rx,
Ry, and Rz rotations and the controlled not gate. For
qutrits, the primitive gates are Rx, Ry, and Rz rotations
in the the |0〉- |1〉 and |1〉-|2〉 subspace, and the controlled
sum gate,

CSUM =
2∑
i=0

2∑
j=0

|i〉〈i| ⊗ |j〉〈(j + i)mod 3|. (26)

The CSUM gate is a natural extension of the CNOT to
a qutrit. A summary of all the gate costs is provided in
Tab. II.

The state preparation circuits take the quantum sys-
tem from the initial computational qutrit state to the
desired initial state. There are two operators that we
need for this state preparation, V̂g which takes |0〉 to |Γ〉
and ĈU which takes the |0〉 state to |Γ〉|0〉a + Û+|Γ〉|1〉a,
where the a indicates the use of an ancilla qubit / qutrit
which is needed to measure a unitary observable. In Fig.
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2 are the qutrit implementations of the V̂g operator from
[50]. The angles ρ1 and ρ2 are given by the following
equations,

ρ1 =− arccos(1/M)

ρ2 =− arccos(1/
√
M2 − 1)

M =

√
2 +

1 + 2g2 +
√

129 + 4g2 + 4g4

8
.

(27)

The first rotation create a superposition of |0〉 and |1〉
state. The second angle takes the |1〉 state and rotates
it so that there is an equal probability in the |0〉 and
|2〉 states. The qutrit encoding of this operator has two
NISQ-era advantages over the qubit encoding. The first
advantage is the qutrit encoding requires no entangling
gates while the qubit encoding requires two controlled
not gates. Secondly, qutrits in contrast to qubits require
no idle time to perform this circuit.

V̂ q3g = Ry0,1(2ρ1) Ry1,2(2ρ2)

V̂ q2g =

Ry(ρ1) Ry(ρ1)

Ry(ρ2) • •

Figure 2. Quantum Circuit to carry out the Vg operator on
a qutrit (top) and qubit register (bottom) to create the one
qutrit state |Γ〉 from Eq. (12). The angles ρ1 and ρ2 are
provided in Eqs. (27) and (29). The dashed box indicates a
region where the qubits are idling.

ĈU
qtr

g;c,t =

H0,1 • •

Ry01(ω1) Ry12(ω2) X † Ry01(ω3) Ry12(ω4) X

Figure 3. The quantum circuit to implement the opera-
tion to create the superposition state for the source operator
ĈUg. Which implements creating the initial state Û+|Γ〉+|Γ〉.
These create the states used to measure correlator in Eq. (11).
The qubit circuit is long and determined using QISKit. The
boxed areas of the circuit indicate times when the qutrit is
idling. The c and t subscripts indicate the control (top line)
and target (bottom line) qutrits.

angle ω1 ω2 ω3 ω4

value 1.5902 1.9847 2.4373 1.5911

Table III. Optimal angles for the Ryi,j qutrit rotations shown
in Fig. 3 for the given choice of g.

We perform the excitation operator by applying a con-

trolled unitary ĈU
qtr

g which carries out the following
transformation

ĈU
qtr

g |0〉(|0〉a + |1〉a) = |Γ〉|0〉a +
1

N ′
U+|Γ〉|1〉a. (28)

The subscript a indicates it is an ancilla qutrit state. The
ancilla qutrit state is used in conjunction with Û− at the
end of the circuit to measure the correlator in Eq. (11).
The quantum circuit to encode the source excitation in
the qutrit encoding is provided in Fig. 3. The angles ωi
are Hamiltonian coefficient dependent and found by the
unitary of the form in Fig. 3 that creates the state in Eq.
(28). These angles are listed in Tab. III.

The key features of this encoding are that only two
two-qutrit entangling gates are necessary and there is a
single 1-qutrit rotation of idle time on the ancilla qutrit.
The qubit encoding is sixteen times longer in terms of en-
tangling gate depth and is provided in Fig. 11 in the ap-
pendix. It was derived using the unitary decomposition
tool in QISKit [120]. Provided an all to all connectivity
this gate would require 15 CNOTs which is slightly above
the theoretical lower bound for an arbitrary 3-qubit gate
(13 CNOTs) and below many optimized compiling meth-
ods (21 CNOTs) [121, 122]. While this encoding seems
close to optimal, if the qubits are connnected along a
line then this CNOT cost rises to 51 due to the inclusion
of swap gates. This is troublesome because 36 of these
CNOTs are part of swap operations. In addition because
of the number of the entangling gate operations there are
48 CNOT gates where the other 6 qubits are idling.

