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ABSTRACT

We present the conceptual design of the modular detector and readout system for the Cosmic Microwave Back-
ground – Stage 4 (CMB-S4) ground-based survey experiment. CMB-S4 will map the cosmic microwave back-
ground (CMB) and the millimeter-wave sky to unprecedented sensitivity, using 500,000 superconducting detectors
observing from Chile and Antarctica to map over 60% of the sky. The fundamental building block of the detec-
tor and readout system is a detector module package operated at 100 mK, which is connected to a readout and
amplification chain that carries signals out to room temperature. It uses arrays of feedhorn-coupled orthomode
transducers (OMT) that collect optical power from the sky onto dc-voltage-biased transition-edge sensor (TES)
bolometers. The resulting current signal in the TESs is then amplified by a two-stage cryogenic Superconduct-
ing Quantum Interference Device (SQUID) system with a time-division multiplexer to reduce wire count, and
matching room-temperature electronics to condition and transmit signals to the data acquisition system. Sen-
sitivity and systematics requirements are being developed for the detector and readout system over wide range
of observing bands (20–300 GHz) and optical powers to accomplish CMB-S4’s science goals. While the design
incorporates the successes of previous generations of CMB instruments, CMB-S4 requires an order of magnitude
more detectors than any prior experiment. This requires fabrication of complex superconducting circuits on over
10 m2 of silicon, as well as significant amounts of precision wiring, assembly and cryogenic testing.

Keywords: cosmic microwave background, transition edge sensor, time-division multiplexing

1. INTRODUCTION

CMB-S4 is an upcoming survey experiment that will map the cosmic microwave background (CMB) and
millimeter-wave sky to unprecedented sensitivity and precision.1 It will enable a wide range of science in
cosmology and astrophysics, and carries the potential to transform our understanding of the universe. First
conceived by the community during the 2013 Snowmass physics planning activity as the ultimate ground-based
CMB survey, CMB-S4 builds on several prior generations of CMB experiments. The motivation and potential
impact of CMB-S4 was also described in the Astro2020 decadal survey, which ranked it as a top priority for the
next decade.2 The science case for CMB-S4 includes searching for primordial gravitational waves predicted by
cosmic inflation; searching for the effects of new light relic particles in the early universe; mapping the matter
distribution of the universe; and opening a new window on the millimeter-wave, time-variable astronomical sky.
These exciting science goals require an exceptionally deep survey to hunt for the faint signal from cosmic infla-
tion, and a precise, high-resolution survey of the majority of the sky to measure as many spatial modes of the
CMB as possible. CMB-S4 will therefore conduct two surveys; one targeting 3% of the sky, sensitive to both
degree angular scales and arcminute angular scales to search for the signal from cosmic inflation, and a second
targeting 60% of the sky sensitive to arcminute angular scales to search for the effects of light relic particles, map
the matter density, and do transient millimeter-wave astronomy. The survey requirements drive CMB-S4 to use
5-6 m diameter telescopes, dubbed “Large Aperture Telescopes” (LATs) to achieve arcminute angular resolution,
and 0.5-m diameter telescopes (“Small Aperture Telescopes”) (SATs) to measure the degree-scale signals with
lower instrumental systematic errors.

CMB-S4’s science goals require 500,000 photon-noise-limited detectors in these telescopes, a significant in-
crease compared to prior experiments. The measurements must also be made across a decade in observing
frequencies in order to separate the CMB signal from Galactic foregrounds. CMB-S4 will use the same modu-
lar detector and readout electronics implementations in the focal planes of the LATs and SATs, differing only
where necessary to achieve optimal performance and production efficiency. The large detector count necessitates
robust and scalable methods for fabrication and packaging the detectors and cryogenic readout components;
this has influenced the conceptual design for the system. Components must be tested and validated to meet
stringent performance requirements, and re-use and re-working of components is expected to be necessary to
yield integrated modules meeting deployment criteria.

In this proceedings, we describe the conceptual design for the modular detector and readout systems that will
be used in CMB-S4. In Section 2, we discuss the development of technical requirements that flow down from the
science goals of the experiment, and the key requirements that drive the design for the detector, readout, and
module sub-systems. In Section 3, we describe the high-level detector and readout concept including technologies
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for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a
fee or for commercial purposes, or modification of the content of the paper are prohibited.



Large-aperture telescope (LAT) Small-aperture telescope (SAT)

Detector Wafer Type ULF LF MF HF LF MF1 MF2 HF

Band center(s) [GHz] 20 26 / 39 93 / 149 227 / 286 26 / 39 85 / 145 95 / 155 227 / 286

Fractional bandwidth 0.25 0.33 / 0.45 0.32 / 0.28 0.26 / 0.21 0.33 / 0.45 0.24 / 0.22 0.24 / 0.22 0.26 / 0.21

Saturation power [pW] 0.40 0.75 / 4.2 4.6 / 13 32 / 42 1.4 / 6.4 7.9 / 14 7.9 / 14 33 / 41

Dark NEP [aW/
√

Hz] 5 6 / 22 22 / 42 81 / 103 13 / 34 42 / 57 41 / 59 109 / 133

Optical efficiency 65% average in-band efficiency (for detector module only)

Operable channels ≥ 85% per wafer, installed, including losses from detectors, wirebonds, readout

Transition temperature 160 mK (science TES)

Table 1: Current target parameters for CMB-S4’s detector and readout system by observing band groups or
wafer type. All except ULF have dichroic pixels. The saturation power shown is for the science TES. Dark
noise-equivalent power (NEP) includes expected noise contributions from the detector and readout system.

utilized and technical choices made in defining the modular detector and readout system. In Section 4, we describe
the specific implementation of these technologies for CMB-S4 including the details of the modular design. In
Section 5.1, we discuss the development and design validation plan, and in Section 6, we describe future work
on scaling production of these components.

2. REQUIREMENTS FOR CMB-S4 DETECTOR & READOUT SYSTEM

The requirements and performance targets of the CMB-S4 detector and readout system are derived from an
iterative process of systems engineering that flows the experiment’s science goals to measurement and technical
requirements, and then down to requirements on subsystems and individual assemblies and components, as
described in Besuner et al. in these proceedings. We report the current state of these requirements, which we
continue to mature. An important consideration for technical implementation decisions is technical readiness of
potential designs. Minimizing technical risk is prioritized, leading to frequent choosing of proven approaches or
low-risk variations on them. Details of technical choices are discussed in 3 and the implementation and resulting
target requirements are discussed in Section 4. The overall project system requirements (Level 1 Technical
Requirements) that impact the detector and readout system are driven largely by the instantaneous sensitivity
needed to measure CMB temperature and polarization at various observing frequencies, at sufficient spatial
resolution while scanning from CMB-S4 telescopes, to achieve the necessary map depths (Level 1 Measurement
Requirements) within ∼7 years of science operations, while keeping systematic errors subdominant to statistical
uncertainty. This translates roughly to requirements on observing-band-wise counts of photon-noise-limited,
polarization-sensitive detectors to integrate sky signal under historical optical loading conditions and assumed
observing efficiency at the sites.

Next-level-down derived requirements (Level 2 Subsystem requirements) are assigned to the three Level 2
subsystems of the project, Detectors, Readout and Modules, encompassing the detector and readout system.
Target values are prescribed for detector counts by observing band, band center and edge frequencies, pixel oper-
ability or channel yield, per-detector noise-equivalent power and its acceptable readout contribution, supported
dynamic range of input optical power (saturation power), detector time constant and readout bandwidth. Based
on technical choices described in Section 3, such as the choice of transition-edge-sensor (TES) bolometers, or-
thomode transducers (OMT) and time-division multiplexing (TDM) as well as interfaces between the detectors
and readout, further technical targets are prescribed such as TES normal resistance, superconducting transi-
tion temperature, orthomode transducer orientation, inter-channel crosstalk, electro-thermal feedback loopgain,
readout sampling and multiplexing rates, etc. There is also a requirement for an additional in-series TES of
higher saturation power for every polarization sensor to enable optical calibration with external sources. The
current target values for some of the system’s key requirements are enumerated in Table 1. These targets are
the result of the project’s iterative approach, and continue to be optimized to work with the other subsystems
of the experiment to meet the overall project requirements. Some requirements described above are still being
developed. They provides a basis for system prototyping, which is underway and described in Section 5.



