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Puzzling Excesses in Dark Matter Searches and How to Resolve Them

Abstract

Intriguing signals with excesses over expected backgrounds have been observed in
many astrophysical and terrestrial settings, which could potentially have a dark mat-
ter origin. Astrophysical excesses include the Galactic Center GeV gamma-ray excess
detected by the Fermi Gamma-Ray Space Telescope, the AMS antiproton and positron
excesses, and the 511 and 3.5 keV X-ray lines. Direct detection excesses include the
DAMA/LIBRA annual modulation signal, the XENON1T excess, and low-threshold ex-
cesses in solid state detectors. We discuss avenues to resolve these excesses, with
actions the field can take over the next several years.

*Co-ordinator, rleane@slac.stanford.edu
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1 Introduction

A number of indirect and direct dark matter experiments have observed excess signals
above background over the years. They have provided tantalizing hints but no definitive
proof of a dark matter discovery. Understanding the origin of these puzzling excesses is
an important task for the community in the coming decade, as it will provide insights and
guidance on the future direction of the field. In this solicited white paper, we summa-
rize the status of the observed signal excesses from astrophysical observations and direct
detection experiments, and discuss the efforts and prospects in resolving the puzzles.

2 Astrophysical Signals

2.1 Galactic Center Gamma-Ray Excess (GCE)

Editor: Rebecca Leane
Contributors: Francesca Calore, Regina Caputo, Ilias Cholis, Tansu Daylan, Mattia Di Mauro,
Dan Hooper, Shunsaku Horiuchi, Rebecca Leane, Tim Linden, Oscar Macias, Siddharth Mishra-
Sharma, Aditya Parikh, Nicholas Rodd, Tracy Slatyer, Gabrijela Zaharijas, Yi-Ming Zhong

An excess of GeV gamma rays from the Galactic Center has been definitively detected
by the Fermi Large Area Telescope, “Fermi-LAT”. The leading explanations for this Galac-
tic Center Excess (GCE) are a new population of millisecond pulsars, or annihilating dark
matter. Solving this problem is of pressing importance; we may either find the first evi-
dence of dark matter interactions with the Standard Model, or confirm the existence of a
new population of pulsars. We discuss the actions that can be taken to solve this problem
over the next few years.

2.1.1 Obtaining an Accurate Galactic Diffuse Emission Model

We open with perhaps the most pressing issue for understanding the GCE – the need to
improve the Galactic diffuse emission model. This is the dominant source of photons in the
GeV energy range observed by gamma-ray telescopes. It arises due to cosmic rays, accel-
erated from a variety of mechanisms, impacting regions of gas, dust, and starlight that are
concentrated in the center of the Galaxy. Galactic diffuse emission must be understood be-
fore we can draw conclusions about the GCE. Currently, our best Galactic diffuse emission
models cannot reproduce what is observed in the Fermi data to what is expected within
Poisson noise. This is a substantial systematic we know exists in understanding the GCE,
and we do not yet know what preferences for characteristics for the GCE will be obtained
once we finally have a sufficiently good Galactic diffuse emission model.

Building up new Galactic diffuse emission models is a complicated task requiring new
modeling techniques, fits to new multi-wavelength data, and substantial computing re-
sources. One critical improvement will be increasing the resolution of gas maps. Most
available gas maps in the literature assume circular orbits of interstellar gas, some amount
of temporal stability, and certain tracers of only limited completeness and fidelity. The
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central molecular zone (CMZ) is particularly problematic to model. Separately, inverse
Compton scattering (ICS) requires an improved understanding of: star-forming regions
and the distribution and intensity of associated light; the propagation of leptons, which
are susceptible to Galactic winds and other local phenomena; and the energetics, stability,
and associated signals of transient injection [1–3]. To this end, we must make use of (lo-
cal) cosmic-ray observations from the Alpha Magnetic Spectrometer (AMS-02) on board
the International Space Station, as well as broad multi-messenger observations from ra-
dio to MeV and TeV energies, which will constrain the ICS emission and disentangle its
degeneracies with synchrotron.

Presently, these ingredients are converted to gamma-ray emission maps assuming cylin-
drical symmetry of cosmic ray diffusion, but resolving the mystery of the GCE calls for
anisotropic, three-dimensional modeling of diffuse emission. Promising initial work [4, 5]
remains impeded by computational challenges. Hydrodynamic simulation of interstellar
gas [6–8] provides a viable way forward to resolve the distribution of gas in a region where
the gas orbits are highly non-circular. Ultimately, these modeling and computational strides
are urgently required to reduce the systematic Galactic diffuse emission uncertainties.