The second set of circuits involve the Trotterization of
the Hamiltonian. These can be separated into the three
rotations given in Eqs. (20), (21), and (22). The qubit
and qutrit circuits for Eq. (20) do not require an entan-
gling gate and are in general noise free due to the hard-
ware implementations [89, 90, 120]. Graphical depictions
of these circuits are provided are provided in Fig. 4.

Ûqutritz = Rz0,1
(−θ

3

)
Rz1,2

(
θ
3

)

Ûqubitz =
Rz(θ)

Figure 4. Quantum Circuits to carry out the e−iθ(L̂
z)2 oper-

ator on qutrits (top) and qubits (bottom) in Eq. 20.

Fig. 5 shows the rotations for implementing the
e−iδtU

x

gate in both encodings. The angles for the the
qubit encoding are less straight forward to determine and
are found by using the QISKit unitary decomposition.
These angle are given by

α =f(δt)

β =π − π/2 sin(δt/(2
√

2))

γ =π/2− α

δ =− δt

2
√

2

(29)

where f(δt) does not appear to have a simple closed form
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Ûqutritx (δt) = Ry(0,2)
(
π
2

)
Ry(0,1)

(
π
2

)
Rz0,1(δt

√
2) Ry(0,1)

(−π
2

)
Ry(0,2)

(−π
2

)

Ûqubitx (δt) =
Rz

(−π
2

)
Rx

(
π
2

)
Rz(α) • Rz

(−π
2

)
Rx(β) • Rz(γ) Rx

(
π
2

)
Rz

(
π
2

)
Rz

(−π
2

)
Rx

(
π
4

)
Rx

(
π
2

)
Rz(δ) Rx

(
π
4

)
Rz

(
π
2

)
Figure 5. Quantum circuit to implement eiθU

x

rotation from Eq. (19) on qutrits (top) and qubits (bottom). α, β, γ, δ are all
angles that are solely functions of δt.

Ûqutritzz (δt) =

• • •

Csum Rz0,1( 2δt
3

) Rz1,2( δt
3

) Csum Rz1,2( 2δtY
3

) Rz0,1( δt
3

) Csum

Ûqubitzz (δt) =

× ×

• × Rz
(
θ
2

)
Rz

(
θ
2

)
× •

× Rz
(
θ
2

)
• × • • × • • ×

× Rz
(
θ
2

)
× • × ×

Figure 6. Quantum circuits for implementing the L̂z ⊗ L̂z from Eq. (19) rotations on qutrits (top) and qubits (bottom). For
the qubits the two lines correspond to the top line on the qutrit circuit and the bottom two lines correspond to the bottom line
on the qutrit circuit. The boxes indicate all the places where qubits are idling (no gate operations are being applied).

01

02

11

12

21

22

31

32

41

42

Figure 7. Qubit layout to eliminate need for swap gates in
qutrit encoding of (1 + 1)d sQED. The circles denote qubits,
the numbers within denote the different rotors and the sub-
script indicates the qubit composing the qutrits. The lines
connecting circles indicate the which qubits are connected.

solution but appears to be composed of a linear term with
oscillatory corrrections. In both encodings there is no idle
time. The substantive difference is that entangling gates
are not necessary for the qutrit encoding.

Fig. 6 shows the implementation of the coupling term

e−iθL̂
zL̂z . Since the Rz rotations are implemented by ref-

erence frame changes on the quantum hardware there is
no idle time on the qutrits. However in addition there
8 required entangling gates and 6 swap (18 controlled
not) gates for the qubit encoding while the qutrit encod-
ing requires 3 controlled sum gates. The qutrit encoding
also is nearest neighbor while the qubit encoding requires

swaps. If instead the qubits that compose the synthetic
qutrit are connected to all the qubits that compose the
neighboring synthetic qutrits then the swaps can effec-
tively be eliminated an illustration of this connectivity is
provided in Fig. 7.

In addition the effective entangling gate depths for each
of the circuits are provided in Tab. II. From each of these
tables, we can see that the qutrit encoding requires in
total fewer gates and has shorter circuits that the qubit
encoding.

V. ERROR MODELS

We look at two well studied [80, 110–112, 123–127] er-
ror models for quantum computing, a Pauli-decoherence
channel and a thermal relaxation channel. The explicit
representation of these channels are given for both qubit
and qutrits but are naturally extendable to higher dimen-
sional qudits.