3. DETECTOR & READOUT SYSTEM CONCEPT

The CMB-S4 detector and readout system concept employs arrays of TES bolometers, coupled to the sky
via feedhorns and read out using time-division multiplexing (TDM) of Superconducting Quantum Interference
Devices (SQUIDs). These design choices are the product of an analysis of the available technologies, weighing
their demonstrated performance, estimated cost and risk, and comparing to the Level 1 Technical Requirements
from the science flowdown. TES bolometers are a well-established technology across CMB-S4’s entire frequency
range, with demonstrated noise levels and fabrication yields that meet the instrument requirements.3–7 Feedhorns
coupled to planar ortho-mode transducers (OMTs) have been demonstrated to provide excellent beam quality
and polarization efficiency, with recent advances in direct machining and electromagnetic optimization enabling
high-quality horns to be manufactured economically at scale. Each CMB-S4 feedhorn will deliver power to
four TESs: two orthogonal polarization modes for each of two frequency bands, defined by on-chip lumped-
element filters; this dichroic architecture allows for high sensor density while maintaining high end-to-end optical
efficiency in all observing bands. TDM readout has a long heritage in CMB instrumentation, with sufficiently
demonstrated high yield and low noise (both white and 1/f), and with recent developments for X-ray micro-
calorimetry enabling higher multiplexing factors and lower noise levels.6,8 In this section, we describe each of
these major design components in more detail.

3.1 Optical Coupling

The detector antennae are feedhorn-coupled planar orthomode transducers (OMTs). The feedhorns fully define
the detector beams. We optimize the feedhorn performance to the specific optical requirements of the telescope
and frequency band using Markov Chain Monte Carlo methods.9 Requirements typically include edge taper,
ellipticity, and/or spillover. Previous experiments have typically used stacks of ∼40 through-etched Si wafers to
build up the feedhorn profiles in an array.10 However, new methods using direct-machining into Al with custom
tooling can reduce the time and cost of production by a factor of ∼20.11 The feedhorns are designed to have
a monotonically increasing profile shape to enable direct machining.12 A direct-machined feedhorn array and
single feedhorn cross-section are shown in Figure 1.

Figure 1: The left shows a gold-plated Al feedhorn array for 430 optical pixels of 90/150 GHz from Simons
Observatory (SO), while the right shows a cross-sectional profile of a single direct-machined feedhorn with a
spline profile. CMB-S4 will use this feedhorn profile and arraying scheme.

The OMT consists of four Nb probes on a low-stress, SiN membrane that split the polarization into two
orthogonal directions. Previous experiments have typically used probes with linear features (left panel of Fig-
ure 2),13 but CMB-S4 will use a new probe design with a “wine glass” shape (right panel of Figure 2) that has
a more uniform response in frequency and a ∼2% efficiency gain in the high band. This new design was made
possible by improved computing power enabling more complex numerical optimizations. The OMT design was



optimized for the LAT mid-frequency detector wafer (MF), and this OMT design is linearly scaled for other
observing bands with a scaling factor optimized for the bands. The radiation from the probes is passed into
a superconducting co-planar waveguide (CPW). A stepped impedance transformer is employed to transition to
the low impedance microstrip lines that make up the on-chip detector filters and circuitry.

Figure 2: The OMT sits in the center of each pixel and is comprised of four fins. Left: A pixel fabricated by
the National Institue of Standards and Technology, Boulder (NIST) with an OMT design from previous CMB
experiments Right: A CMB-S4 prototype pixel fabricated by Argonne National Laboratory (ANL) with the new
“wine glass” probe OMT design.

3.2 Transition of optical power to sensor

After the stepped impedance transformer, the optical signal is transmitted through superconducting microstrip
transmission line. The microstrip consists of a ground layer, which is typically niobium (Nb); a dielectric spacer,
either a silicon oxide (SiOx) or a silicon nitride (SiNx); and a top conductor, usually the same material as the
ground layer. The signal is routed to an in-line diplexer that partitions the signal into the two optical passbands.
The diplexer filter uses either a lumped element or stub filter components. After the diplexer, the signal is
coupled to the bolometer through one of two approaches. One approach terminates a pair of transmission lines
(each connecting to a one of the opposing OMT fins) across a matched impedance load resistor. If the input line
lengths are equal, then only in-band power from the TE◦

11 is dissipated in this configuration. The other approach
feeds the pair of microstrip lines into a hybrid tee, which produces a sum and a difference output from the two
input signals. The higher order modes from the sum output are terminated on the substrate and the TE◦

11 mode
from the difference output is routed to the bolometer where the signal is dissipated through a sufficient length of
lossy material. In places where microstrip transmission lines are required to cross each other, the design employs
cross over structures either using vias or additional dielectric and conductor material.

3.3 Transition-Edge Sensor bolometer

The superconducting microstrip is terminated on Transition-Edge Sensor (TES)14 bolometers, which transduce
changes in optical power to changes in current. TES bolometers have been adopted widely by recent CMB
experiments for their scalable manufacturing,4,15,16 well-understood noise properties17 and ability to achieve
“background-limited” operation where detector noise is dominated by photon shot noise.3–7 The detectors are
voltage biased, with strong electro-thermal feedback resulting in a highly linear response with improved response
time.18 As a low impedance sensor, the TES is compatible with several multiplexing readout technologies.

CMB TES bolometers are fabricated using thin-film microfabrication techniques used in both superconducting
microelectronics and MEMs applications, which enables scaling to large array production. The key parameters for
the TES bolometer designs are the superconducting transition temperature of the sensor (Tc), sensor impedance
(Rop), the bolometer thermal conductance (G), or equivalently saturation power, Psat, and the time constant (τ)
of the bolometers. Figure 3 shows a picture of a CMB-S4 prototype TES bolometer. Each bolometer will have
two TESs fabricated on the same released area of the bolometer and connected in series.19 The two TES have
different superconducting transition temperatures, with one optimized for science observations and the other
designed for higher-power calibration sources. For the science TES, Tc is chosen as ∼160 mK and G is chosen
band-wise to minimize the phonon-carrier noise of TES bolometers for an operating temperature of 100 mK, while
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Figure 3: Left: Photo of an prototype CMB-S4 bolometer island. The optical signal is differentially terminated
across a matched load resistor on the left side of the island. The right side of the island has the calibration
TES (smaller TES, upper right) and science TES (larger TES, center right). The island is suspended from the
silicon substrate and thermal transport along the legs determine the bolometer primary thermal conductance.
Additional heat capacity is added to tune the detector time constant. Center: Plot of measured bias power
versus detector resistance for the science TES for a prototype CMB-S4 detector. The TES resistance, RTES,
transition temperature, Tc, (inset), and saturation power, Psat are approaching development targets. Right:
Plot of measured bias power versus detector resistance for the calibration TES (upper right branch; left branch
corresponds to the science TES in center panel). The TES resistance and transition temperature are near
development targets and the large saturation power is sufficient for the calibration measurements.

providing sufficient dynamic range or operating margin under the predicted optical load for that band without
saturation. Psat is the total power dissipated when the bolometer is voltage biased at the operating point. When
observing the sky, this power consists of both incoming optical power and electrical bias power. For CMB-S4, Psat

is designed to be roughly a factor of three greater than the expected optical power providing margin for changing
optical loading due to changes in weather and the telescope’s observing elevation. The normal resistance (Rnorm)
of the science TES is currently targeted at 14± 2 milli-Ohm. The Tc for the calibration TES is higher than the
science TES, and chosen so that the detector can observe a 450 K calibration source without saturating. The
calibration Rnorm is chosen so that it can be reliably voltage biased when including the normal series resistance
of the science TES. The upper bound of the bolometer τ is chosen such that sensors go through multiple τ
periods as the detector beam scans a physical scale of interest across the sky. The lower bound is set by readout
bandwidth and electro-thermal-feedback stability. CMB-S4’s science TES bolometer τ ’s will have a lower bound
of 1 ms and an upper bound of ∼ 3− 37 ms depending on the observing band.