2.1.2 Understanding the Spatial Morphology of the GCE

Precision measurements of the spatial morphology of the GCE could disentangle the dif-
ferent alternative explanations that have been proposed. Advances in this line of research
should go hand in hand with efforts to improve the precision of the Galactic diffuse emis-
sion models, as we cannot make any conclusions without accurately modeling other dom-
inant components in the gamma-ray sky.

Early analyses of the GCE (e.g., Ref. [9]) using Galactic diffuse emission models con-
structed with GALPROP found that spherically symmetric (steepened) NFW templates
were preferred to ellipsoidal NFW templates oriented along some arbitrary direction. Re-
cently, owing due the Galactic diffuse emission models being improved in complementary
ways, varying morphology preferences have been reported.

Some recent studies have improved the Galactic diffuse emission GALPROP models,
finding that a DM morphology is preferred to the Galactic bulge morphology. Ref. [10]
produced improved models by incorporating known uncertainties on cosmic-ray propaga-
tion parameters, using high-precision cosmic-ray observations from AMS-02 and Voyager
I. Ref. [11] incorporated a new weighted likelihood, as well as using improved diffuse
templates.

On the other hand, other studies have improved the diffuse emission modeling in other
ways, instead finding that stellar bulge templates provide a better fit than the DM tem-
plates. These approaches include using improved models for the interstellar gas [7, 8, 12–
14], as well as using spatially flexible fitting procedures [15]. Ref. [15] has produced the
best fit to data so far, but still does not reproduce the data at the level of Poisson noise. The
fit is also not based on physical models, and it is not clear if the large number of degrees
of freedom corresponds to a physical mechanism capable of producing the Galactic diffuse
emission contribution.

Further investigations with further improved Galactic diffuse emission models (as dis-
cussed in the subsection above) are required in order to robustly confirm the the morphol-
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ogy of the GCE. New fitting techniques, discussed in Sec. 2.1.7, can also help make more
accurate conclusions. Once the morphology of the GCE is known with reliable accuracy,
this will provide strong clues to the origin of the GCE.

If the GCE is established to follow the bulge morphology, this would allow us to set
strong constraints on DM, see e.g. Ref. [13]. Furthermore, if the GCE is due to mil-
lisecond pulsars (MSPs), the spatial morphology of the signal could reveal the formation
mechanisms of the MSPs. Assuming the primordial formation scenario for MSPs in the GC,
studies [16, 17] have implemented state-of-the-art population synthesis codes to build syn-
thetic populations of MSPs. The picture that is emerging from such efforts is that the MSPs
responsible for the GCE should (approximately) trace the distribution of old stars in the
Galactic bulge—a composite structure made up of a triaxial barlike structure extending a
few kiloparsecs and a concentrated nuclear component in the inner ∼ 200 pc of GC. Other
simulation-based studies [18, 19] have posited that the GC MSPs could have been the re-
sult of depositions from tidally disrupted globular clusters. In such models it is expected
that the GC MSPs are spherically symmetric distributed. More realistic simulation studies
(including stellar binary interactions, pulsar kicks, and mixed formation scenarios) will be
needed in order to reduce the model uncertainties on the expected spatial morphology of
the MSPs population.

If the GCE is due to DM, this would provide a direct handle of the DM distribution in
our Galaxy; see the section below for discussion of modeling the DM density profile.

2.1.3 Improving Models of Milky Way DM Density

The intensity of the DM annihilation signal is dependent on the DM density profile. Im-
proving our understanding of the Milky Way DM density profile allows us to directly com-
pare the preferred morphology of the GCE to our expectations for DM, and the suitability
of the explanation.

The latest results from hydrodynamic simulations of galaxy formation seem to point
towards a flattening of the DM profile in the inner Galaxy, with a less steep cusp than a
standard NFW profile [20, 21]. However, the uncertainties are large at the GC, where
N -body simulations are limited in resolution; further improvements in these simulations
are needed. There are also more recent results making use of Gaia suggested the density
may actually be even steeper than NFW cusp, see e.g. Ref. [22]. However, these are still
very uncertain for the inner kpc or so.

In general, it will be important to make detailed comparisons between the morphology
of the GCE signal and the DM profiles predicted by cutting-edge hydrodynamical simula-
tions and the latest observations.