The Pauli decoherence channel is useful since it is a
natural extension of a classical computing error chan-
nel. The Pauli decoherence channel is frequently used as
the basis for construction of fault tolerant codes [110–
112, 127], as well as introductory models to describing
noise in quantum simulations [118, 128]. There is an
assumption in the work that follows that single qubit /



7

qutrit gates are approximately O(1) and noiseless. While
this may be functionally true for qudits with some small
number of states this may not necessarily true in general
for qudits with suppose 20 or more states as the number
of rotations scales like O(d2) where d is the number of
states. Therefore there is a caveat on this scaling argu-
ment presented here; single qudit gates for qudits with a
large number of states may not necessarily be noiseless
or be functionally instantaneous.

V.1. Pauli decoherence channel

The Pauli decoherence channel corresponds to some
combination of bit-flips (|0〉 ↔ |1〉) which can be mod-
eled by the application of σx to a qubit and phase-flips
(|1〉 ↔ −|1〉), modelled with a σz happening after a
quantum gate is applied [110, 112, 127, 128]. The Pauli-

decoherence channel, E(2)Pauli, can be written as

E(2)Pauli(ρ) = (1− p)ρ+ p/4
3∑
i=0

σ̂iρσ̂i, (30)

where,σi are the Pauli group. This error channel can be
extended to a two qubit one in the following way:

E(2)Pauli−2q(ρ) = (1− p2,2)ρ+ p2,2/16
∑
i,j

σ̂1
i σ̂

2
jρσ̂

1
i σ̂

2
j .

(31)

The superscripts, 1 and 2, indicate the Pauli matrices act
on the first and second qubit respectively.

This decoherence channel has a natural extension to
qutrits. The single qutrit error channel, E(3)Pauli(ρ), is

E(3)Pauli(ρ) = (1− p)ρ+
p

9

2∑
i=0

2∑
j=0

X̂ iẐ
j
ρ(Ẑ

j
X̂ i)†. (32)

The operators in this noise model are given by the ma-
trices,

X̂ =

0 1 0

0 0 1

1 0 0

 and Ẑ =

1 0 0

0 e2iπ/3 0

0 0 e4iπ/3

 . (33)

This can be modelled as qutrit states being shifted in-
stead of flipped, X̂ , and phases being shifted Ẑ. The
2-qutrit error model is given by a tensor combination of
the two.

E(3)Pauli−2q(ρ) =(1− p2,3)ρ+

p2,3
81

∑
i,j,k,l

X̂ i1X̂
j
2 Ẑ

k

1Ẑ
l

2ρ(X̂ i1X̂
j
2 Ẑ

k

1Ẑ
l

2)†.

(34)

After every application of the controlled sum gate the
density matrix is changed by passing it as the argument
to the above expression. Currently values of p2 for qutrits
are approximately 0.13 [89].

V.2. Amplitude damping channel

The amplitude damping channel corresponds to idling
and circuit time errors and represents excited quantum
states decaying to lower energy states. This is typically
considered an accurate approximation of some noise on
quantum computers [79, 80, 89, 90, 110, 111, 127] as it is
related to the decay time, T1, from the |1〉 state to the |0〉
state. This non-unitary channel for a qubit is given by a
the following Kraus map, which describes the evolution
of the density matrix [127]:

Etherm(ρ) = K̂0ρK̂0 + K̂1ρK̂
†
1 , (35)

where Ki are Kraus operators of the form,

K̂0 =

(
1 0

0
√
e−t/T1

)
and K̂1 =

(
0
√

1− e−t/T1

0 0

)
,

(36)
where t is the implementation time of the quantum gate.
These operators cause the system to decay from the |1〉
state to the |0〉. We use this to model the dependence of
the system on the simulation time. The generalizations
to a qutrit are given by decays from the |1〉 → |0〉 and
|2〉 → |0〉. The Kraus map for these operators is

Etherm(ρ) =

2∑
i=0

K̂iρK̂
†
i , (37)

where

K̂0 =

1 0 0

0
√
e−t/T1 0

0 0
√
e−2t/T1

 ,

K̂1 =

0
√

1− e−t/T1 0

0 0 0

0 0 0

 , and

K̂2 =

0 0
√

1− e−2t/T1

0 0 0

0 0 0

 .

