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Abstract—Simulating quantum channels is a fundamental
primitive in quantum computing, since quantum channels define
general (trace-preserving) quantum operations. An arbitrary
quantum channel cannot be exactly simulated using a finite-
dimensional programmable quantum processor, making it impor-
tant to develop optimal approximate simulation techniques. In
this paper, we study the challenging setting in which the channel
to be simulated varies adversarially with time. We propose
the use of matrix exponentiated gradient descent (MEGD), an
online convex optimization method, and analytically show that
it achieves a sublinear regret in time. Through experiments, we
validate the main results for time-varying dephasing channels
using a programmable generalized teleportation processor.

Index Terms—Programmable quantum computing, convex op-
timization, online learning, quantum channel simulation

I. INTRODUCTION

A quantum computer can be programmed to carry out
a given functionality in different ways, including the direct
engineering of pulse sequences [1], the design of parametric
quantum circuits via quantum machine learning [2, 3], the
use of adaptive measurements on cluster states [4], and the
optimization of a program state operating on a fixed quantum
processor. A fundamental result derived in [5] states there is no
universal programmable quantum processor that operates with
finite-dimensional program states. Since a quantum processor
is universal if it can implement any quantum operation, this
conclusion implies that the exact simulation of an arbitrary
quantum channel on a single programmable quantum proces-
sor is impossible. This, in turn, highlights the importance of
developing tools for the optimization of quantum programs.

Hari Hara Suthan Chittoor and Osvaldo Simeone are with King’s Communi-
cations, Learning, and Information Processing (KCLIP) lab at the Department
of Engineering of Kings College London, UK (emails: hari.hara@kcl.ac.uk,
osvaldo.simeone@kcl.ac.uk). Their work has been supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 Research
and Innovation Programme (Grant Agreement No. 725731), and Osvaldo
Simeone has also been supported by an Open Fellowship of the EPSRC
(EP/W024101/1). For the purpose of open access, the author has applied
a Creative Commons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising. The authors acknowledge use of the research com-
puting facility at King’s College London, Rosalind (https://rosalind.kcl.ac.uk).

Leonardo Banchi is with the Department of Physics and Astronomy,
University of Florence & INFN sezione di Firenze, via G. Sansone 1, I-
50019 Sesto Fiorentino (FI), Italy (email: leonardo.banchi@unifi.it). His work
is supported by the U.S. Department of Energy, Office of Science, National
Quantum Information Science Research Centers, Superconducting Quantum
Materials and Systems Center (SQMS) under the contract No. DE-AC02-
07CH11359.

Stefano Pirandola is with the Department of Computer Science, University
of York, York YO10 5GH, UK (email: stefano.pirandola@york.ac.uk).

Fig. 1. Time-varying quantum channel Et (top) and its simulation Eπt via a
programmable quantum processor Q controlled by the time-varying program
state πt (bottom).

Reference [6] addressed the problem of approximately sim-
ulating a quantum channel using a finite-dimensional program
state. The authors proved that the error between the target
channel and simulated channel, as measured by the diamond
distance, as well as other related metrics, is convex in the space
of program states. Specifically, the optimal program state can
be calculated using semidefinite programming. In this paper,
we study the more challenging setting illustrated in Fig. 1,
in which the channel to be simulated varies over time. We
adopt a worst-case formulation in which channel variation are
arbitrary, and chosen by “nature” in a possibly adversarial way.

To study this setting, we propose to adopt the framework
of online convex optimization [7], which provides tools to
track the optimal solution of time-varying convex problems.
We specifically develop and analyze an online mirror descent
algorithm over the space of positive definite matrices, yielding
a matrix exponentiated gradient descent (MEGD) [8]. MEGD
was previously used in the related, but distinct, problem of
quantum state tracking [9, 10].

We prove that the regret of MEGD with respect to an
optimized fixed program state is sublinear in time. We conduct
experiments by adopting the generalized teleportation proces-
sor (GTP) as the programmable quantum processor. GTP can
simulate exactly the class of teleportation-covariant channels,
modeling Pauli and erasure channels [11], and is operated here
in an adversarial setting with time varying dephasing channels.
Numerical results validate the analysis.
Notations and Definitions: For any non-negative integer K,
[K] represents the set {1, 2, · · · ,K}. The number of elements
in a set A is written as |A|. Given two sets A and B, we
write A \ B = {a : a ∈ A and a /∈ B}. The symbol ∀
represents for all. The Kronecker product is denoted as ⊗;
I represents the identity matrix, with dimensions clear from
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the context; M† represents the complex conjugate transpose
of the matrix M ; and tr(M) represents trace of the matrix M .
We adopt standard notations for quantum states, computational
basis, and quantum gates [11].

