
P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
2
2

QCD tree amplitudes on modern GPUs: A case study for
novel event generators

Enrico Bothmann,𝑎,∗ Joshua Isaacson,𝑏 Max Knobbe,𝑎

Stefan Höche𝑏 and Walter Giele𝑏
𝑎Institut für Theoretische Physik, Universität Göttingen,
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

𝑏Fermi National Accelerator Laboratory,
Batavia, IL 60510, USA

E-mail: enrico.bothmann@uni-goettingen.de

For more than a decade the current generation of CPU-based matrix element generators has
provided hard scattering events with excellent flexibility and good efficiency. However, they are a
bottleneck of current Monte Carlo event generator toolchains, and with the advent of the HL-LHC
and more demanding precision requirements, faster matrix elements are needed, especially at
intermediate to large jet multiplicities. We present first results of the new BlockGen family of
matrix element algorithms, featuring GPU support and novel color treatments, and discuss the best
choice to deliver the performance needed for the next generation of accelerated matrix element
generators.

41st International Conference on High Energy physics – ICHEP2022
6–13 July, 2022
Bologna, Italy

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

FERMILAB-CONF-22-920-T

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of 
High Energy Physics.

mailto:enrico.bothmann@uni-goettingen.de
https://pos.sissa.it/


P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
2
2

QCD tree amplitudes on modern GPUs: A case study for novel event generators Enrico Bothmann

1. Introduction

The success of particle colliders depends on the availability of detailed numerical simulations.
Event generators based on Monte-Carlo integration provide this crucial link between theory and
experiment [1]. But the compute efficiency of these highly flexible programs has become an issue,
given the rising requirements on the perturbative accuracy, and the trend towards more complex
or higher-multiplicity processes. This is in particular a major concern for fulfilling the HL-LHC
physics program [2].

Standard-candle processes, such as vector boson and top-antitop-pair production in association
with jets, require a large number of generated events to match the experimental statistics. In standard
setups in use by experiments, one finds that the major bottleneck is the sampling of phase space
and the evaluation of tree-level matrix elements [3, 4]. In other words, the high-energy part of the
event generation pipeline that directly probes fundamental physics becomes the dominant fraction
of computational costs at higher multiplicity.

One way to deliver much faster matrix element calculations can be the use of massive parallelism
in the evaluation, e.g. by using specialized hardware such as GPUs [5], which are also increasingly
available in the HPC landscape. Using GPUs has not only been explored for matrix elements at tree
and loop level [6] but also for evaluating parton density functions [7]. However, a production-ready
GPU-enabled event generator suitable for experimental applications is not yet available.

In these proceedings we report on our efforts to fill this gap. We report on our previous
publication [8], where we discuss GPU-enabled algorithms dubbed BlockGen for gluon-only matrix
elements, and also for the first time show first results of our ongoing work to generalize this
previous work to all relevant LHC standard-candle processes that require particularly large simulated
samples, starting with vector boson and top-antitop-pair production in association with jets. This
generalization includes the use of recent developments in the minimal color decomposition of matrix
elements originally proposed in [9].

2. Algorithmic Choices

All BlockGen algorithms are based on Berends–Giele recursion [10] to evaluate matrix ele-
ments. Berends–Giele recursion has a favorable exponential scaling with the number of external
states 𝑛 as compared to the factorial scaling of Feynman diagrams. The computation of color
factors needed for the assembly of full matrix elements is either carried out in a factorized form,
or embedded in the recursion itself [11, 12]. We refer to the factorized option as a color-ordered
Berends–Giele (COBG) recursion and to the embedded one as a color-dressed Berends–Giele
(CDBG) recursion. As discussed extensively in [8], where we study both variants, the compu-
tational characteristics are very different between the two variants. Generally speaking, CDBG
requires more memory, but scales better with the number of particles.