The science TES will consist of a sputtered film of aluminum manganese (AlMn) alloy.20,21The Mn concen-
tration and the temperature of a controlled bake of the AlMn films are used to set the Tc.

22 Both the lateral
dimension and thickness of the TES are chosen to achieve the required Rnorm. A film of gold, gold/palladium, or
palladium, grown either by sputtering or electron beam evaporation, will be used as a thermal anchor where the
volume of this heat capacity is chosen to provide the required τ . Niobium film is used for the superconducting
leads to connect to the TESs and the RF transmission lines. All of the TES structures are fabricated on a low
stress SiNx membrane, which is then patterned and released to form narrow bridges suspending the TES island.
The release is carried out either via backside through wafer etch with a deep reactive ion etching (DRIE) or
a xenon fluoride process. The bolometer G is determined either by the electrons in a strip of normal metal
along one of the bridges, or by the phonon transport along the bridges. In the case of the latter, the ratio of
cross-section area versus length of the suspended bridges is adjusted to tune thermal conductance.

3.4 Transition-edge sensor biasing

A direct-current (DC) voltage bias is applied to each TES bolometer to heat it into its superconducting transition.
CMB-S4 will apply these biases using a small (∼ 400µΩ) shunt resistance wired in parallel with each TES as
shown in Figure 4, driven by differential current sources in the warm electronics selected for low 1/f -noise. A



single bias line can drive several dozen TES/shunt pairs wired in series, typically corresponding to a single column
of the TDM readout. The use of shared bias lines requires percent-level tolerances on uniformity among detectors
in a wafer, such that all detectors on a given bias line can simultaneously achieve near-optimal performance. In
parallel with its shunt resistor, each TES is also wired in series with its associated SQUID input coil and with
a discrete series inductor. The total inductance in this loop (discrete, input coil, and stray) is tuned to control
the bandwidth of the TES circuit. This ensures stable operation of the TES, and controls aliasing of TES and
SQUID noise from the sampling rate of the TDM system. This introduces important couplings between design
parameters of the TESs and readout system, which must be accounted for in system design.

3.5 SQUID amplifier chain and multiplexing

TES Detector
Wafer

RS 9 9

Rshunt,0

RTES,0

RTES,1

RTES,9

Rshunt,1

Rshunt,9

LNyquist,0

LNyquist,1

LNyquist,9

Ibias,TES

wirebond to seven
more chips

wirebond to seven
more chips

Flexible
Cable

10 Channel
Nyquist 

Chip

10 Channel
MUX
Chip

CMB-S4
simplified readout column schematic

SQ1

SQ1B4K SSA SQ1FB

Figure 4: System-level schematic of the TES biasing, SQUID amplification and multiplexing circuit for one TDM
readout column for CMB-S4. For simplicity, not all cables and interconnects are shown. Each TES, represented
by RTES, in a CMB-S4 detector wafer is connected through a superconducting flexible circuit using pairs of
superconducting aluminum wirebonds into one of the inputs of a 10-channel Nyquist chip which adds a wirebond
selectable inductance in series with the TES LNyquist and a bias resistor shunting the TES Rshunt. Another pair
of superconducting aluminum wirebonds puts the TES in series with the input of a dedicated first stage SQUID
series array amplifier (SQ1) on a 10-channel multiplexing (MUX) chip. One TES at a time is read out on a
column by switching its SQ1 into the column readout circuit by activating its MUX chip’s row select (RS) and
chip select (CS) as described in the text. The common column readout circuit for every SQ1 consists of a second
stage SQUID series array amplifier at 4K, followed by a warm preamplifier at room temperature. In time division
multiplexing, every TES is read out periodically by cyclically activating its CS and RS switches and sampling
the output of the column readout circuit.

CMB-S4 will use an implementation of time-division multiplexing (TDM) using DC SQUIDs to read out its



TES bolometers. This technology has over a decade of heritage on fielded CMB receivers.23 In TDM, TESs are
read out in a 2D grid of rows and columns. The current signal from each TES is first amplified by a dedicated
first-stage SQUID (SQ1), which is shunted by a Josephson junction (JJ) switch. Many SQ1s shunted by switches
are chained in series and connected to the input of second stage SQUID Series Array (SSA) at ∼4 K. A common
SQ1 feedback coil is inductively coupled to every SQ1 in a column in series to allow operating any SQ1 in a
closed flux-locked loop. Flux coupled to any JJ switch through an inductively coupled control line can either
make the switch superconducting (off), shorting out its SQ1, or resistive (on), exposing its SQ1 to the column’s
SSA input, depending on the flux applied. Switch control lines are connected in series for one switch from each
column to form a readout row, controlled by a single row-select (RS) line. TES arrays are then read out by
switching on one row at a time with all others off while operating the on row’s SQ1s in a closed flux-locked loop.
This TDM architecture was first deployed on BICEP3 in 2015,24 and subsequently on many other instruments.

To use TDM in CMB-S4 we aim to increase scalability, and reduce the cost and integration complexity by
increasing the multiplexing factor, or number of TESs that can be read out per column. In prior TDM readout
implementations on CMB instruments, the multiplexing factor has been limited by the achieved readout band-
width. The readout bandwidth limits the row switching rate, which in turn results in a degradation of noise
performance due to SQUID and TES noise aliasing as the multiplexing factor is increased. The AdvACT ex-
periment has demonstrated the highest multiplexing factor to date using the legacy TDM architecture,8 reading
out 64 rows on 32 columns with a row switching rate of 2 µs resulting in an increase in noise due to aliasing of
between 5-10%.25 To increase the multiplexing factor we will incorporate several low-risk technological improve-
ments that have been developed by NIST Boulder for the readout of much faster X-ray TESs.26–28 Planned
improvements include adding a shunt resistor across the SSA to increase the system bandwidth,29 a new faster
SSA design, and a new SQ1 design with a higher input mutual inductance. Taken together, preliminary studies
indicate these improvements may enable substantially lower row switching rates and thereby multiplexing factors
in excess of 120 rows per column, but we baseline 80 rows in the conceptual design.

Additionally, we will incorporate new two-level switching SQUID multiplexing architectures30 into CMB-S4’s
detector readout to significantly reduce the number of wires required to switch the rows. These architectures
connect banks of RS switches in parallel with a single control switch shunting each bank to significantly reduce
the number of required wires. One switch from each bank is connected serially across all banks and columns
to form a two-dimensional switching matrix. To address an individual row in the multiplexer, warm electronics
must activate both the desired RS switch, and the control switch for the bank the row is in, or the chip select
(CS) switch. A schematic of the readout circuit for one column of the CMB-S4 multiplexing architecture is shown
in Figure 4. Prototype chips implementing this new architecture are being fabricated now at NIST Boulder and
will be tested soon in CMB-S4 detector and readout cryogenic test stands.