2.1.4 Improving Extended and Point-Like Templates

Astrophysical emission components other than the semi-steady-state Galactic diffuse emis-
sion will be important for understanding the GCE. For example, the Fermi Bubbles are
extended gamma-ray lobes that dominate emission at high latitudes and high energies.
Their low-latitude extension, where they are potentially degenerate with the GCE, may
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be spectrally and morphologically distinct from their well-observed high-latitude compo-
nent. Understanding the origin of the Fermi Bubbles will be critical to utilizing extended
templates for these gamma rays in sky regions that are relevant for the GCE. Two other
extended emission components that lie along the Galactic plane [23], and which have as
yet undetected counterparts in other wavelengths, call for improved modeling as well.

Similarly, the Galactic stellar bulge must be modeled in greater fidelity before we can
make final conclusions about the nature of the GCE. State-of-the-art bulge models were
obtained using [24] VISTA Variables Via Lactea (VVV) data to study the population of Red
Clump (RC) giants in the Galactic bulge. The SkyFACT algorithm [15, 24] has been used to
obtain a non-parametric model of the spatial distribution of the RC giant stars in the Galac-
tic bulge. These new (peanut-like) templates may provide a significantly better fit [24] to
the data than the boxy bulge templates [25]. As discussed above in Sec. 2.1.2, some re-
cent studies find a preference for a stellar bulge over spherically symmetric emission at the
Galactic center, though some arrive at the opposite conclusion. Understanding the sensi-
tivity of these results to fitting choices, systematically accounting for possible degeneracies
with other emission including point sources and the Fermi Bubbles, and, ultimately, inter-
preting the implications for dark matter annihilation are of utmost importance, and it is
important to test the Galactic bulge templates with current fitting techniques (discussed in
more detail below). Dynamical evolutionary modeling of the bulge combined with popula-
tion synthesis modeling of gamma-ray populations [26, 27] will constrain what astrophys-
ical source classes can explain and help provide theoretical guidance on interpretation of
gamma-ray detections.

Before assigning a final interpretation to the GCE, we must also understand in a data-
driven way if the GCE itself is significantly asymmetric with respect to any spatial axes,
as appears compatible with recent theoretical investigations [28, 29]. Higher fidelity nu-
merical simulations, using insights and constraints from the Gaia satellite, can be used to
understand the allowed morphologies of a dark matter signal, for instance. Alternately,
ideas from image processing can dissect the data in novel ways, allowing access to new
aspects of the GCE without forward modeling.

Finally, other gamma-ray emission components such as isotropic emission and com-
plete point source catalogs are also critical for understanding the GCE. These will princi-
pally improved from the observational perspective, but theoretical advances will need to
consistently incorporate these data in their entirety.

2.1.5 Understanding the Shape of the GCE Energy Spectrum

The shape of the GCE gamma-ray energy spectrum can help reveal its origin. While the
best-fit parameters for annihilating dark matter (DM) and millisecond pulsars (MSPs) are
predicted to produce a compatible spectrum at ∼1 GeV or above, they largely disagree
at lower energies. At these energies, Fermi-LAT’s point spread function substantially de-
grades, introducing large systematics that obscure the low-energy part of the spectrum.
To detect meaningful deviations at the low-energy end, new MeV gamma-ray telescopes
are required. New telescopes such as eASTROGAM [30] and AMEGO [31], will be more
sensitive to this part of the spectrum, and therefore may be able to differentiate the two hy-
potheses. The expected sensitivity to point sources with eASTROGAM is a factor of 2 better
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for extragalactic objects than 10 years of Fermi data, for a 1-year observation (1.2× 10−12

erg/cm2/s vs 2.8×10−12 erg/cm2/s at 100 MeV) [30]. An additional GCE hypothesis, other
than DM or MSPs, is a cosmic-ray outburst event. Compared to MSPs and DM, outburst
activity from the GC can endure energy losses that soften the energy spectrum at further
distances from the GC [1, 2], producing a marked difference in the spatial dependence of
the signal. While currently the spectrum seems invariant in its position and shape [32],
disfavoring an outflow event, an important task is to reduce large systematic uncertainties.
Lastly, if the GCE is produced by the stellar bulge rather than DM, more detailed spectral
analyses would be needed to determine any remaining potential DM contributions.