II. PROBLEM FORMULATION

In this section, we first review some background material
and then describe the setting and problem of interest.

A. Preliminaries

Throughout this paper, we use the standard Dirac notation
(see, e.g., [11]). Given n qubits, we let D(H) denote the
space of all density matrices, i.e., positive semidefinite (PSD)
matrices with unit trace, defined on the Hilbert space H of
dimension 2n. Any 2n×2n Hermitian matrix A can be written
in terms of its eigendecomposition A =

∑
i λi|vi〉〈vi|, where

eigenvalues {λi} are real and the set {|vi〉} consists of a basis
of orthonormal vectors for the 2n-dimensional Hilbert space.
Furthermore, the square root of a PSD matrix A is defined as√
A =

∑
i

√
λi|vi〉〈vi|. More generally, a function f(A) of

PSD matrix A is defined as f(A) =
∑
i f(λi)|vi〉〈vi|.

A quantum channel E is a completely positive trace preserv-
ing (CPTP) linear map that takes a density matrix ρ ∈ D(H) as
input to produce a density matrix E(ρ) ∈ D(H′

) in a possibly
distinct Hilbert space H′

of dimension 2n
′

for an integer n
′
.

Furthermore, given a system of 2n qubits, we denote as I⊗E ,
where I is the 2n × 2n identity matrix, the channel that acts
trivially on the first n qubits and applies channel E to the last
n qubits.

A quantum channel E can be equivalently described by the
22n×22n PSD matrix obtained as the output of channel I⊗E
applied to a system of 2n qubits in the Bell state |Φ+〉 =

1/
√

2n
∑2n−1
i=0 |i〉⊗ |i〉. This matrix, known as Choi matrix of

the quantum channel E , is hence defined as

CE = (I ⊗ E)|Φ+〉〈Φ+| = 1

2n

2n−1∑
i=0

2n−1∑
j=0

|i〉〈j| ⊗ E(|i〉〈j|).

(1)

B. Setting
As shown in Fig. 1, we study the problem of simulating a

time-varying quantum channel Et operating on n qubits using
a programmable quantum processor Q, where t is a discrete
time index t = 1, 2, . . . Specifically, the top part of Fig. 2
illustrates the Choi matrix CEt of the quantum channel Et.
As depicted in the bottom part of Fig. 2, the programmable
quantum processor is a fixed CPTP map Q operating on a
register of n + nπ qubits. Examples of quantum processors
Q include generalized teleportation processor [12]–[14] and
the port-based teleportation processor [15, 16]. The quantum
processor Q is “programmable” via a time-varying program
state πt ∈ D(Hπ), where Hπ is a 2nπ -dimensional Hilbert
space.

The register of n+nπ qubits on which processor Q operates
is initially in state ρ⊗πt, where ρ ∈ D(H) is the input density
and πt the program state. After the application of processor

Fig. 2. Illustration of the Choi matrix CEt of a quantum channel Et (top) and
of the Choi matrix CEπt = Cπt of its simulation Eπt via a programmable
quantum processor Q controlled by the program state πt (bottom).

Q, we wish for the reduced state of a subset of n qubits within
the register of n+ nπ qubits to approximate the output state

ρEt = Et(ρ) (2)

of channel Et for any possible input state ρ. We refer to the
mentioned subset of n qubits as forming the output subregister.
This may differ from the subregister consisting of the first n
qubits initially in the input state ρ (see Sec. IV for an example).

To simulate the channel Et, we optimize the sequence of
program states πt sequentially over time t ∈ [T ]. As we will
detail in Section II-C, at each time t, the optimizer has access
to information about the quality of the approximation of the
channels Eτ obtained with program states πτ at previous times
τ ∈ [t− 1].

Accordingly, given a program state πt ∈ D(Hπ), the
programmable quantum processor Q implements the channel
Eπt defined by the mapping

Eπt(ρ) = trπ(Q(ρ⊗ πt)), (3)

where trπ(·) is the partial trace over the nπ qubits outside the
output register. By (3), as illustrated in Fig. 1, these nπ qubits
are discarded after the application of the operation Q.

