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For more than a decade the current generation of CPU-based matrix element generators has
provided hard scattering events with excellent flexibility and good efficiency. However, they are a
bottleneck of current Monte Carlo event generator toolchains, and with the advent of the HL-LHC
and more demanding precision requirements, faster matrix elements are needed, especially at
intermediate to large jet multiplicities. We present first results of the new BlockGen family of
matrix element algorithms, featuring GPU support and novel color treatments, and discuss the best
choice to deliver the performance needed for the next generation of accelerated matrix element
generators.
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1. Introduction

The success of particle colliders depends on the availability of detailed numerical simulations.
Event generators based on Monte-Carlo integration provide this crucial link between theory and
experiment [1]. But the compute efficiency of these highly flexible programs has become an issue,
given the rising requirements on the perturbative accuracy, and the trend towards more complex
or higher-multiplicity processes. This is in particular a major concern for fulfilling the HL-LHC
physics program [2].

Standard-candle processes, such as vector boson and top-antitop-pair production in association
with jets, require a large number of generated events to match the experimental statistics. In standard
setups in use by experiments, one finds that the major bottleneck is the sampling of phase space
and the evaluation of tree-level matrix elements [3, 4]. In other words, the high-energy part of the
event generation pipeline that directly probes fundamental physics becomes the dominant fraction
of computational costs at higher multiplicity.

One way to deliver much faster matrix element calculations can be the use of massive parallelism
in the evaluation, e.g. by using specialized hardware such as GPUs [5], which are also increasingly
available in the HPC landscape. Using GPUs has not only been explored for matrix elements at tree
and loop level [6] but also for evaluating parton density functions [7]. However, a production-ready
GPU-enabled event generator suitable for experimental applications is not yet available.

In these proceedings we report on our efforts to fill this gap. We report on our previous
publication [8], where we discuss GPU-enabled algorithms dubbed BlockGen for gluon-only matrix
elements, and also for the first time show first results of our ongoing work to generalize this
previous work to all relevant LHC standard-candle processes that require particularly large simulated
samples, starting with vector boson and top-antitop-pair production in association with jets. This
generalization includes the use of recent developments in the minimal color decomposition of matrix
elements originally proposed in [9].

2. Algorithmic Choices

All BlockGen algorithms are based on Berends–Giele recursion [10] to evaluate matrix ele-
ments. Berends–Giele recursion has a favorable exponential scaling with the number of external
states 𝑛 as compared to the factorial scaling of Feynman diagrams. The computation of color
factors needed for the assembly of full matrix elements is either carried out in a factorized form,
or embedded in the recursion itself [11, 12]. We refer to the factorized option as a color-ordered
Berends–Giele (COBG) recursion and to the embedded one as a color-dressed Berends–Giele
(CDBG) recursion. As discussed extensively in [8], where we study both variants, the compu-
tational characteristics are very different between the two variants. Generally speaking, CDBG
requires more memory, but scales better with the number of particles.

For COBG, the cyclic symmetry of the amplitudes, as well as the Kleiss–Kuijf relations can
be used to construct a minimal basis of color factors and corresponding ordered amplitudes. For
gluon-only amplitudes, this minimal basis can be constructed using the adjoint representation, and
has been known for some time [13]. One finds that this minimal basis contains (𝑛−2)! independent
gluon amplitudes. For the general QCD case, i.e. for arbitrary numbers of quarks and gluons, the
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minimal basis has been found in 2013 [9], and the corresponding color factors have been calculated
in 2015 [14]. Its size is (𝑛−2)!∏𝑛 𝑓

𝑖=1 𝑘𝑖/𝑘! for 𝑘 = Σ
𝑛 𝑓

𝑖=1𝑘𝑖 quark pairs, where the 𝑘𝑖 are the numbers
of quark pairs of flavor 𝑖, and 𝑛 𝑓 is the number of quark flavors. Using a minimal basis of 𝑑

amplitudes is particularly important because the squared color-summed amplitude has 𝑑 (𝑑 + 1)/2
terms, i.e. scales with the number of amplitudes squared, such that this squared summing can
become the bottleneck for large multiplicities 𝑛. In [8], we showed for the gluon-only case that the
squared summing begins to take more time than the evaluation of the amplitudes for 𝑛 > 8.