(38)

While the T1 time for the |1〉 → |0〉 decay does not have
to be one half the T1 time for the |2〉 → |0〉 decay this is
chosen to simplify the parameter space search.

VI. RESULTS

We discuss the results of using these error models
to examine the effects of noise on this quantum sim-
ulation. The qubit simulations were performed using
QISKit’s density matrix simulator [120]. All the errors
are assumed to be contained within the CNOT gate for
the Pauli decoherence channel and the amplitude damp-
ing channel is applied for all quantum logic operations.
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Figure 8. Discrepancy of m from BCH Hamiltonian found via Fourier transform of Eq. (11) using NTrotterN = [40, 80, 200]
corresponding to δEfft/m = [20%, 10%, 5%] as a function of only the Pauli decoherence error of the qubit (qutrit).
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Figure 9. Accuracy of m found via Fourier transform of Eq. (11) using NTrotterN = [40, 80, 200] corresponding to δEfft/m =
[20%, 10%, 5%] as a function of only the Tg / T1 of the qubit (qutrit) where Tg is the CNOT or CSUM gate time.

The qutrit simulations were implemented in python using
numpy for the density matrix representation for the oper-
ators and noise channels. The Pauli decoherence channel
was applied after the CSUM gate only. While the am-
plitude damping channel was applied after all Rx and
Ry rotations. The simulations used a Trotter step size
of δt = 0.235 and were carried out for NTrotter Trotter
steps, with NTrotter = [40, 80, 200]. These choices for
NTrotter correspond to accuracies of 20%, 10%, and 5%
and are chosen as feasible goals for the near future.

Before combining the two error models together, we
briefly examine general effect both channels have on de-
terminations of the mass independently. The limiting
case of Pauli decoherence alone is shown in Fig. 8. For
both the qubits and qutrit simulations, the noise rate to
achieve a precision for m appears to scale as

δEfft/m ∝ p2.

where the constant of proportionality for qubits is ∼ 200
and the constant for qutrits is ∼ 4. The best case preci-
sion is governed by Eq. (18), and the required errors p2,2
and p2,3 are given in Tab. IV. In addition we find that
the values of p2,3 are O(102) larger than for p2,2. This
indicates that are qutrit machines can be substantially
worse and we will still achieve reasonable results with a
high fidelity qubit computer.

In the case of solely amplitude damping, we find that
the required CNOT gate times need to be less than
10−3T1. However the required CSUM gate times need
only be less than 10−1T1.The required gate times for the
different desired precisions. These required gate times
for a given precision are listed in Tab. V and the accu-
racy as a function the gate times is shown in Fig. 9. In
summary the qutrits T1 can be 100 times greater than
the qubit T1 and the same precision can be achieved.
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A p2,2 × 10−4 p2,3 × 10−2

20% 4 8

10% 2 4

5% 1 1

Table IV. Estimates for required entangling gate error for
qubits and qutrits to achieve a given accuracy on the mass
gap.

A TCNOT
T1

× 10−4 TCSUM
T1

× 10−2

20% 8 10

10% 8 3

5% 3 1

Table V. One significant figure estimates of entangling gate-
T1 requirements for qubit and qutrit simulations to achieve
desired accuracy.

In both of these limiting cases we find that the re-
quired gate times and Pauli decoherence error rates are
well beyond what is deliverable on current qubit based
machines. However, the required gate times and Pauli
decoherence rates are much less stringent and are sub-
stantially closer to what is deliverable currently.

VI.1. Combined Noise Model

Now that we have examined these asymptotic limits,
the combination of these two errors may provide a more
robust description of a NISQ machine. Fig. 10 shows
the accuracy of the simulations of the qubit and qutrit
encodings across several orders of magnitude for T1 time
and entangling gate errors. The accuracy is defined as

A = max
(δEm(T1, p2)

Em;th.
,

(Em(T1, p2)− Em;th.)

Em;th.

)
, (39)

where Em;th. is the expected mass from Eq. 24,
Em(T1, p2) is the mass derived from the noisy sim-
ulation. This metric helps combine the accuracy,
(Em(T1,p2)−Em;th.)

Em;th.
, and precision, δEm(T1,p2)

Em;th.
, of the sim-

ulation into a single number. This inaccuracy in Fig. 10
is shown across the three different evolution times select-
ing the case among Nt = 200, 80, and 40 that provides
the best accuracy. The striking features that we can see
from this plot are that across both errors the qutrit sim-
ulations achieve similar results with one to two orders
of magnitude worse errors than qubit simulations. The
lines demarking the estimated required errors in Fig. 10
are provided in Tab. VI.