The simulation error at time t is a measure of the difference
between the channel Et and the simulated channel Eπt . As
illustrated in Fig. 2, this error can be measured by comparing
the corresponding Choi matrices CEt and CEπt = Cπt .
Following [6], the loss is specifically quantified by either the
trace distance

`1(E t, πt) =
1

2
‖CEt − Cπt‖tr, (4)

where ‖O‖tr = tr(
√
O†O) is the trace of positive square root

of matrix O†O; or alternatively, by the complement of the
squared fidelity

`F (E t, πt) = 1−
(

tr

(√√
CEtCπt

√
CEt

))2

. (5)

We write `(E t, πt) to denote either loss (4) or (5).
In [6], the authors studied the problem

min
π∈D(Hπ)

`(E , π) (6)



of optimizing the program state π given a fixed quantum
channel E . Reference [6] proved that the optimization problem
(6) is convex over the program states π. Note that the work
[6] considered also the diamond distance. which can be upper
bounded via the loss functions (4) and (5).

C. Problem Definition

Unlike [6], we consider the problem of online optimization
of the program state πt for time-varying channels Et over
time t ∈ [T ]. We formulate the problem in an adversarial
setting to obtain worst-case performance guarantees in terms
of the possible sequence of channels E [T ] = E1, E2, · · · , ET .
Accordingly, at every time t ∈ [T ], the optimizer produces a
program state πt. Then, a quantum channel Et is selected in
an arbitrary way by “nature”, and the optimizer pays the loss
`(E t, πt), which measures how poorly the simulated channel
(3) obtained with program state πt approximates channel Et.
For every time t ∈ [T ], the optimizer produces an updated
program state πt+1 assuming access to a subgradient of the
current loss, i.e., g(E t, πt) = ∇π`(E t, πt).

Let us define the policy followed by the optimizer as the
function

πt+1 = f t
(
πt, g(E t, πt)

)
, (7)

which maps the current program state πt and subgradient
g(E t, πt) to the next program state πt+1. The goal is to design
a sequence of functions f [T ](·) = f1(·), f2(·), · · · , fT (·) that
performs well when compared to a fixed reference program
state π∗ optimized based on knowledge of the sequence E [T ]

of channels, i.e.,

π∗ = arg min
π∈D(Hπ)

T∑
t=1

`(E t, π). (8)

For a sequence of channels E [T ], the performance of policy
f [T ](·) relative to the program state in π∗ (8) is hence defined
by the regret

Regret(f [T ], E [T ]) =

T∑
t=1

`(E t, πt)−
T∑
t=1

`(E t, π∗), (9)

with programs πt and π∗ given in (7) and (8) respectively.
To elaborate on the regret as the performance criterion of

interest, observe first that, if the channel sequence E [T ] to be
simulated were constant, i.e., if we had Et = E for some
channel E , obtaining a per-step regret `(E , πt) − `(E , π∗)
that decreases with t would indicate that the optimizer (7)
converges to the program that best approximates the channel
in terms of the loss function `(E , π). In the online setting under
study, the channels Et are allowed to vary arbitrarily, and the
goal of the optimizer is to track such changes as they occur,
i.e., as t increases. Obtaining a small regret, irrespective of
the channel sequence, provides evidence that the optimizer
is extracting useful information about the single program
π∗ that would have been optimal in hindsight. Specifically,
following the standard online optimization framework [7], we
are interested in designing a policy f [T ] that achieves a regret
that grows sublinearly in T , implying that the per-step regret
`(E t, πt)− `(E t, π∗) decreases over time t.

III. MATRIX EXPONENTIATED GRADIENT DESCENT

In this section, we propose a policy for the problem of on-
line channel simulation introduced in the previous section that
is based on matrix exponentiated gradient descent (MEGD)
[8]. We also analyze its regret, showing that it is sublinear in
T .

A. Matrix Exponentiated Gradient Descent (MEGD) for On-
line Channel Simulation

The proposed MEGD algorithm is an online mirror descent
algorithm [7, 8] over the space of PSD matrices with unit trace.
MEGD initializes the program state as the maximally mixed
state π1 = I/2nπ . For every time t ∈ [T ] an arbitrary channel
Et is selected by nature, and the optimizer obtains the loss
`(E t, πt). Based on the corresponding subgradient g(E t, πt),
the optimizer updates the program state as

πt+1 =
exp(Zt)

tr(exp(Zt))
, (10)

with matrix
Zt = log

(
πt
)
− ηg̃(E t, πt), (11)

where g̃(E t, πt) =
(
g(E t, πt) + g(E t, πt)†

)
/2 represents the

Hermitian part of the subgradient g(E t, πt) and η > 0 is the
learning rate.