3. Computing Performance

In Fig. 1 we reproduce the main result from [8], a GPU-vs-CPU comparison between various
variants of BlockGen and the existing Comix and Amegic programs, showing the average time
needed to generate one gluon-only event against the final-state multiplicity 𝑛out. For the CPU
results, all available (hyper)threads of the chip have been used to compete against the parallel
evaluation on the GPU, such that in both cases the entire compute capabilities of the chips are
used. For more details on the hardware used, see the caption of the figure. One finds that for
𝑛out ≤ 6, the fastest algorithm is the GPU-accelerated BlockGen-COΣ, which uses color-ordering
and -summation, and it is between 4 and 25 times faster than the best competing CPU code. For
𝑛out > 6, BlockGen-CDMC performs best, which uses color-dressing and -sampling. It is about a
factor 4 faster than the best competing CPU code. Consulting the ratio plots, one can moreover see
that the GPU-acceleration of BlockGen-COΣ yields a speed-up factor of 20–25, compared to the
evaluation on the CPU. For the caveats of these findings and a more detailed discussion in general,
we kindly refer the reader to [8].
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Figure 1: The timings for GPU-based (crosses) and CPU-based (dots) algorithms are compared against each
other as a function of gluon multiplicity. The CPU numbers are all generated on an Intel® Xeon® E5-2650 v2
8-core CPU, (2.60 GHz, 20 MB cache), while all the GPU numbers are generated on a NVIDIA V100 (16 GB
global memory, 5,120 CUDA cores, 6144 KB L2 cache). The MPI versions are run on 16 threads, and the
timing for the color summed algorithm is divided by a factor of 16 to mimic the improvements that would
occur from MPI. Furthermore, a modified version of Amegic is used in order to perform helicity sampling.
The ratio plots on the right give a better visualization of the relevant speed-ups. Figure reproduced from [8].
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In Fig. 2, we present for the first time preliminary BlockGen results after generalizing the im-
plementation to treat full QCD using the minimal basis discussed in Sec. 2 and selected electroweak
processes. To our knowledge, this is the first time that the minimal basis is implemented in a code
aimed at production. The implementation is not yet ported to use GPU acceleration, such that we
compare single-threaded CPU performance only, with the Comix matrix element generator. The
left-hand plot shows 𝑒+𝑒− pair production in association with jets and the right-hand one shows 𝑡𝑡
pair production in association with jets, both at a 𝑝𝑝 collider. The time per event is given against
the number of outgoing jets. One finds that BlockGen performs better than Comix in the 𝑒+𝑒− case,
and equally well in the 𝑡𝑡 case. The relative speed-ups are higher for the 𝑒+𝑒− case, because there
are always at least two fermion pairs, one quark-antiquark and one lepton-antilepton pair, while the
𝑡𝑡 can have one fermion pair less and is thus dominated by the gluonic channels. We have found that
channels containing quarks profit strongly from using the minimal basis (we find a 40x speed-up
for 𝑑𝑑 → 𝑢𝑠𝑐𝑢̄𝑠𝑐 events compared to Comix), while gluonic channels perform similarly.
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Figure 2: The timings for different single-threaded CPU-based algorithms are compared against each other
for 𝑍 [𝑒+𝑒−] + jets and 𝑡𝑡 + jets generation. The CPU numbers are generated on an Intel® i3-8300 (3.70GHz).

4. Outlook

We have presented the most important results of our previous publication about GPU-accelerated
gluon-only matrix element evaluation [8], and we have shown preliminary results from our current
effort to generalize our implementation to the full QCD sector and to the most relevant LHC pro-
cesses, namely 𝑒+𝑒− and 𝑡𝑡 production in association with jets. In our implementation, the full QCD
sector uses a minimal basis of color-ordered amplitudes, which gives us good performance already
for our CPU-only implementation. Due to our previous results, we expect a speed-up of 10–20 in a
chip-to-chip comparison by our ongoing GPU port.

In the future, we plan to complement the matrix element calculation with a recursive GPU-
accelerated phase-space generator, to construct a complete GPU tree-level generator. Since this
component is the current bottleneck of LHC event generation of standard candle processes like the
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above mentioned, we then plan to use our accelerated generator as a plug-in for the Sherpa event
generation framework, to remove that bottleneck in time for the remainder of Run-III, and to meet
the computational demands of the HL-LHC era.
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