4. MODULAR IMPLEMENTATION FOR CMB-S4

The concrete implementation of detectors, readout electronics, and optical coupling in CMB-S4 emphasizes
modularity as an overarching design guideline, which facilitates quality control during production, and enables
reuse and reworking of components. A schematic of the modular implementation concept is shown in figure 5.
Silicon optical coupling wafers are assembled into a stack together with a feedhorn array and a single 150-mm
silicon wafer of TES bolometers (“detector wafer”), to form the waveguide that efficiently couples light from the
telescope into the TESs via OMTs and microstrip. This optical stack is mounted to a frame that also contains a
number of 100 mK readout modules, consisting of the first-stage SQUID amplifiers, TES bias resistors, Nyquist-
bandwidth-defining filters, and wiring on silicon and printed circuit boards. Each 100 mK readout module is
interchangeable and consists of 4 readout columns of an 80-row TDM architecture with two-level addressing. The
100 mK readout modules connect to the detectors via a superconducting flexible circuit, as well as with NbTi
cables to the SQUID series arrays at 4 K which form the next stage of the amplification chain in the readout.
The chain terminates in warm readout electronics modules mounted outside the camera cryostats, and connected
to 4 K readout elements with manganin cables.

The modular design balances the need for optimal sensitivity and a desire to use interchangeable compo-
nents conducive to mass production and testing. Detector parameters, wafer layouts, and feedhorn designs are
optimized for each telescope type (LAT and SAT) and observing band to meet L2 subsystem requirements, L1
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Figure 5: System-level schematic of modular readout scheme showing components at each temperature stage
and interconnects. Light from the telescope optics is incident on the optical coupling components and detectors,
which are coupled to readout modules at 100 mK, and comprise the integrated detector and readout module.
Cabling connects the 100 mK readout to boards at 4 K containing SQUID series arrays, which are connected to
room-temperature readout electronics outside the cryostat. Row addressing signals are carried by another series
of cables and modules that pass from the room-temperature electronics to the 100 mK readout modules.

Large-aperture telescope (LAT) Small-aperture telescope (SAT)
Detector wafer type ULF LF MF HF LF MF1 MF2 HF
Number of wafers 4 17 108 41 24 72 72 48
Active detectors / wafer 54 192 1728 1876 48 588 676 1876
Total active detectors 216 4800 279,936 120,064 1152 36,288 41,760 68,736
Readout modules / wafer 1 1 6 6 1 3 3 6
Readout columns / wafer 4 4 24 24 4 12 12 24
readout rows 80 with 2-level addressing 80 with 2-level addressing

Table 2: Summary of detector and readout counts for the eight wafer types of CMB-S4. All wafers are dichroic
except the ULF wafer, with the detectors split evenly between frequencies. Total active detectors include a small
number of dark channels for calibration purposes, and is the total across all telescopes.

technical requirements, and up through the measurement requirements and the science goals. This results in
eight unique detector and feedhorn designs, whose basic parameters are summarized in Table 2.

4.1 Integrated Detector & Readout Module at the 100 mK Focal Plane

The detectors, readout electronics, and optical coupling components are mechanically integrated together in a
module designed to operate at 100 mK, which also provides mechanical and thermal interfaces to the cryostat
and mixing chamber stage of the dilution refrigerator. The design is driven by several key requirements: 1.)
integrated modules must tile in the SAT focal planes with minimal deadspace, including . 1 mm gaps between
feedhorn arrays and 2 mm wall thickness on the perimeter of the feedhorn; 2.) 100 mK readout components must
be arranged in identical, individually shielded, connectorized modules, each of which connects TES signals to
the detector wafer via superconducting flexible circuits; 3.) the integrated module must have sufficiently high
thermal conductivity both internally and to the cryostat thermal bus such that detectors can be stably operated
at 100 mK. Figure 6 shows the key elements of the integrated module design.



a.) b.)

c.)

150 mm

Figure 6: 3D model of integrated module of detectors, optical coupling, and readout electronics that will be
installed in the telescope focal planes. a.) Fully assembled module. The 100 mK readout is mounted in mag-
netically shielded enclosures behind the footprint of the feedhorn arrays, and TES on the detector wafer are
connected to readout by superconducting flexible circuits (not shown) wirebonded on both ends. In the SATs,
the hexagonal modules are tiled together, upto 12 in an optics tube, with a ∼ 1 mm gap between neighboring
modules. In the LATs, the modules are mounted one per optics tube. The module shown is of the LAT MF
design; other bands are similar, but use different feedhorn arrays and numbers of 100 mK readout modules behind
the optical coupling stack. b.) Assembled feedhorn and wafer stack The detector stack wafers are aligned with a
pin and slot system and clamped to the horn array with springs. c.) 100 mK readout module. The TES voltage
bias and first-stage SQUID bias and feedback signals are routed to a micro-d connector, while row-select signals
enter and exit the board on ZIF connectors that are exposed through the board housing.

The primary structural element of the integrated module is a copper “spider plate”, shown in Figure 6, which
clamps the optical coupling wafers onto the feedhorn array and mechanically supports the feedhorn array with
tabs in each corner of the array. Cutouts in the corner of the feedhorn arrays permit the use of low-profile tabs
that enable modules to be tiled in the SAT focal planes with a separation of ∼ 1 mm. The secondary purpose
of the spider plate is to provide a mounting point for the 100 mK readout modules. The requirement that these
modules fit behind the footprint of the feedhorn array imposes strict requirements on their width and motivates
the use of 80-row multiplexed readout with only 4 readout columns per readout module. There would be one
readout module mounted per hexagonal side of the LAT MF, HF, and SAT HF integrated modules, which have
the highest detector densities. Since little space is available between the integrated modules for mounting and
support structures in the SAT cryostat focal plane, modules are mounted to the focal plane structure by a tube
that connects with the spider plate in the center space between the 100mK readout modules. Since the LAT
cryostat possesses individual circular optics tubes, there is more clearance than in the SAT around the perimeter
of the feedhorn array for mounting features, and the integrated modules can be mounted to the cryostat structure
either at the feedhorn or from behind as in the SAT. Detailed designs of the module mounting are currently
being developed in parallel with the LAT and SAT cryostat designs.

4.1.1 150-mm Hexagonal Arrays of TES bolometers

A detector wafer consists of a close-packed array of OMT pixels and TES bolometers. CMB detector wafers
are designed for ease of mass fabrication via deposition, etch, and patterning of metals and dielectrics on a



monolithic silicon substrate, and with special attention to high yield and uniformity across the array. CMB-S4’s
large quantity of detector wafers also necessitates control of processes over hundreds of wafers. A CMB-S4
detector wafer is a chamfered hexagon cut out of a ∼ 500µm-thick 150-mm-diameter silicon wafer with 12 to
469 OMT pixels, depending on the wafer type, connected to 4 TES bolometers each. TES bias connections from
each pixel are routed to the edges of the hexagonal wafer and presented as wire bond pads for connections to
the 100 mK readout modules via superconducting traces in a flexible circuit.

The detector wafer architecture used by CMB-S4 consisting of arrays of feedhorn-coupled OMTs coupled to
TESs with Tc ∼ 160 mK has an extensive heritage, having been demonstrated by multiple experiments with
high yield and uniformity. A typical pixel operability of > 95% has been achieved per wafer, with similarly high
wafer-to-wafer yields.4 In previous realizations of this process, deposition, etch, and pattern uniformity require
much better than ±5% (shown to be improved to < ±1% for some processes) to achieve acceptable yield and
performance; combined with high-quality pixel component designs, this results in the ability to achieve high
efficiencies with very small spreads (as low as ±5% across an array). The detector fabrication processes for
these devices, historically developed at NIST Boulder, are currently in the process of being ported to multiple
microfabrication foundries in order to meet the immense fabrication throughput requirements of CMB-S4. Due
to the heterogeneous equipment available at the participating foundries, each site defines its own processes and
choice of materials that meet the basic functional specifications of the CMB-S4 detectors. Some early prototype
wafers are pictured in Figure 7.