For COBG, the cyclic symmetry of the amplitudes, as well as the Kleiss–Kuijf relations can
be used to construct a minimal basis of color factors and corresponding ordered amplitudes. For
gluon-only amplitudes, this minimal basis can be constructed using the adjoint representation, and
has been known for some time [13]. One finds that this minimal basis contains (𝑛−2)! independent
gluon amplitudes. For the general QCD case, i.e. for arbitrary numbers of quarks and gluons, the

2



P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
2
2

QCD tree amplitudes on modern GPUs: A case study for novel event generators Enrico Bothmann

minimal basis has been found in 2013 [9], and the corresponding color factors have been calculated
in 2015 [14]. Its size is (𝑛−2)!∏𝑛 𝑓

𝑖=1 𝑘𝑖/𝑘! for 𝑘 = Σ
𝑛 𝑓

𝑖=1𝑘𝑖 quark pairs, where the 𝑘𝑖 are the numbers
of quark pairs of flavor 𝑖, and 𝑛 𝑓 is the number of quark flavors. Using a minimal basis of 𝑑

amplitudes is particularly important because the squared color-summed amplitude has 𝑑 (𝑑 + 1)/2
terms, i.e. scales with the number of amplitudes squared, such that this squared summing can
become the bottleneck for large multiplicities 𝑛. In [8], we showed for the gluon-only case that the
squared summing begins to take more time than the evaluation of the amplitudes for 𝑛 > 8.

3. Computing Performance

In Fig. 1 we reproduce the main result from [8], a GPU-vs-CPU comparison between various
variants of BlockGen and the existing Comix and Amegic programs, showing the average time
needed to generate one gluon-only event against the final-state multiplicity 𝑛out. For the CPU
results, all available (hyper)threads of the chip have been used to compete against the parallel
evaluation on the GPU, such that in both cases the entire compute capabilities of the chips are
used. For more details on the hardware used, see the caption of the figure. One finds that for
𝑛out ≤ 6, the fastest algorithm is the GPU-accelerated BlockGen-COΣ, which uses color-ordering
and -summation, and it is between 4 and 25 times faster than the best competing CPU code. For
𝑛out > 6, BlockGen-CDMC performs best, which uses color-dressing and -sampling. It is about a
factor 4 faster than the best competing CPU code. Consulting the ratio plots, one can moreover see
that the GPU-acceleration of BlockGen-COΣ yields a speed-up factor of 20–25, compared to the
evaluation on the CPU. For the caveats of these findings and a more detailed discussion in general,
we kindly refer the reader to [8].

2 3 4 5 6 7 8 9

nout

10−8

10−7

10−6

10−5

10−4

10−3

10−2

T
im

e
p

e
r

e
v
e
n
t

[s
]

BlockGen-COΣ

BlockGen-CDMC

GPU best

Comix (CDBG), MPI

Amegic∗, MPI

BlockGen-COΣ (CPU)

CPU best

2 3 4 5 6 7 8 9

nout

100

101

102

103

R
a
ti

o
to

G
P

U
b

e
st

0

10

20

30

R
a
ti

o
to

B
G

-C
O

Σ

Figure 1: The timings for GPU-based (crosses) and CPU-based (dots) algorithms are compared against each
other as a function of gluon multiplicity. The CPU numbers are all generated on an Intel® Xeon® E5-2650 v2
8-core CPU, (2.60 GHz, 20 MB cache), while all the GPU numbers are generated on a NVIDIA V100 (16 GB
global memory, 5,120 CUDA cores, 6144 KB L2 cache). The MPI versions are run on 16 threads, and the
timing for the color summed algorithm is divided by a factor of 16 to mimic the improvements that would
occur from MPI. Furthermore, a modified version of Amegic is used in order to perform helicity sampling.
The ratio plots on the right give a better visualization of the relevant speed-ups. Figure reproduced from [8].

3



P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
2
2

QCD tree amplitudes on modern GPUs: A case study for novel event generators Enrico Bothmann

In Fig. 2, we present for the first time preliminary BlockGen results after generalizing the im-
plementation to treat full QCD using the minimal basis discussed in Sec. 2 and selected electroweak
processes. To our knowledge, this is the first time that the minimal basis is implemented in a code
aimed at production. The implementation is not yet ported to use GPU acceleration, such that we
compare single-threaded CPU performance only, with the Comix matrix element generator. The
left-hand plot shows 𝑒+𝑒− pair production in association with jets and the right-hand one shows 𝑡𝑡
pair production in association with jets, both at a 𝑝𝑝 collider. The time per event is given against
the number of outgoing jets. One finds that BlockGen performs better than Comix in the 𝑒+𝑒− case,
and equally well in the 𝑡𝑡 case. The relative speed-ups are higher for the 𝑒+𝑒− case, because there
are always at least two fermion pairs, one quark-antiquark and one lepton-antilepton pair, while the
𝑡𝑡 can have one fermion pair less and is thus dominated by the gluonic channels. We have found that
channels containing quarks profit strongly from using the minimal basis (we find a 40x speed-up
for 𝑑𝑑 → 𝑢𝑠𝑐𝑢̄𝑠𝑐 events compared to Comix), while gluonic channels perform similarly.