2.1.6 Understanding the GCE Pulsar Luminosity Function

If the GCE arises from MSPs, their luminosity function provides a handle on the number
of expected GCE MSPs. It is important to understand if there is conflict between potential
GCE MSPs with the MSP luminosity function of known pulsars in globular clusters or the
disk [33–39]. Wavelet studies have set constraints on the potential GCE pulsar luminosity
function [37], requiring a very large number of new pulsars to explain the GCE. A better
understanding of the total number of pulsars/MSPs in the Milky Way may set a strong
bound on the luminosity function. The luminosity function can also be used to determine
the number of expected detections in X-ray. While being spun-up by a stellar companion
to become a MSP, MSPs exist for a time as a low-mass X-ray binary (LMXB). If one expects
a similar MSP birth for the GCE and the Milky Way’s globular cluster population, the ratio
of MSPs to LMXBs should be similar. The number of LMXBs already detected in the GCE
region can be used to estimate the size of the population of GCE MSPs, and the number
of LMXBs has found to be severely too low compared to the required number of MSPs
to explain the GCE [37, 40]. However, multiple MSP formation channels exist, leading
to potentially different MSP populations in the GC and globular clusters. More detailed
studies (dynamical evolution, population synthesis, etc) will be needed to shed light on
the MSP populations. This includes in M31, where the LMXB population and its spatial
extent can be measured better than the Milky Way [41].

2.1.7 Fitting and Characterization Methods

While the GCE is detected at a very high statistical significance, the systematic uncertainty
is large, deriving from the significant underlying uncertainties on the Galactic diffuse emis-
sion, extended sources, and point sources. Characterizing the GCE in the presence of
these large systematic uncertainties is a crucial step for the near-term future. One well-
developed method for characterizing the excess is the non-Poissonian template fit (NPTF)
[42–44], but recent demonstration of bias in NPTF results has called into question some
of the conclusions [28, 29, 45]. While efforts to reduce the susceptibility of NPTF results
to diffuse mismodeling have commenced [46, 47], substantial additional theoretical effort
will be required before we can draw final conclusions based on the NPTF. For example, the
NPTF does not yet incorporate energy information; spectral information could potentially
play a determining factor in how we interpret the NPTF results.
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Wavelet-based approaches to the data [23, 37, 48, 49] offer a different perspective on
the GCE. These approaches seek to increase the signal-to-noise for a given GCE hypoth-
esis [37, 48] and/or reduce systematic background uncertainties [23, 49] at the cost of
reducing statistical significance. With the continuous wavelet method and the 4FGL point
source catalog [50], Ref. [37] shows that a millisecond pulsar population with a luminosity
function described by a power law with a constant index across many decades in luminos-
ity, once considered a leading alternative to dark matter annihilation [41, 51–55], is not a
viable candidate to explain the GCE. Alternative luminosity functions have been examined
in [39].

Given the advances and challenges listed above, it is timely to reconsider our fitting
methodologies. New statistical methods are being developed that do not present with
the same biases exhibited by the NPTF [56]. Probabilistic cataloging [57, 58] provides a
way to infer the positions of sub-threshold point sources (in contrast to the NPTF, which
marginalizes them out) at the cost of a large-scale computational challenge. Extending
fits to simultaneously utilize rich multi-wavelength data can constrain the origins of the
GCE, especially given expected observational strides. Discrete wavelet methods have the
potential to identify the angular scale associated with the GCE.

Methods that leverage recent developments in machine learning offer a further path
to weigh in on the GCE. These methods, using convolutional neural networks perhaps
extended using Bayesian deep learning and simulation-based inference techniques, have
recently shown promise in overcoming some of the issues and computational bottlenecks
associated with the application of traditional statistical methods to the GCE [59–62]. These
methods aim to implicitly learn the full likelihood associated with the forward model of
the Fermi gamma-ray data in the Galactic Center. This is in contrast to the NPTF, for
example, which for computationally tractability considers a simplified description of the
data assuming each pixel to be statistically independent. By being able to account for
pixel-to-pixel correlations, machine learning methods have been shown to respond more
favorably to sources of signal and background misspecification [60–62].

By eschewing an approximate treatment of the PSF as in the case of the NPTF, machine
learning methods can work with a finer spatial resolution [61] and be extended to lower
energies, offering additional discriminating power. The inclusion of energy binning infor-
mation is also easily admitted, bypassing some of the computational challenges needed for
the inclusion of spectral information in the case of the NPTF.

Other than their use for fitting, machine learning methods have also recently shown
promise for point source identification [63], and could be used to better characterize the
population of resolvable point sources with implications for the nature of the GCE.

