The NOvA Experiment

Long Baseline Neutrino Oscillation Experiment
- Measures neutrino mixing angles, δ_{CP}, and Δm_{32}^2 [1,2]
- Functionally-identical near and far detectors reduce correlated uncertainties

Detectors
- Near: 290 ton, Far: 14 kton
- Tracking calorimeter
- Optimized for electron and muon ID
- Alternating planes of PVC pixels filled with liquid scintillator
- 3D tracking

Neutrino Flux
- NuMI Beam
 - 120 GeV Proton Accelerator [3]
 - Focusing horns enable neutrino- and antineutrino-enriched flux

Neutrinos at NOvA
- Intrinsic ν_e component from muon and kaon decay (0.5%)
- 14e20 POT Neutrino Mode
- 12e20 POT Antineutrino Mode

Data-Driven Signal Estimation

Template Fit Signal Extraction
- Signal and background templates are fitted to data
- Minimize $-2 \ln L = (x - \mu)^T \Sigma^{-1} (x - \mu)$
- Extract $a_{\nu,CC}$ as signal normalization
- Extends to many dimensions

NueID Templates
- Optimized BDT to distinguish NC from $\bar{\nu}_eCC$
- No ability to distinguish $\bar{\nu}_eCC$ from ν_eCC [4]
- Templates normalized within bins of electron kinematics
- Parameters vary independently

Extrapolating from Neutrino-mode Data
- Neutrino-mode data is used to constrain the significant ν_eCC using a novel data-driven extrapolation included in the fitting model
- Covariance matrix relates template normalizations between neutrino- and antineutrino samples
- Leverages flux model and systematically-shifted simulation

Cross Section Measurement

Double-differential ν,eCC Inclusive
- Electron energy and scattering angle
- Expected $\approx 10,000$ measured signal events!
- Average 20% systematic uncertainty
- First ever measurement of its kind

Joint-fit Fake Data Results
- Fake Data: Randomly varied $\nu - A$ model parameters
- Reduced error on selected events
- Well-constrained ν_eCC and $\bar{\nu}_eCC$ template normalization
- Enables simultaneous measurement of ν_eCC and $\bar{\nu}_eCC$ cross sections for ratio

Outlook
- Developed data-driven signal extraction and efficiency estimation
- Analyze largest sample of $\bar{\nu}_eCC$ for first-ever double-differential cross-section measurement
- Enables future measurement of $\sigma_{\nu_eCC}/\sigma_{\bar{\nu}_eCC}$ with NOvA

References

This work was supported by Scientific Research Projects (BAP) of Erciyes University, Turkey under the grant contract of TOS-2021-10069 and by the Office of High Energy Physics within the U.S. Department of Energy Office of Science under Award Number DE-SC002017740.