To evaluate the subgradients g(E t, πt) for the losses (4)
and (5), we first define the quantum channel Λt that maps
program state πt to the corresponding Choi matrix Cπt . This
channel can be specified by its Kraus decomposition Λt(π) =∑
iAiπA

†
i , where the 22n × 2n Kraus operators {Ai} satisfy

the condition
∑
iA
†
iAi = I , with I being the 2n×2n identity

matrix. The dual channel is defined as Λt∗(ρ) =
∑
iA
†
iρAi.

Furthermore, we write the eigendecomposition of the Hermi-
tian error operator Cπt −CEt as Cπt −CEt =

∑
i λ

t
iE

t
i , with

real eigenvalues {λti} and eigenprojectors {Eti}. Following [6,
Theorem 2], the subgradient with respect to PSD matrix π of
the loss functions `1(E t, π) and `F (E t, π) evaluated at π = πt

are given as

g1(E t, πt) =
∑
i

sign(λti)Λ
t
∗(E

t
i ), (12)

and gF (E t, πt) = −
√

1− `F (E t, πt)∇L(πt), (13)

respectively, where sign(x) = 1 if x ≥ 0 and sign(x) = −1
if x < 0, and

∇L(πt) = Λt∗

(√
CEt

(√
CEtΛ

t(πt)
√
CEt

)− 1
2
√
CEt

)
.

Finally, for numerical stability, the MEGD update (10) is
implemented by replacing matrix Zt with the time-unrolled
update [8]

Zt = dtI + log
(
π1
)
− η

t∑
τ=1

g̃(Eτ , πτ ), (14)

where {dt} is a sequence of fixed constants. These constants
do not affect an infinite-precision implementation of update
(10) with (14), but they can be useful to avoid numerical
problems [8]. MEGD is summarized in Algorithm 1.



Algorithm 1 Matrix exponentiated gradient descent (MEGD)
for online channel simulation

1: Require: Learning rate η > 0 and sequence of constants
dt > 0 for t ∈ [T ].

2: Initialize the program state as π1 = I/2nπ

3: for t ∈ [T ] do
4: Adversary selects a new channel Et
5: Optimizer obtains the loss `(E t, πt) using (4) or (5)
6: Optimizer computes subgradient g(E t, πt) of the loss
`(E t, πt) at πt using (12) or (13)

7: Optimizer updates the program state to πt+1 using (10)
with (14)

8: end for

B. Regret Analysis

To show that MEGD achieves sublinear regret in T , we start
by interpreting the update rule (10) in terms of a regularized
optimization problem that follows the mirror descent frame-
work [7, 8, 17]. To this end, we introduce the negative von
Neumann entropy, defined as

F (π) = tr(π ln(π)) (15)

for any state π. The Bregman divergence generated by function
F (·) is given by

BF (π1;π2) = F (π1)− F (π2)− tr[∇F (π2)(π1 − π2)] =

= tr(π1 ln(π1)− π1 ln(π2)), (16)

and it corresponds to the quantum relative entropy [11] be-
tween two density states π1 and π2, defined on the same
Hilbert space. Following [7, 8], the update rule (10) arises
as the solution of the optimization problem

πt+1 = arg min
π∈D(Hπ)

(
η tr[πg̃(E t, πt)] +BF (π;πt)

)
, (17)

where the first term is a linearization of the per-step loss
and the second is a regularizer penalizing deviations from
the current program πt. To formulate the main result in
Proposition 1 we also introduce the spectral norm ‖ · ‖∗ of
a matrix O as the square root of the largest eigenvalue of the
matrix O†O.

Proposition 1. The regret (9) of MEGD is upper bounded as

Regret(f [T ], E [T ]) ≤ BF (π∗;π1)

η
+
η

2

T∑
t=1

‖g(E t, πt)‖2∗,

(18)

where subgradient g(E t, πt) and reference program state
π∗ are defined in (12)-(13) and (8), respectively. Further-
more, if the spectral norm of the subgradient is bounded as
‖g(E t, πt)‖∗ ≤ L∗ for every t ∈ [T ], choosing the learning
rate as η =

√
2 ln(2)nπ/TL2

∗, the following regret bound
holds

Regret(f [T ], E [T ]) ≤ L∗
√

2 ln(2)nπT . (19)

Proof. Since the negative von Neumann entropy F (π) is 1-
strongly convex over the space of density states π ∈ D(Hπ)

with respect to the trace norm [18], inequality (18) is a
consequence of [7, Theorem 6.8]. To prove (19), we first upper
bound BF (π∗;π1) as

BF (π∗;π1) = F (π∗) + ln(2nπ ) ≤ ln(2nπ ), (20)

where the inequality holds from the non-negativity of the von
Neumann entropy −F (·) [11]. Using (20) in (18), the regret
can be upper bounded as

Regret(f [T ], E [T ]) ≤ ln(2)nπ
η

+
η

2

T∑
t=1

‖g(E t, πt)‖2∗. (21)

Finally, inequality (19) follows by using the assumed inequal-
ity ‖g(E t, πt)‖∗ ≤ L∗ and by selecting the learning rate as
indicated in the proposition.