2.1.8 Detecting Pulsar Candidates in Other Wavelengths

The GCE signal presents in GeV gamma rays. However, if the GCE is powered by MSPs,
they may be detectable in other wavelengths. Some directions are:

• Detecting pulsar candidates in radio– If the GCE is powered by MSPs, they may also
pulse into radio. This signal is challenging to find with traditional single-dish tele-
scopes, such as the Greenbank Telescope. However, there are very good prospects
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with the already operating Very Large Array (VLA), and MeerKAT [64] as well as SKA
in the future. If one uses the disk population to calibrate the bulge source model-
ing, then no or a few detections with already achievable sensitivity would imply that
either there is no bulge population or that its radio properties (namely flux distribu-
tion) are substantially different from disk pulsars. There are however, complexities
in interpreting a null observation of bulge pulsars. It is possible that all pulsars pro-
ducing the GCE are radio quiet, although it is not clear how naturally can we expect
that to happen. Improvement of radio-gamma pulsar theory, observation, and mod-
eling is required. Furthermore, higher confidence in the point source methods and
any localization would help interpret such searches.

• Detecting pulsar candidates with TeV-scale γ-ray telescopes– Pulsar candidates may ef-
ficiently accelerate e± pairs. Evidence of this process is found in mild evidence for
TeV halos around MSPs in HAWC observations (e.g., Ref. [65]), correlation between
radio luminosity and far-infrared observation in star-forming-galaxies [66], and high-
energy tail of the GCE [67]. The e± pairs injected by a putative MSPs population in
the GC could produce detectable TeV-scale inverse-Compton (IC) emissions. While
prompt γ rays from MSPs would trace the MSPs spatial distribution, the IC coun-
terpart would exhibit an energy-dependent spatial morphology. The predicted IC
spectra for MSPs distributed as the Galactic bulge vs NFW2 profile are indistinguish-
able, but their spatial morphologies have recognizable features at TeV energies [68].
Such differences may be used by future high-energy γ-ray detectors such as CTA to
provide a viable TeV-scale handle for the MSP origin of the GCE [69]. Due to grad-
ual aging, MSPs may not be as bright as usually assumed. Increasing the number of
required MSPs creates potential dynamical problems due to the increased mass bud-
get of the required bulge MSP population [70], though scenarios without disrupted
globular clusters are also considered [38].

• Detecting pulsar candidates with X rays– Recently, it has been shown that a large popu-
lation of bulge MSPs is not excluded by current observations of compact X-ray sources
detected by Chandra towards the Galactic center [71]. This very same approach also
allows one to identify promising bulge MSP X-ray candidates. Dedicated follow-up
campaigns and better X-ray spectral measurements are required to further reduce the
number of MSP X-ray candidates and, eventually, detect the brightest objects.

• Detecting pulsar candidates with gravitational waves– Although quite distant in the
future, 3rd generation GW ground-based telescopes have the potential to detect the
cumulative signal from a population of bulge MSPs from the GC direction [72], as
dominating contribution to the Galactic stochastic GW background. For the time
being, analysis of already available data can set (not yet competitive) limits on pulsar
ellipticity.

2.1.9 Finding a Consistent DM Signal Elsewhere

To corroborate a potential DM explanation of the GCE, a signal consistent with DM needs
to appear in other experiments and observables. Some targets are:
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• Dark matter in dwarf spheroidal galaxies– Dwarf Spheroidal Galaxies are very DM
dense environments, with low γ-ray background, making them ideal targets for DM
annihilation searches. Currently, no conclusive signal is seen in dwarfs, though the
limits that arise here are consistent with a DM signal from the GCE [73]. Systemat-
ics in background estimation at the dwarf position are traditionally not taken into
account, but worsen the limits by another factor 2-3 [74]. More recently, more
substantial systematic issues have been pointed out which are important for under-
standing potential DM signals in dwarfs [75, 76]. These are crucial to understand
and accurately account for. Recent strides in modeling the density profiles of classical
dwarf-spheroidal galaxies (dSphs) [77] are important to extend to ultra-faint objects
(more of which are discovered all the time [78]), which potentially have similarly
high or higher J-factors for dark matter annihilation [79].

While Fermi will not obtain much improved results due to statistics, improvements
are expected by finding more dwarfs with DES and Rubin, allowing a significantly
increased sample. Radio and X-rays can also set limits on annihilating DM, especially
from dwarfs, though these can depend on magnetic field structure of targets, and
sizeable systematics need to be improved [80, 81].

• Dark matter in Andromeda– An extended excess of gamma rays has been detected
toward Andromeda (M31) [82]. This signal is potentially consistent with the GCE,
however, its interpretation is complicated primarily by the difficult to model MW
foreground. For Fermi-LAT, the limited effective area and poor angular resolution
<∼GeV are also an issue [83]. CTA will observe M31 and might detect high en-
ergy (>∼ 50 GeV) counterpart from the M31 bulge, but it is not guaranteed since it
could be too faint/too extended. New generation instruments such as e-ASTROGAM
or AMEGO might give further clues on the origin of this emission and its possible
common features with the GCE.