Its clear that even a four site simulation of this field
theory is beyond the capabilities of NISQ era qubit based
machines given that for even 20 per-cent accuracy depo-
larizing errors have to be sub 0.05 percent and T1 times
have to be 1000 times longer than the implementation of
a CNOT gate. While higher precision (with 5 and 10 per-
cent) are beyond the ability of current qutrit machines

[89, 90], if 20 percent precision is desired it is possible
that a NISQ era qutrit machine could extract the mass
for a 4 site model as a proof of principle.

Figure 10. Accuracy, A, as a function of entangling gate Pauli
decoherence error and 2 qudit gate time for a qubit encoding,
(a), and qutrit encoding (b). The dashed white line is the 20
per-cent error threshold. The dot-dashed white line is the 10
per-cent error threshold. The solid white line is the 5 per-cent
error threshold.

A qubit error bound qutrit error bound

20% TCNOT
T1

. 0.0005− 0.8013p2,2
TCSUM
T1

. 0.030− 0.618p2,3

10% TCNOT
T1

. 0.0003− 0.9365p2,2
TCSUM
T1

. 0.013− 0.774p2,3

5% TCNOT
T1

. 0.0002− 1.6456p2,2
TCSUM
T1

. 0.007− 1.091p2,3

Table VI. Approximate noise rate bounds for qubit and qutrit
simulations to achieve a desired accuracy on the mass gap. Tg
is the entangling gate time, T1 is the relaxation time, and p2
is the entangling gate Pauli error

VII. CONCLUSIONS

This work has provided an estimate for the noise re-
quirements for qubit and qutrit machines to simulate a
three-state truncation of a csQED on four sites. Its is
found that even for four sites qubits will not be feasible
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for simulating this theory unless extremely high fidelity
gates (> 0.9995) with extremely fast entangling gates
that are approximately 1000 times the T1 time of the
qubit. These requirements are an optimistic estimate, if
spectator errors and cross talk are additionally included
these noise requirements will be even more stringent. For
qutrits, the fidelities for the entangling gates can be ap-
proximately 0.99 and scaled gate times can be 1.5 to 2
orders of magnitude shorter than for qubit to achieve ap-
proximately the same accuracy as for qubit simulations.

Nevertheless if these small scale simulations are sugges-
tive, even small-scale problems in 2 + 1 and 3 + 1 dimen-
sions will likely require some level of error correction. For
this reason, it will be important for future work to look
at algorithmic costs with similar fault tolerant gate sets
to compare the qubit-qutrit-qudit encodings. However if
20 - 100 percent accuracy is acceptable on certain observ-
ables, such as transport coefficients [129], there maybe a
small window where non-error corrected qutrits and qu-

dits may be able to effectively simulate a related (2+1)d
and (3 + 1)d theory.
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|0〉a Rz(π/2) Rx(π/2) Rz(0.83836) Rz(−π/2) Rz(−π) Rx(π/2)

|0〉 • × • × • Rz(−0.84541) × • × Rz(π/2)

|0〉 × × × × •

Rz(π/2) Rz(−π) Rx(π/2) Rz(π) Rx(π/2) Rz(π/2) Rx(π/2)

• × • × • Rz(−3.1363) Rx(1.6792)

• Rz(−1.8323) × ×

Rz(1.9574) •

Rz(1.6675) Rz(−3.2377) Rx(1.576) Rz(3.25) Rz(−0.10844) Rx(1.576) Rz(0.096106)

•

• Rz(−π) Rx(π/2) Rz(π/2) Rz(−π) Rx(π/2) Rz(π) Rx(π/2) Rz(2π)

Rz(1.4741) Rx(1.6792) Rz(1.748) • × • × • Rz(−π)

× ×

Rx(0.10016) Rz(π) Rx(π/2) Rz(π)

Rx(π/2) Rz(π/2) Rz(−3π/2) Rx(π/2) Rz(2.4945) • × • ×

• × ×

Rx(π/2) Rz(−3π/2) Rx(π/2) Rz(0.92231) •

• × ×

Rz(−3.1856) Rz(1.0343) Rz(1.7307) × ×

Figure 11. Quantum Circuit to implement ĈU
qbt

g . The dashed regions denote regions where the qubits are idling.
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