IV. EXPERIMENTS

In this Section, we provide experimental results to validate
the proposed MEGD scheme in Algorithm 1. We start by de-
scribing the generalized teleportation processor (GTP) which
will be adopted as the programmable quantum processor Q.

A. Generalized Teleportation Processor (GTP)

Fig. 3. Generalized teleportation processor as a programmable processor Q
operating on one input qubit (n = 1) and on a two-qubit program state π
(nπ = 2).

As illustrated in Fig. 3, the GTP operates on a register of
three qubits with n = 1 and nπ = 2. A Bell measurement,
defined by the projectors {P0, P1, P2, P3}, where

P0 = |Φ+〉〈Φ+|, P1 = |Ψ+〉〈Ψ+|, P2 = |Ψ−〉〈Ψ−|, P3 = |Φ−〉〈Φ−|,

with {|Φ+〉, |Ψ+〉, |Φ−〉, |Ψ−〉} being the standard Bell states
(see [11, Section 1.3.6]), is applied to the input qubit and
to the first control qubit. Then, depending on the output
k ∈ {0, 1, 2, 3} of the measurement, with k corresponding to
projector Pk, a unitary correction Vk is applied to the second
control qubit, where

V0 =

(
1 0
0 1

)
, V1 =

(
0 1
1 0

)
, V2 =

(
0 −i
i 0

)
, V3 =

(
1 0
0 −1

)
(22)

are the Pauli operators. The last qubit encodes the output state
Eπ(ρ) of the GTP as shown in Fig. 3.



It is known that the GTP can simulate exactly all
teleportation-covariant channels, which include Pauli and era-
sure channels [19]. This is done by choosing the program state
π as the scaled Choi matrix CE of the channel to be simulated.
As a trivial special case, note that setting π = |Φ+〉〈Φ+| simu-
lates the identity channel, since the corresponding Choi matrix
is given by |Φ+〉〈Φ+|. Not all channels are teleportation-
covariant. For example, the amplitude damping channel is not
teleportation-covariant [19], and hence it cannot be exactly
simulated using the GTP.

In order to implement Algorithm 1 using the GTP, we need
the quantum channel Λt(π) mapping program state π to the
corresponding Choi matrix Cπ and its dual channel Λt∗(π), for
the evaluation of subgradients (12)-(13). For the GTP, these
are given by [6]

Λt(π) = Λt∗(π) =
1

4

3∑
k=0

(V †k ⊗ Vk)πt(V †k ⊗ Vk)†. (23)

B. Results

We now study the simulation of the dephasing channel,
which is a special case of Pauli channels. Specifically, at each
time t, the single-qubit channel to be simulated is given as

Et(ρ) = (1− pt)ρ+ ptZρZ, (24)

where Z = V3 represents the Pauli Z operator, and the
sequence of probabilities p1, p2, . . . defines the sequence of
channels (24).

In Fig. 4 we plot the normalized regret
T−1Regret(f [T ], E [T ]), where Regret(f [T ], E [T ]) is defined
in (9), as a function of time T , by considering the trace
distance (4) as the loss function. We consider T ∈ [150] and
use η = 0.01 as the learning rate and constants dt = 2 for
every t ∈ [T ] in (14). For each time window duration T , we
obtain the optimal constant reference program π∗ in (8) by
optimizing the sum of loss functions via the MEGD update
rule in (10) over 120 iterations with a learning rate 0.01/T .
We observed numerically that these choices yield convergent
iterates.

We consider the setting in which the channel to be sim-
ulated changes independently at each time t ∈ [T ], with
probability pt drawn uniformly in the interval [0.2, pmax), with
pmax ∈ {0.2, 0.4, 0.6, 0.8}. In all cases, we observe that, as
stated in Proposition 1, MEGD is able to obtain a normalized
regret that decreases sublinearly with T , hence approaching
the performance of the reference optimal constant program π∗.
Furthermore, as pmax increases, the performance of the fixed
optimum program π∗ decreases and the regret of MEGD is
reduced accordingly.
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