• Antiproton and antinuclei signals– An excess has been identified in the spectrum of
cosmic-ray antiprotons at energies of 5 − 20 GeV [84, 85]. Intriguingly the range of
dark matter models accommodating the antiproton excess is similar to those which
could generate the excess of GeV-scale gamma rays [84–86], even though these two
indirect dark matter probes are sensitive to different systematic uncertainties. An ad-
ditional excess has been identified, in AMS antinuclei events [87]. Ongoing AMS-02
and future GAPS [88] antinuclei searches can inform us about the possible DM mass,
annihilation channel and cross section in association to both the CR antiprotons GeV
excess and the GCE [87].

• Other Wavelengths – Dark matter annihilation would produce a population of ener-
getic e+e− pairs, which can emit synchrotron radiation [89, 90].

If the GCE is interpreted as a dark matter annihilation signal, then the observed excess
is well-modelled by processes which produce bb̄ or µ+µ− final states [91]. Compelling
explanations, which are both minimal and viable, can be found in thermal relic dark matter
models with a Higgs portal coupling [92, 93]. Some such models can be probed at direct
detection or collider experiments, settling complementary constraints on the possibilities.
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It is crucial to note that while particle models alone are not enough to resolve the origin
of the GCE, they typically predict other discovery channels. Keeping a set of compelling
benchmark models in mind will help us establish a collection of potential complementary
signals. Being cognizant of this broader set of constraints and looking at the overall picture
is extremely valuable in determining the origin of the GCE signal and testing possible dark
matter hypotheses.

2.2 AMS Antiproton Excess

Editor: Ilias Cholis
Contributors: Tsuguo Aramaki, Francesca Calore, Ilias Cholis, Mattia Di Mauro, Philip von
Doetinchem, Dan Hooper, Rebecca Leane

2.2.1 Status of the excess

An excess at ∼ 10 GeV energy in the cosmic-ray antiprotons flux observed by AMS-02 has
been first claimed by [94, 95]. This excess is now called the antiproton excess. Interest-
ingly, the antiproton excess if it is a signal of dark matter it suggests similar properties
for the dark matter mass, annihilation cross section and annihilation channels to those
required to explain the GCE [84, 85, 94, 96]. Other early analyses stated that the uncer-
tainties related to the production and propagation of antiprotons in the Milky Way make it
difficult to claim the presence of any such excess [97–100]. However, more recent analyses
relying on improvements on cosmic-ray propagation, have found the antiproton excess to
have a local significance of about 3− 5 σ and be robust to i) the cross sectional uncertain-
ties responsible for the production of antiprotons in inelastic nucleon-nucleon collisions,
ii) the uncertainties of local cosmic-ray injection and propagation through the interstellar
medium and iii) the effects associated to the time-, charge- and energy-dependent effects
of cosmic-ray solar modulation [84, 85]. However, these papers neglect error covariance,
as the systematic correlation matrices are not released by AMS-02. With the aim to im-
prove this scenario, very recently, Ref. [101], implemented their own error covariance
estimates and found that the antiproton excess goes away. Ref. [101] defined full energy-
dependent correlations of the uncertainties due to a benchmark transport model defined
by AMS-02 B/C data [102], the antiproton production cross sections, and measurement
effects quoted by the AMS-02 collaboration. The authors of [103] reached a similar con-
clusion. Also, using the updated 7-year AMS-02 antiproton [104], the authors of [91, 105]
reduce the significance of the antiproton excess further. The lack of published error corre-
lation matrices by AMS-02 remains a substantial hurdle to understanding the robustness
of this excess.

2.2.2 Future Developments

To finally establish the robustness of the antiproton excess against systematic uncertainties
of instrumental nature, more collaboration between the experimental and theoretical com-
munities is needed, to achieve a better understanding of the underlying correlations of the
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AMS-02 systematic instrumental errors is needed. In the future, the upcoming GAPS ex-
periment [88] will measure with precision the antiproton spectrum in a low-energy region
currently inaccessible to any experiment. With one flight, GAPS is expected to identify
about 103 antiprotons in the energy range E < 0.25 GeV/n. The GAPS antiproton measure-
ment will also allow for sensitive studies of systematic effects, in particular propagation of
antinuclei in the interstellar medium and the heliosphere.

