Neutrino Tridents

The type of interaction we are focused on is called neutrino trident production: a weak process in which a neutrino scatters off a nucleus, generating a pair of charged leptons. Specifically, we are interested in trident events that produce two muons in the final state, or “dimuon” events.

Trident production is a Standard Model process, possibly enhanced by new physics!

NOvA’s measurement will be the lowest energy measurement of trident production to date, having a neutrino energy spectrum with peaks at 2GeV and 12GeV.

\[
\frac{\sigma(\nu_\mu \rightarrow \mu^+ \mu^-)}{\sigma(\nu_\mu \rightarrow \mu^+ \mu^-)}_{\text{SM}} = \frac{1.58 \pm 0.64}{(\text{CHARM-II})} \approx 20\text{GeV} \quad [2] \\
0.82 \pm 0.28 \quad (\text{CCFR}) \quad (E_\nu) \approx 160\text{GeV} \quad [3] \\
0.72^{+0.73}_{-0.72} \quad (\text{NuTeV}) \quad (E_\nu) \approx 50 - 300\text{GeV} \quad [4]
\]

The NOvA Experiment

NOvA uses the NuMI beam from Fermilab to detect neutrinos at a near detector on site, and a far detector located 810 km away.

The detectors are made of alternating planes of PVC filled with liquid scintillator and optical fibers to collect three-dimensional information about interactions.

Tridents in NOvA

Because the near detector is close to the beam, it has very high statistics. With our current dataset we expect to see about 10-20 ν_μ events and 10-20 $\bar{\nu}_\mu$ events in NOvA. [5]

Simulated events in the near detector typically have the following topology: [1]

- Two high energy tracks with a signature muon-like dE/dx.
- A very narrow opening angle between the tracks.
- Very low hadronic energy.

Reconstruction

Existing reconstruction struggles to resolve between the two tracks because of the narrow opening angles. About 60% of our simulated events have two well-reconstructed tracks.

Summary

Neutrino tridents produce a distinctive topology of two long tracks in the near detector, distinguishing them from other ν_μ interactions.

NOvA has the potential for a ~30% measurement of neutrino trident production below 20GeV using existing data.

References