To integrate with the rest of the module, the detector wafers must conform to several mechanical interfaces.
First, the dimensions of the OMTs themselves are optimized together with the optical coupling in order to
maximize efficiency subject to constraints on beam size, ellipticity, and polarization purity. The layout of
detectors within each wafer is optimized in order to meet both the NET requirement of the entire focal plane,
together with the requirement on the maximum allowable spillover onto the cryogenic stop inside the telescope.
A mixture of two layouts, one with fully hex-close-packed (HCP) pixels and another with three, offset rhombus-
shaped sections of HCP pixels are used for different frequencies of detectors. The two layouts offer more flexibility
in the number of detectors per wafer, while also providing flexibility to the fabrication sites in the style of wiring
that is used (the rhombus layout enables creating wiring with stepper lithography). Finally, the layout of bond
pads on the perimeter of the wafer is standardized to be compatible with stepper-based wiring, using groupings
of 25 pairs of 70-µm wide, double-row bond pads. The different wafer designs populate a subset of the groupings
and a subset of pads within each grouping in order to maintain compatibility with the 100 mK readout modules.

Figure 7: Left to Right: 150-mm hexagonal detector wafer from NIST Boulder deployed in AdvACT and basis
of CMB-S4 prototype, prototype from Argonne National Laboratory, and prototype from SeeQC/Lawrence
Berkeley National Laboratory.

4.1.2 Feedhorn to TES wafer stackup

The Si detector stack is composed of a photonic choke wafer, a waveguide interface plate (WIP) wafer, the
detector wafer, and a backshort wafer as shown in Figure 8. The photonic choke wafer has a pattern of square
pillars that is optimized for each observing band to minimize leakage at the interface between the Al feedhorn
array and the Si detector stack.31 The WIP has a ring-shaped boss feature on the backside of the detector wafer.
The inner radius of the boss feature matches the waveguide radius of the detector stack and keeps the waveguide
gap between the WIP and the OMT < 15µm. The outer radius of the ring is tuned to minimize leakage from



the gap between the OMT and waveguide. The roughly quarter-wave backshort is tuned to optimize efficiency
across the two bands. The backshort includes 10µm tall posts that offset the backshort wafer from the detector
wafer wiring. The backshort also includes moats filled with absorptive material positioned behind the optical
TES bolometers to reduce high frequency out-of-band leakage.

The optical coupling wafers are fabricated using silicon-on-insulator (SOI) wafers to tune the depths of the
features. The features are etched into the wafers using DRIE, and then the wafers are seed-coated with 200 nm
of Ti and 1µm of Cu via sputtering to ensure even sidewall coverage. Next, the WIP and choke wafers are glued
together into one piece, and the WIP+choke piece and backshort wafer are Au-coated with 3µm Cu followed
by 3µm Au. After Au-coating, the coupling wafers are assembled together with the detector array. The pieces
are placed in a simple gluing jig with two pins for alignment, clamped together, and glued in 2–3 glue channels
on each side. The Si detector stack is coupled to the Al feedhorn array with a pin and slot system to account
for the differential thermal contraction between the two materials when cooled. In the final assembly, the pins
are press fit into the horn array, and the detector wafer stack is clamped to the feedhorn array with springs as
shown in Figure 6. The feedhorn positions are oversized such that the two pieces are aligned when cold. The
alignment tolerance of the mid-frequency waveguides is 20µm.

Figure 8: Left to Right: Close up of the photonic choke wafer, waveguide interface plate wafer, backshort wafer,
and a schematic cross section through the stack up of the optical coupling components and detector array.

4.1.3 Readout components at the 100 mK focal plane

The first-stage SQUID amplifiers, multiplexing, TES biasing and signal filtering components are contained in
100 mK readout modules co-located with the detector wafers at the focal plane. They are electrically connected
to the wafer via a short flexible circuit with superconducting traces to limit parasitic impedances between the
TES detector and the first stage amplifier. The first-stage SQUID amplifier (SQ1) and flux-activated row-select
switches are fabricated onto a multiplexer chip (MUX) serving ∼ 10 TES channels each.The shunt resistors for
TES voltage-biasing and the series inductors that define the TES signal and noise bandwidth are fabricated
onto a “Nyquist” filter chip (NYQ), also called a TES biasing chip. The MUX and NYQ chips for a readout
column are seated on and bonded to a larger silicon wiring chip. This chip contains superconducting traces
that connect to the Nyquist chips on one edge, and present bond pads for connection to the TES detectors on a
perpendicular edge. Sets of chips for four columns are assembled into a readout module. The components and
their assembly into a prototype 2-column 100 mK readout module is shown in Figure 9. The 100 mK readout
module also receives row-select (RS) and chip-select (CS) control signals for multiplexing. Up to six readout
modules, corresponding to 24 columns, are connected to a single row address board which is also located at the
100 mK focal plane. This simple PCB distributes the RS and CS signals to the 100 mK readout modules along
flexible circuits with copper traces.

4.1.4 Electrical interconnects and mechanical assembly

The requirement that the 100 mK readout be modular practically necessitates the use of superconducting flexible
circuits between the TESs and the readout. The per-channel MUX and NYQ chip superconducting circuitry
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Figure 9: Left: Assembled prototype 2-column 100 mK CMB-S4 readout module that houses the first stage
SQUID amplifier and multiplexer (MUX) chips and the TES biasing (NYQ) chips. The MUX and NYQ chips
are affixed to the surface of large silicon chips with superconducting wiring which will route signals from the
TESs into the inputs of the NYQ chips. The wiring chips will connect to the TESs (on the left) through a flexible
superconducting circuit (not shown). The silicon wiring chips are glued to the top surface of an FR4 PCB with
ZIF connectors (top) for row- and chip-select inputs and a micro-D connector (bottom) for SQUID and TES
biases. The PCB housing (copper in this photo) is 55 mm x 60 mm. Top Right: A pair of MUX (right) and NYQ
(left) chips. Readout circuits are completed using pairs of aluminum wirebonds and run horizontally across the
chips. Both chips are 3 mm x 6.6 mm. Bottom Right: Flexible superconducting circuit prototype from SLAC,
containing aluminum traces with 90µm trace pitch on a thin polymide substrate.

footprint is insufficiently compact to fit readout for entire SAT and LAT HF detector wafers on a single layer of
Si directly behind the TES wafer. Stacking multiple layers of Si readout components behind the TES wafer to
accommodate the readout components would significantly increase the effort required for rework and replacement
of components in the lower layers. Thus, a single-layer design was chosen for the 100 mK readout modules, and
the area required for Si components makes a superconducting flexible circuit an attractive option for routing
the TES connections from the detector wafer to the readout. Superconducting flexible circuits have been used
in small quantities for this interconnect in multiple generations of CMB experiments using TDM, including
ACTpol,10 AdvACT,32 and CLASS33 using Al traces. Nevertheless, these circuits for CMB-S4 present several
challenges including the large quantity of cables (∼4,500 including spares), 90µm trace pitch, and work hardening
property of Al which limits the number of cycles of flexing. R&D is currently in progress on two fabrication



SAT LAT
HF (Single Wafer) Full Camera

Optical TES 1872 137,904
Total Active TES 1884 138,414
100 mK readout boards (4 columns each) 6 470
Column cables (25-pin, 100 mK - 4 K) 6 470
Row address boards 1 85
Row cables (51-pin, 100 mK - 300 K) 1 85
SSA Modules (8 SSAs each) 3 239
Column cables (100-pin, 4 K - 300 K) 3 239
Column boards (room temperature) 3 239
Row boards (room temperature) 1 85

Table 3: Example TDM readout quantities are enumerated for an SAT HF detector wafer and an entire LAT
receiver (85 wafers). Total active TES count includes dark detectors for calibration.

processes. The first uses Al film evaporated on kapton and then patterned with a lift-off process similar to one
developed at SLAC National Accelerator Laboratory (SLAC).34 The second process, developed by HighTec∗,
uses Nb patterned on a polyimide substrate and has achieved 10µm feature resolution.35

The final steps of the integrated module assembly consist of wirebonding the superconducting flexible circuit
between the TES wafer in the feedhorn/wafer stack and the 100 mK readout modules, and then mounting the
readout modules on the back of the spider plate. Similar to the design of AdvACT and SO modules, the CMB-S4
modules use Au wirebonds connected from Pd pads on the detector wafer to the Au-plated feedhorn arrays, to
provide heatsinking. After these are added, a Si DC wiring wafer is added on top of the backshort, and Al
wirebonds carrying TES signals are added from the detector wafer to the DC wiring wafer. This wafer serves
as an adapter between the bondpad layouts on the flex cable and the detector wafer, and it allows the flex
cables to route radially outward on the edge of each hex, which significantly simplifies the assembly process.
Superconducting flex cables are then glued to the DC wiring wafer and wirebonds are added. The 100 mK
readout modules are finally folded behind the wafer and bolted to the spider plate, completing the assembly.