10−6

10−5

10−4

10−3

10−2

T
im

e
/
E
ve
n
t
[s
]

Matrix Element timing of Z[e+e−] +Jets

Comix color summed

Comix helicity summed

BlockGen color summed

Z+0j Z+1j Z+2j Z+3j Z+4j Z+5j

10−1

100

101

R
at
io

to
C
om

ix

10−6

10−5

10−4

10−3

10−2

10−1
T

im
e

/
E

ve
n
t

[s
]

Matrix Element timing of tt̄+Jets

Comix color summed

Comix helicity summed

BlockGen color summed

tt+0j tt+1j tt+2j tt+3j tt+4j

10−1

100

101

R
at

io
to

C
om

ix

Figure 2: The timings for different single-threaded CPU-based algorithms are compared against each other
for 𝑍 [𝑒+𝑒−] + jets and 𝑡𝑡 + jets generation. The CPU numbers are generated on an Intel® i3-8300 (3.70GHz).

4. Outlook

We have presented the most important results of our previous publication about GPU-accelerated
gluon-only matrix element evaluation [8], and we have shown preliminary results from our current
effort to generalize our implementation to the full QCD sector and to the most relevant LHC pro-
cesses, namely 𝑒+𝑒− and 𝑡𝑡 production in association with jets. In our implementation, the full QCD
sector uses a minimal basis of color-ordered amplitudes, which gives us good performance already
for our CPU-only implementation. Due to our previous results, we expect a speed-up of 10–20 in a
chip-to-chip comparison by our ongoing GPU port.

In the future, we plan to complement the matrix element calculation with a recursive GPU-
accelerated phase-space generator, to construct a complete GPU tree-level generator. Since this
component is the current bottleneck of LHC event generation of standard candle processes like the

4



P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
2
2

QCD tree amplitudes on modern GPUs: A case study for novel event generators Enrico Bothmann

above mentioned, we then plan to use our accelerated generator as a plug-in for the Sherpa event
generation framework, to remove that bottleneck in time for the remainder of Run-III, and to meet
the computational demands of the HL-LHC era.

References

[1] B. Webber, Monte Carlo Simulation of Hard Hadronic Processes, Ann. Rev. Nucl. Part. Sci.
36 (1986) 253; A. Buckley et al., General-purpose event generators for LHC physics, Phys.
Rept. 504 (2011) 145 [1101.2599].

[2] P. Calafiura et al., ATLAS HL-LHC Computing Conceptual Design Report, Tech. Rep.
CERN-LHCC-2020-015. LHCC-G-178, CERN, Geneva (Sept., 2020); HSF Physics Event
Generator WG collaboration, Challenges in Monte Carlo Event Generator Software for
High-Luminosity LHC, Comput. Softw. Big Sci. 5 (2021) 12 [2004.13687].

[3] S. Höche, S. Prestel and H. Schulz, Simulation of Vector Boson Plus Many Jet Final States at
the High Luminosity LHC, Phys. Rev. D100 (2019) 014024 [1905.05120].

[4] E. Bothmann, A. Buckley, I.A. Christidi, C. Gütschow, S. Höche, M. Knobbe et al.,
Accelerating LHC event generation with simplified pilot runs and fast PDFs, 2209.00843.

[5] S. Höche et al., Working Group Report: Computing for Perturbative QCD, in Proceedings,
2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the
Mississippi (CSS2013): Minneapolis, MN, USA, July 29-August 6, 2013, 2013,
http://www.slac.stanford.edu/econf/C1307292/docs/ComputingFrontier/PQCD-45.pdf
[1309.3598]; HEP Software Foundation collaboration, A Roadmap for HEP Software
and Computing R&D for the 2020s, Comput. Softw. Big Sci. 3 (2019) 7 [1712.06982];
A. Dainese et al., eds., Report on the Physics at the HL-LHC,and Perspectives for the
HE-LHC, vol. 7. 7/2019 of CERN Yellow Reports: Monographs, CERN, Geneva,
Switzerland (2019), 10.23731/CYRM-2019-007.