In contrast with dark matter searches with antiprotons, which rely on small excesses
on top of considerable astrophysical backgrounds, the unique strength of searches for cos-
mic antideuterons is their ultra-low astrophysical background [87, 106–117]. The pro-
duction of antiprotons and heavier antinuclei can be strongly related. For instance, any
dark-matter-induced signal in antideuterons should also find its imprint in the antiproton
spectrum. Over the last more than 20 years, it was pointed out many times that the first-
time detection of low-energy cosmic antideuterons would be an unambiguous signal of
new physics.

GAPS that is optimized for low-energy antideuteron measurements, will be able to in-
vestigate the dark matter parameter space that could potentially explain the Fermi GCE and
the AMS-02 antiproton excess. GRAMS (Gamma-Ray and AntiMatter Survey), a proposed
mission beyond GAPS, with a further optimized detector with a LArTPC (liquid argon time
projection chamber), will extensively explore the region in the parameter space, as seen in
Figure 1 [118].

Figure 1: GAPS and GRAMS antideuteron sensitiv-
ities in the dark matte parameter space, along with
the regions that could potentially explain the Fermi
GCE and AMS-02 antiproton excesses [118].

Furthermore, the AMS-02 collabo-
ration has announced the remarkable
observation of several candidate anti-
helium nuclei events [119–121]. This
prompted significant public interest,
and theoretical work. Antihelium ar-
riving from antimatter-dominated re-
gions of the universe is already nearly
excluded. Recently proposed mod-
els included modified antihelium for-
mation models, dark matter annihila-
tion, or emission from nearby antistars
[87, 114, 115, 117, 122, 123]. Recent
reviews can be found here [124, 125].

Though these antihelium candi-
dates are tentative, they require veri-
fication or refutation with either oper-
ational, upcoming, or completely new
experiments. A positive signal would
be genuinely transformative and re-
fashion the field of cosmic-ray physics
and potentially revolutionize our understanding of the Big Bang nucleosynthesis. AMS-02
will continue taking data for the remaining lifetime of the International Space Station, and
GAPS will start its series of long-duration balloon flights soon. However, due to the ISS
trajectory and experimental layout, AMS-02 focuses on a higher energy range than GAPS,
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which will fly with a low-geomagnetic cutoff trajectory from Antarctica. Furthermore, it is
beneficial that both experiments use different identification techniques, reducing system-
atic uncertainties.

In addition, both the astrophysical propagation uncertainties and the antiproton pro-
duction cross section uncertainties will need to be further reduced. The former can be re-
duced through cosmic-ray observations of multiple species. These observations will reduce
the uncertainty on solar modulation’s time-dependent effects and can be connected to ob-
servations of gamma-rays and lower-energy photons. The cross section for antiprotons to
be produced by cosmic-ray interactions with the interstellar medium is key to interpreting
cosmic antinuclei measurements. The antiproton production cross section uncertainties in
the energy range of AMS-02 are at the level of 10–20%, with higher uncertainties for lower
energies. For energies lower than the AMS-02 range, relevant for the GAPS experiment, a
significant uncertainty on the source term from cross section normalization and shape ex-
ists. Future measurements at low center-of-mass energies (< 7 GeV), could improve these
antiproton flux uncertainties [126]. For heavier antinuclei made of multiple antinucleons,
it is essential to note that every production process typically should produce antiprotons in
much higher quantities. However, the heavier antinuclei formation processes are not well
constrained [127]. In addition to the already available measurements [128–131], more
relevant antiproton production cross section measurements will be possible with ALICE,
NA61/SHINE, and LHCb in the next years. Important constraints for the antinuclei flux
from dark matter annihilations are coming from the values of the diffusion coefficient, its
rigidity dependence, and the Galactic halo size [132]. Fits of cosmic-ray nuclei data for
secondary-to-primary ratios are limited by uncertainties in the production cross sections at
the level of 10–20% [133–138]. Improvements in the accuracy of these production cross
sections is important and will be possible, as with NA61/SHINE.

2.3 AMS Positron Excess

Editor: Tim Linden
Contributors: Mattia Di Mauro, Dan Hooper, Rebecca Leane, Tim Linden, Jong-Chul Park,
Meshkat Rajaee, Seodong Shin

2.3.1 Status of the positron excesses at PAMELA and AMS-02

For many decades, astrophysical positrons were thought to be primarily produced as “sec-
ondaries” via the interactions of charged cosmic rays with interstellar gas. The detection of
a hardening positron spectrum above 10 GeV – first definitively detected by PAMELA [139],
and further verified by the Fermi-LAT (in an indirect way) [140] and then with unprece-
dented precision by AMS-02 [141], quickly rejected this hypothesis and posed a new chal-
lenge for astroparticle physics, which is denoted as the “positron excess.”