4.2 Supporting cryogenic readout electronics

Signals from the integrated detector and readout module at 100 mK described above continue to an additional
SQUID amplification stage that must be located at a warmer temperature of the receiver, and eventually out to
the room temperature readout electronics which control the multiplexing signals, provide detector and SQUID
biases, and digitize detector signals. A schematic overview of these supporting electronics is shown in Figure 5,
example component and wiring counts are given in Table 4.2, and photos of prototypes are shown in Figure 10.

Low-thermal-conductance twisted-pair wiring is used to connect the cold electronics to warm electronics, with
thermal intercepts at all possible temperature stages. The electrical design of this wiring is a straightforward
application of wiring in demonstrated TDM systems, with some engineering challenges in managing thermal
loads while staying within the overall impedance budget, and designing long cable runs to connect across the
large focal plane. Design improvements to increase available bandwidth are described in Section 3.5. Connecting
the 100 mK integrated module to second stage amplifier at warmer temperature, a 25-wire twisted pair NbTi
cable per readout module of 4 columns carries SQ1 bias, SQ1 feedback, and detector bias. The control signals
for the row address module at 100 mK are carried by a 51-wire NbTi cable which supports up to six readout
modules (24 columns).

A SQUID series array (SSA) further amplifies signals for transmission to a room-temperature amplifier. With
multiplexing, only a single SQ1 first-stage SQUID feeds the SSA at any given time. To achieve the necessary
amplification, the SSA must contain a large number of SQUID elements, which drives the design for this stage.
The resulting power dissipation precludes the placement of this SSA on any of the sub-Kelvin cryogenic stages.
The expected operating temperature is between 1 and 4 K, separate from the 100 mK electronics and connected

∗https://hightec.ch/

https://hightec.ch/


Figure 10: Left to Right: A SQUID series array (SSA) with 6 banks of 64 SQUID elements, used for second-stage
amplification of signals from the 100 mK readout module; a prototype modular package with two sets of 8 SSAs
under magnetic shielding; a low-thermal-conductance twisted-pair NbTi cable for connecting readout from the
100 mK stage to an intermediate temperature; a 100-wire shielded twisted-pair manganin cable for connecting
the cryogenic 8-column package to the room temperature electronics.

via low thermal conductance twisted pair wiring. These large arrays of SQUIDs are extremely sensitive to
magnetic field variations and gradients, but their placement away from the focal plane allows for relatively
compact, effective magnetic shielding as part of their packaging. Groups of 8 SSAs are packaged together into a
module, which supports 8 columns of readout. A 100-wire manganin twisted-pair cable for this 8-column package
carries the SSA bias and feedback between this temperature stage and room temperature, along with the SQ1
bias and feedback, and detector biases to be transmitted to 100 mK. The SSA is a mature design from NIST
Boulder, which is a configurable array with 6 banks of 64 SQUID elements that can be connected in series or in
parallel. The array layout and external shunting can be adjusted to modify electrical properties including input
and output impedance, which is used in optimizing the gain and bandwidth of the system.

4.3 Room Temperature Electronics

The SQUID multiplexer and amplifier chains described in Section 3.5 require warm electronics for control and
read out. In particular, warm electronics provide SQUID biases and feedback for the two stages of SQUID
amplification per readout column, row-select flux biases, and TES biases. The warm electronics also operate
each TES in a closed flux-locked loop and stream digitally filtered and downsampled data from the receiver to data
acquisition for storage and subsequent analysis. For CMB-S4, a new warm electronics readout system is being
developed at SLAC. Previous CMB observatories have used the Multi-Channel Electronics (MCE) developed for
the SCUBA-2 experiment as warm readout for TDM SQUID multiplexing, but several key components of the
MCE system have reached obsolescence.36 The new system takes advantage of miniaturization of electronics since
the design of the MCE, to significantly shrink the size of the warm electronics and enable CMB-S4’s planned high-
channel-count receivers. The new electronics are based on an extendable, compact, module-based architecture.
In this new architecture, each warm readout system is a collection of two distinct types of modules with identical
mechanical footprints that mount directly to connectors on the vacuum wall of the CMB-S4 receiver cryostats.
All modules forming a single warm readout system are networked together using ethernet cables with one module
serving as the controller for the other modules which interfaces externally with off-receiver data acquisition.

Each module connects to the CMB-S4 receivers via a male 100-pin micro-D connector with the same pinout
as the legacy MCE system, to maintain backwards compatibility and enable testing with the MCE while the new
system is under development. The two types of modules are “row” modules which each provide up to 48 row
switching flux biases and “column” modules which each provide the SQUID biases, SQUID feedbacks, and low
noise analog front-ends for up to eight columns of TDM readout as well as up to eight TES biases. Both row and
column modules are 127 mm wide by 254 mm long, and have identical electrical back-end interfaces. In addition
to being mechanically compact, the modules are designed to be conduction cooled enabling higher-density packing
than comparable air-cooled systems, and eliminating the risk of microphonic and electrical pickup from fans.
On the opposite end of the modules from the 100-pin micro-D cryostat connector, both types of modules have
a single 48V DC power input from which all other module voltages are derived using in-module regulators, two
RJ-45 in/out connectors for networking groups of modules, and a dual Small Form Factor Pluggable (SFP) cage
which supports both a 1 Gbps ethernet interface for testing and development and a timing input. The row and



Figure 11: Prototype warm readout modules developed for CMB-S4, shown here outside of their common housing.
Warm readout systems can be composed by chaining the two different types of modules, which have identical
mechanical and electrical interfaces using ethernet cables, with one of the boards designated as the controller
for a networked group. Each module is designed to mount directly to connectors (on left) on vacuum flanges on
the CMB-S4 receivers in a close packed configuration (not shown). Left: A ”row” type warm readout prototype
module which can provide up to 48 row-switching signals to the 100 mK readout modules. Right:. A ”column”
type warm readout prototype module which can provide the TES biases, SQ1 and SSA bias and feedback signals,
and low-noise analog front-end amplification for up to eight columns of a TDM SQUID multiplexer.

column modules each have an FPGA controller which commands the analog-to-digital converters (ADC) and
digital-to-analog converters (DAC) and handles digital processing tasks like operating each TES in its own closed
flux-locked loop as well as data filtering, downsampling, and streaming. Single-ended SQUID biases and feedback,
row-select flux biases, and bipolar TES biases are all provided by DACs with in-module filtering to condition
and bandwidth limit signals before they are injected into the cryostat. Each of the eight low-noise analog front
ends in the column modules consist of an amplifier chain with a low-voltage-noise first-stage preamplifier which
feeds one channel of an integrated eight channel ADC. The new electronics incorporate improvements informed
by feedback from users of the legacy MCE system including fully integrated clock, timing, and communications,
a single DC power input, a higher clock rate potentially enabling much higher multiplexing factors and data
rates, and a modernized communication interface.