[6] K. Hagiwara et al., Fast calculation of HELAS amplitudes using graphics processing unit
(GPU), The European Physical Journal C 66 (2010) 477; K. Hagiwara et al., Calculation of
HELAS amplitudes for QCD processes using graphics processing unit (GPU), The European
Physical Journal C 70 (2010) 513; J. Kanzaki, Application of graphics processing unit
(GPU) to software in elementary particle/high energy physics field, Procedia Computer
Science 4 (2011) 869; K. Hagiwara et al., Fast computation of MadGraph amplitudes on
graphics processing unit (GPU), The European Physical Journal C 73 (2013) 2608;
J. Kanzaki, Monte Carlo integration on GPU, Eur. Phys. J. C71 (2011) 1559 [1010.2107];
A. Valassi et al., Design and engineering of a simplified workflow execution for the
MG5aMC event generator on GPUs and vector CPUs, EPJ Web Conf. 251 (2021) 03045
[2106.12631]; W.T. Giele et al., Thread-scalable evaluation of multi-jet observables, The
European Physical Journal C 71 (2011) ; H.-Z. Wu et al., ZMCintegral: a Package for
Multi-Dimensional Monte Carlo Integration on Multi-GPUs, Comput. Phys. Commun. 248
(2020) 106962 [1902.07916]; G. Grasseau et al., Hybrid implementation of the VEGAS

5

https://doi.org/http://dx.doi.org/10.1016/j.physrep.2011.03.005
https://doi.org/http://dx.doi.org/10.1016/j.physrep.2011.03.005
https://arxiv.org/abs/1101.2599
https://cds.cern.ch/record/2729668
https://doi.org/10.1007/s41781-021-00055-1
https://arxiv.org/abs/2004.13687
https://doi.org/10.1103/PhysRevD.100.014024
https://arxiv.org/abs/1905.05120
https://arxiv.org/abs/2209.00843
http://www.slac.stanford.edu/econf/C1307292/docs/ComputingFrontier/PQCD-45.pdf
https://arxiv.org/abs/1309.3598
https://doi.org/10.1007/s41781-018-0018-8
https://arxiv.org/abs/1712.06982
https://doi.org/10.23731/CYRM-2019-007
https://doi.org/10.1140/epjc/s10052-010-1276-8
https://doi.org/10.1140/epjc/s10052-010-1465-5
https://doi.org/10.1140/epjc/s10052-010-1465-5
https://doi.org/https://doi.org/10.1016/j.procs.2011.04.092
https://doi.org/https://doi.org/10.1016/j.procs.2011.04.092
https://doi.org/10.1140/epjc/s10052-013-2608-2
https://doi.org/10.1140/epjc/s10052-011-1559-8
https://arxiv.org/abs/1010.2107
https://doi.org/10.1051/epjconf/202125103045
https://arxiv.org/abs/2106.12631
https://doi.org/10.1140/epjc/s10052-011-1703-5
https://doi.org/10.1140/epjc/s10052-011-1703-5
https://doi.org/10.1016/j.cpc.2019.106962
https://doi.org/10.1016/j.cpc.2019.106962
https://arxiv.org/abs/1902.07916


P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
2
2

QCD tree amplitudes on modern GPUs: A case study for novel event generators Enrico Bothmann

Monte-Carlo algorithm, in Proceedings, GPU Computing in High-Energy Physics
(GPUHEP2014): Pisa, Italy, September 10-12, 2014, pp. 103–108, 2015, DOI; S. Carrazza
and J.M. Cruz-Martinez, VegasFlow: accelerating Monte Carlo simulation across platforms,
arXiv e-prints (2020) arXiv:2010.09341 [2010.09341]; S. Carrazza et al., Towards the
automation of Monte Carlo simulation on GPU for particle physics processes, in 25th
International Conference on Computing in High-Energy and Nuclear Physics, 5, 2021
[2105.10529]; F. Yuasa et al., Acceleration of Feynman loop integrals in high-energy
physics on many core GPUs, J. Phys. Conf. Ser. 454 (2013) 012081; S. Borowka et al., A
GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec, Comput. Phys.
Commun. 240 (2019) 120 [1811.11720]; D. Schouten et al., Accelerated matrix element
method with parallel computing, Computer Physics Communications 192 (2015) 54;
G. Grasseau et al., Matrix element method for high performance computing platforms,
Journal of Physics Conference Series 664 (2015) 092009; G. Grasseau et al., Deployment of
a Matrix Element Method code for the ttH channel analysis on GPU’s platform, EPJ Web
Conf. 214 (2019) 06028.

