Constraining High Energy Intrinsic Beam Background of the NOvA Experiment

Ishwar Singh, Brajesh Choudhary, University of Delhi, Delhi
Prabhjot Singh, Queen Mary University of London, London
On behalf of the NOvA Collaboration
Invisibles’22 Workshop, ICJLab, Orsay, France

The NOvA Experiment

- NuMI Off-axis ν_e Appearance Experiment (NOvA)
- A long-baseline Neutrino Oscillation Experiment
- ν_μ beam is provided by Fermilab’s NuMI beam line
- Two Detectors - functionally identical
 - Situated 809 km apart
 - 14.6 milli-radians Off-axis
- Primary Goal: To constraint parameters of 3-flavor neutrino oscillations
- Oscillation Channels:
 - ν_μ ($\bar{\nu}_\mu$) Disappearance
 - ν_e ($\bar{\nu}_e$) Appearance

High Energy ν_e Events

- NOvA uses ν_e ($\bar{\nu}_e$) events with $1 < E_e < 4$ GeV for constraining the oscillation parameters
- FD predictions included ν_e ($\bar{\nu}_e$) events with energies up to 12 GeV
- Impact of these high-energy ν_e ($\bar{\nu}_e$) events on oscillation sensitivity was investigated

FD ν_e Predictions

- A joint fit to FD ν_μ, $\bar{\nu}_\mu$, ν_e, and $\bar{\nu}_e$ predictions was performed, with various samples included
- Additional high energy ν_e ($\bar{\nu}_e$) events were added to FD predictions to try to constrain large beam ν_e ($\bar{\nu}_e$) background

Beam Background - Sources

- ν_e appearance signal in the FD is mimicked by intrinsic beam ν_e events
- The majority of low-energy ν_es arise from μ^\pm decay
- Most of the high energy ν_es come from K^\pm and K^0 decay
- Aimed to constrain high energy beam ν_e background

Conclusions

- Minimal gain in signal events from high energy sideband sample
- Beam background dominates the high energy sample
- Impact on NOvA standard 3-flavor oscillation sensitivities is minimal