First prototypes of the row and column modules have been designed and assembled, shown in Figure 11.
While fully functional, testing on SQUID multiplexers has indicated the need for a revision of the modules to
address a few performance issues including higher than expected noise pickup from the in-module switching
regulators used to step down the common 48V input voltage. To help mitigate this and to improve performance
generally, design changes are planned for this second revision including an improved filtering and grounding
design for the switching regulators, fully differential SQUID biases and feedbacks, and a new lower noise, fully
differential front-end design.

5. PROTOTYPING AND DESIGN VALIDATION

CMB-S4’s development and design validation plan will mature the detector and readout system from a conceptual
design to a prototype, and then to a preliminary design for pre-production before advancing to a final design
for full production. This plan will advance both the integrated module sub-components, and the eight different
integrated module types in a phased approach. The immediate goal during the next year of development is to
demonstrate performance of the integrated detector and readout system with noise and optical coupling that
meets the instrument requirements for a subset of module types, using prototype CMB-S4 hardware for a majority
of the module components. We have developed readout and detector testing capability in cryogenic test stands,
which will provide measurements of the module sub-components and integrated module performance (e.g., the
TES properties on the detector wafer). Using one of these test stands, we have already conducted an end-to-end
validation of the electrical design at the level of a few TES bolometers of different saturation powers connected
to a TDM SQUID multiplexer. Further prototype development and measurements will be used to feedback and
iterate on the design, and also validate that the sub-component requirements are still met in the integrated
module. In this section, we describe the design and development plan for the prototype sub-components, and
the planned testing of the integrated module.



5.1 Cryogenic Test stands for prototyping
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Figure 12: Left: A CMB-S4 dilution refrigerator test stand at SLAC opened up to 4 K showing the installed CMB-
S4 TDM readout kit. Right:. Close up of prototype CMB-S4 100 mK readout modules along with associated
cabling and distribution boards installed for test on the 100 mK mixing chamber plate.

To support the prototyping of detector fabrication, readout electronics, and modules, the CMB-S4 project
is commissioning three (eventually expanding to six) cryogenic prototyping test stands which are equipped with
a standardized readout and test module design and are each capable of testing a single 150-mm detector wafer.
These cryostats are either Bluefors LD-400 or Oxford Triton dilution refrigerators, made available to the project
by members of the collaboration, which are equipped with legacy MCE room-temperature readout. We have
designed and fabricated a complete, modular TDM readout kit which is drop-in compatible with these cryostats as
shown in Figure 12. The kit incorporates every component required from room temperature to 100 mK including
vacuum and thermal feedthroughs, cabling and fixturing, PCBs, and prototype 100 mK readout modules, 4K
SSAs and associated electronics. Following an initial round of testing at SLAC, all systems were supplied with
the kits. This readout kit, in turn, is being used to develop a pre-prototype module (see Section 5.3) at Fermi
National Accelerator Laboratory (FNAL) that is being used to test prototype detector wafers from the TES wafer
fabrication sites for CMB-S4. In this early stage of project development, modules are wirebonded and assembled
at FNAL and delivered to the other test stands in the project for testing. A campaign of testing the same module
repeatedly at multiple sites will provide a “calibration” ensuring that each site reports measurements comparable
to the others. The test stands will also provide feedback on prototype detector characterization equipment (see
Section 5.4). During pre-production, as readout and module designs are finalized, the project will commission
eight high-throughput test cryostats, each capable of testing seven integrated detector and readout modules;
these cryostats will supersede the prototyping test stands.

5.2 Detector and Readout functional validation

We have connected a few individual TES bolometers to our prototype TES biasing and readout implementation
to successfully validate the electrical design of the detector and readout system. While a new advanced cryogenic
TDM SQUID multiplexing architecture, described in Section 3.5, is being developed for CMB-S4, it is designed
to be backwards compatible with the legacy TDM architecture used in currently active CMB observatories.
This has enabled functional validation of many readout components using the legacy hardware. Likewise the
legacy multiplexer is being used to characterize and validate TES designs, from single devices to full wafers. In



particular, directly connecting individual TES bolometers to the multiplexer decouples readout design validation
from that of the TES wafers and the integrated detector and readout module.

As shown in Figure 9, single pre-screened, NIST first-stage SQUID 11-channel multiplexing chips, mask name
“mux15b”, were integrated into prototype readout modules and directly connected to TES test devices through
a prototype TES bias or “shunt” chip. The TES biasing chip, connected between the multiplexing chip and TES
devices with superconducting aluminum wirebonds, shunts the TESs with 450µΩ bias resistors. On the shunt
chip, these bias resistors are connected in series on a common bias line which enables voltage biasing the TESs
into transition. The TES bolometers were fabricated at NIST Boulder, several per test die, with saturation
powers spanning the range of expected CMB-S4 TES device parameters (See Table 2), from ∼ 0.3− 30 pW. The
TESs had normal resistances of ∼ 10 mΩ and transition temperatures of ∼ 160 mK.

Pairs of identical TES devices were connected to adjacent rows of the multiplexer to allow characterization of
individual, pair sum, and pair difference noise. Other adjacent inputs on the multiplexer were left unconnected,
allowing for a measurement of the readout noise alone. For these measurements, the MCE switched over 33 rows,
with a row switching rate of 2µs, even though only the first 11 rows were instrumented with first stage SQUIDs.
Figure 13 shows a comparison of the measured readout noise to noise measured on a pair of TES devices with a
saturation power of ∼ 27 pW. White noise performance of the readout is in agreement with known performance.
Excess noise at low frequencies is under investigation but thought to be due to a combination of the lack of
temperature regulation in the laboratory space where this testing was conducted and known performance issues
with the older revision legacy MCE boards used for these measurements.

5.3 Flat Module Development

The next stage of development integrates the readout kits with prototype TES wafers in a pre-prototype “flat
module”. Due to the ongoing development of the superconducting flexible circuits described in Section 4.1.4,
integrated “string” tests of detectors and readout electronics use a scheme in which 100 mK readout modules
are arrayed radially on each side of the detector wafer, enabling pads on the detector wafer and the readout
to be directly wirebonded without the use of flex cables, as shown in Figure 14. This module fulfills the
programmatic goal of performing full-system tests of CMB-S4 detectors and readout as early as possible in the
project development cycle. Using a geometry similar to the module of AdvACT,37 this design provides a platform
for end-to-end testing of the entire system, both dark and optically, without the superconducting flexible circuit
and with more relaxed space requirements than the production module. The prototype 100 mK readout modules,
shown in Figure 9, use 2 readout columns per module, with each module bonded to a subset of the detectors
on each side of the wafer and the option of installing one readout module on each side of the detector wafer.
Detector wafers may be tested with or without any optical coupling wafers, and in the latter configuration the
detector wafer is simply secured to the feedhorn with brass spring clips.

5.4 Dark and Optical characterization

Flat modules will undergo both dark and optical tests to compare with CMB-S4 targets and provide feedback
to the TES wafer development program of CMB-S4. These tests will characterize the TES properties across
the entire wafer as well as the integrated performance of the module components. The tests will be initially
performed in the cryogenic test stands described in Section 5.1.

The dark tests will characterize integrated module properties such as channel operability, TES properties,
detector stability, and time constants. Variable temperature blackbody sources will be used to estimate the
module optical efficiency from the detector response. The dark tests will also estimate the overall sensitivity of
the detectors, or noise-equivalent power (NEP), from a combination in-transition current noise measurements
and detector load curves at multiple blackbody source temperatures. In the prototype calibrator design shown
in Figure 15, a flashing IR source coupled through a small aperture in the blackbody also enables measurements
of the optical time constants of the science detectors. These will be compared to the time constants inferred
from the TES response to an electrical voltage bias step.