[7] S. Carrazza et al., PDFFlow: Parton distribution functions on GPU, Comput. Phys.
Commun. 264 (2021) 107995 [2009.06635].

[8] E. Bothmann, W. Giele, S. Hoeche, J. Isaacson and M. Knobbe, Many-gluon tree amplitudes
on modern GPUs: A case study for novel event generators, SciPost Phys. Codebases (2022)
3 [2106.06507].

[9] T. Melia, Dyck words and multiquark primitive amplitudes, Phys. Rev. D 88 (2013) 014020
[1304.7809]; T. Melia, Dyck words and multi-quark amplitudes, PoS RADCOR2013
(2013) 031.

[10] F.A. Berends and W.T. Giele, Recursive calculations for processes with 𝑛 gluons, Nucl. Phys.
B306 (1988) 759; S. Badger et al., Comparing efficient computation methods for massless
QCD tree amplitudes: Closed analytic formulas versus Berends-Giele recursion, Phys. Rev.
D87 (2013) 034011 [1206.2381].

[11] C. Duhr, S. Höche and F. Maltoni, Color-dressed recursive relations for multi-parton
amplitudes, JHEP 08 (2006) 062 [hep-ph/0607057].

[12] W.T. Giele et al., Efficient color-dressed calculation of virtual corrections, Nuclear Physics B
840 (2010) 214.

[13] F.A. Berends and W. Giele, The six-gluon process as an example of Weyl-van der Waerden
spinor calculus, Nucl. Phys. B294 (1987) 700; V. Del Duca et al., New color decompositions
for gauge amplitudes at tree and loop level, Nucl. Phys. B571 (2000) 51 [hep-ph/9910563];
V. del Duca et al., Factorization of tree QCD amplitudes in the high-energy limit and in the
collinear limit, Nucl. Phys. B568 (2000) 211 [hep-ph/9909464].

[14] H. Johansson and A. Ochirov, Color-Kinematics Duality for QCD Amplitudes, JHEP 01
(2016) 170 [1507.00332]; T. Melia, Proof of a new colour decomposition for QCD
amplitudes, JHEP 12 (2015) 107 [1509.03297].

6

https://doi.org/10.3204/DESY-PROC-2014-05/19
https://arxiv.org/abs/2010.09341
https://arxiv.org/abs/2105.10529
https://doi.org/10.1088/1742-6596/454/1/012081
https://doi.org/10.1016/j.cpc.2019.02.015
https://doi.org/10.1016/j.cpc.2019.02.015
https://arxiv.org/abs/1811.11720
https://doi.org/https://doi.org/10.1016/j.cpc.2015.02.020
https://doi.org/10.1088/1742-6596/664/9/092009
https://doi.org/10.1051/epjconf/201921406028
https://doi.org/10.1051/epjconf/201921406028
https://doi.org/10.1016/j.cpc.2021.107995
https://doi.org/10.1016/j.cpc.2021.107995
https://arxiv.org/abs/2009.06635
https://doi.org/10.21468/SciPostPhysCodeb.3
https://doi.org/10.21468/SciPostPhysCodeb.3
https://arxiv.org/abs/2106.06507
https://doi.org/10.1103/PhysRevD.88.014020
https://arxiv.org/abs/1304.7809
https://doi.org/10.22323/1.197.0031
https://doi.org/10.22323/1.197.0031
https://doi.org/10.1103/PhysRevD.87.034011
https://doi.org/10.1103/PhysRevD.87.034011
https://arxiv.org/abs/1206.2381
https://arxiv.org/abs/hep-ph/0607057
https://doi.org/10.1016/j.nuclphysb.2010.07.007
https://doi.org/10.1016/j.nuclphysb.2010.07.007
https://arxiv.org/abs/hep-ph/9910563
https://arxiv.org/abs/hep-ph/9909464
https://doi.org/10.1007/JHEP01(2016)170
https://doi.org/10.1007/JHEP01(2016)170
https://arxiv.org/abs/1507.00332
https://doi.org/10.1007/JHEP12(2015)107
https://arxiv.org/abs/1509.03297