The optical characterization of the integrated modules will be performed by using equipment coupled to
the cold modules through a series of out-of-band radiation filters and a vacuum window. For instance, the
detector frequency response will be measured using a Fourier transform spectrometer; low-pass and high-pass



Figure 13: Measured end-to-end noise-equivalent power of prototypical TES bolometers with the CMB-S4 mod-
ular TDM readout test kit installed in a dilution refrigerator test stand at SLAC. Sum (orange) and differenced
(blue) noise is shown for a pair of TESs from NIST Boulder voltage biased at 50% of their normal resistance.
The TES pair are of identical design with saturation powers of ∼ 27 pW. The measured noise has been converted
to equivalent power noise in aW/

√
Hz by scaling the data from each TES by its responsivity estimated from

an I-V sweep. A small relative gain correction (. 5%) has been applied to the noise spectrum of one of the
TESs to match their quadratic means. Noise power below 10 Hz in the pair sum TES noise is differenced away,
likely originating from fluctuations in the 100 mK base temperature. The white noise level in the pair difference
TES noise is consistent with the intrinsic phonon noise expected in the devices. Dark SQUID (DSQ) channels,
whose first-stage SQUID inputs are left open, are used to measure readout noise alone, and the pair-differenced
DSQ noise is nearly an order of magnitude lower than the pair differenced TES noise. Here the DSQ noise has
been scaled by the average of the estimated responsivities of the two TES devices. The measured readout-only
pair-differenced white noise level is in agreement with known performance. Excess pair-differenced DSQ noise at
low frequencies is likely related to the experimental setup and could be mitigated in future measurements.

thick grill filters will be used to check for spurious out-of-band detector response. Other optical properties will be
spot-checked during development including beam shape, cross-polarization response, and polarization sensitivity
angle. RF and magnetic pickup of the integrated module will also be measured using swept RF and magnetic
sources.

6. FUTURE WORK TOWARDS PRODUCTION AT SCALE

After the prototyping phase, described in the previous section, the CMB-S4 project would have verified that the
detector and readout system components, and their integrated system meet the Level 2 subsystem requirements,
enabling the start of pre-production. During pre-production, the project will demonstrate quality assurance,
component fabrication, integration, testing, and quality control steps for a fraction of the required integrated
modules and their components, but at the necessary rate and throughput for full production. Quality assurance
and control are key in this phase, and a logging system will be used to record key metrics that enable monitoring



100 mK readout 
modules

Stack of feedhorn array, 
optical coupling wafers, 

and detector wafer

mounting ring support legs

feedhorn array

Figure 14: Flat module used for prototyping of detectors, readout, and optical coupling components. Left: 3D
model of assembled module, showing the stack of feedhorn array, optical coupling wafers, and the detector wafer
itself, which are held in place by spring clips. The 2-column 100 mK readout modules are mounted radially around
the detectors and bolted onto a mounting ring that supports the assembly. Top right: The flat module, installed
in a CMB-S4 dilution refrigerator test stand at FNAL, suspended from the mixing chamber by adjustable legs.
These legs allow the feedhorn array to be positioned in front of an cold load (see 5.4) or optical filter stack and
vacuum window. Bottom right: View of the installed flat module, looking at the feedhorn array.

Figure 15: A variable-temperature cold load with calibrated thermal sensors inside the cryostat will enable
measurements of the optical efficiency and overall sensitivity of the integrated modules. In this prototype design,
a cavity with a small aperture behind the blackbody enables the detectors to view small optical signals to measure
the optical time constants.

and control of the fabrication processes. During production the logging system data will be routinely reviewed
to detect process variations and correct them before enough variation occurs to affect performance.

During production, the full set of approximately 500 science-grade modules will be delivered over a roughly



3-year period. This will require producing and screening an estimated 700 TES wafers and 150 SQUID wafers,
along with associated optical, readout, and module components. This amounts to fabrication of complex su-
perconducting circuits on over 10 m2 of silicon, as well as significant amounts of precision wiring, assembly and
cryogenic testing. To meet the required fabrication rate of approximately 20 TES wafers and 5 SQUID wafers
per month will require a multi-site fabrication approach. Several micro- and nanofabrication foundries special-
izing in superconducting thin film fabrication will be utilized by the project to achieve this rate. We plan to
consolidate 100 mK integrated module assembly and testing into 2 sites, in order to reduce the amount of du-
plication of expertise and infrastructure. Each testing site will house four high-throughput screening cryostats,
capable of characterizing seven modules per cooldown at the nominal 100 mK operating temperature. As done
during prototyping and pre-production, each module will be tested twice, performing a series of dark and optical
characterization measurements to verify that it is science-grade by meeting the instrument requirements.
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A. G., Wandui, A., Weber, A. C., Wiebe, D. V., Willmert, J., Wong, C. L., Wu, W. L. K., Yang, H.,
Yoon, K. W., Young, E., Yu, C., Zeng, L., Zhang, C., and Zhang, S., “Bicep/Keck XV: The Bicep3 Cosmic
Microwave Background Polarimeter and the First Three-year Data Set,” The Astrophysical Journal 927, 77
(Mar. 2022).

[25] Gallardo, P. A., Niemack, M. D., Austermann, J. E., Beall, J., Cothard, N. F., Duell, C. J., Duff, S. M.,
Henderson, S. W., Hilton, G. C., Ho, S. P., Hubmayr, J., Reintsema, C. D., Salatino, M., Ullom, J. N., Van
Lanen, J., Vissers, M. R., and Wollack, E. J., “Characterization of Aliased Noise in the Advanced ACTPol
Receiver,” Journal of Low Temperature Physics 199, 762–770 (Feb. 2020).

[26] Doriese, W. B., Morgan, K. M., Bennett, D. A., Denison, E. V., Fitzgerald, C. P., Fowler, J. W., Gard, J. D.,
Hays-Wehle, J. P., Hilton, G. C., Irwin, K. D., Joe, Y. I., Mates, J. A. B., O’Neil, G. C., Reintsema, C. D.,
Robbins, N. O., Schmidt, D. R., Swetz, D. S., Tatsuno, H., Vale, L. R., and Ullom, J. N., “Developments in
Time-Division Multiplexing of X-ray Transition-Edge Sensors,” Journal of Low Temperature Physics 184,
389–395 (July 2016).



[27] Durkin, M., Adams, J. S., Bandler, S. R., Chervenak, J. A., Denison, E. V., Doriese, W. B., Duff, S. M.,
Finkbeiner, F. M., Fowler, J. W., Gard, J. D., Hilton, G. C., Hummatov, R., Irwin, K. D., Joe, Y. I.,
Kelley, R. L., Kilbourne, C. A., Miniussi, A. R., Morgan, K. M., O’Neil, G. C., Pappas, C. G., Porter, F. S.,
Reintsema, C. D., Rudman, D. A., Sakai, K., Smith, S. J., Stevens, R. W., Swetz, D. S., Szypryt, P., Ullom,
J. N., Vale, L. R., and Wakeham, N., “Mitigation of Finite Bandwidth Effects in Time-Division-Multiplexed
SQUID Readout of TES Arrays,” IEEE Transactions on Applied Superconductivity 31, 1–5 (Aug. 2021).

[28] Smith, S. J., Adams, J. S., Bandler, S. R., Beaumont, S., Chervenak, J. A., Denison, E. V., Doriese,
W. B., Durkin, M., Finkbeiner, F. M., Fowler, J. W., Hilton, G. C., Hummatov, R., Irwin, K. D., Kelley,
R. L., Kilbourne, C. A., Leutenegger, M. A., Miniussi, A. R., Porter, F. S., Reintsema, C. D., Sadleir,
J. E., Sakai, K., Swetz, D. S., Ullom, J. N., Vale, L. R., Wakeham, N. A., Wassell, E. J., and Witthoeft,
M. C., “Performance of a Broad-Band, High-Resolution, Transition-Edge Sensor Spectrometer for X-ray
Astrophysics,” IEEE Transactions on Applied Superconductivity 31, 1–6 (Aug. 2021).

[29] Zeng, J., Zhang, Y., Mück, M., Krause, H.-J., Braginski, A. I., Kong, X., Xie, X., Offenhäusser, A., and
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