Indeed, the flux (φ) of very-high-energy positrons in units of E3φ increases with energy,
a result that is incompatible with pure secondary production (though see e.g., [142].)
Several mechanisms have been explored in order to explain the new primary positron
source, including the somewhat confusingly named “secondary acceleration” of cosmic-
ray positrons in supernova remnants. In this scenario the additional re-acceleration of
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positrons within the compact sources flatten the interstellar positron spectrum, making it
appear like a primary source [143, 144].

A more exotic interpretation is associated to the annihilation or decay of dark matter
particles in the Milky Way [145–150]. However, the hypothesis that the positron excess is
entirely explained by relatively conventional dark matter models is ruled out by the con-
straints obtained with other messengers such as γ rays and antiprotons (see, e.g., [149]).
While early papers also focused on the possibility that “leptophilic” dark matter models
(where dark matter annihilates primarily to leptonic final states) may explain the proper-
ties of the excess while remaining consistent with γ-ray constraints [151], recent analyses
by Refs. [149, 150, 152] have utilized the smoothness of the rising positron spectrum to set
severe constraints on the spiky positron spectra that would be produced by such leptophilic
dark matter candidates.

A more convincing explanation involves the production of primary e+e− pairs in pulsar
magnetospheres, along with their subsequent acceleration in the surrounding pulsar wind
nebula. This interpretation has been significantly strengthened over the last few years.
In particular, the Milagro Collaboration has reported the detection of γ-ray emission from
1-100 TeV from the direction of Geminga with an extension of 2.6◦ [153]. Very recently,
the HAWC and LHAASO Collaborations have reported the detection of extended γ-ray
emission around three pulsars: Geminga, Monogem and PSR J0622+3749 [154, 155]. A
very extended emission has been also detected in Fermi-LAT data above 10 GeV around
Geminga demonstrating that these γ-ray halos could be structures detectable not only
at TeV energies [156]. These extended sources, called “TeV halos” or “Inverse Compton
Scattering (ICS) halos” were first hypothesized (though were at the time deemed to be
indetectable) almost 20 years ago by Ref. [157] and later discussed in terms of the positron
excess by Ref. [158, 159].

Notably, the same e+e− pairs which upscatter interstellar radiation in order to produce
the TeV halos also propagate to Earth where they can be observed as a hardened primary
electron and positron spectrum. Moreover, the spectrum of the γ-ray emission from TeV
halos can be used to calculate the expected e+e− spectrum, with results that are in good
agreement with models of the positron excess [159]. In the last few years several publica-
tions followed this path. For example Refs. [156, 159–163] found that the Geminga alone
can produce an important part of the positron excess. Using this result Refs. [159, 164]
demonstrated that the cumulative flux of positrons from Galactic pulsars can fit entirely
the positron excess above 10 GeV with an efficiency for the conversion of spin-down lumi-
nosity into couples of electrons and positrons between a few up to ten %.

A very intriguing consequence of the presence of these halos is that their extensions im-
ply that the diffusion strength around pulsars is between 2-3 orders of magnitude smaller
than the average value assumed for the propagation of cosmic rays in the Galaxy [154–
156, 159, 161–163, 165]. This evidence poses challenging theoretical questions on how
an inhibited diffusion around astrophysical sources can be created.

In the last few years Refs. [166, 167] published a model for which the inhibited diffu-
sion is caused by the cosmic-ray gradient produced by the central source induces a stream-
ing stability that self-confines the cosmic-ray population. In the most recent paper [167],
where an error on the modeling of the ion neutral damping has been corrected with re-
spect to [166], this model predict a suppressed diffusion for γ ray energies below about 1
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TeV. Instead, in the energies of interest for HAWC and LHAASO the diffusion coefficient is
of the same order of the Galactic average.

An alternative explanation of the size of TeV halos has been investigated in [168] where
the authors have included the ballistic propagation that electrons and positrons encounter
up to a timescale τc = 3D(E)/c2 after injection. The CR transport is characterized by three
regimes depending on the time t after the injection: ballistic (for t << τc), diffusive (for
t > τc) and a transition between the two, that we call quasi-ballistic. The transition is
governed by the energy-dependent mean free path λc(E), which, for relativistic particles,
is linked to the energy-dependent (as inferred both from theory and from the Galactic CR
transport phenomenology isotropic diffusion coefficient through D(E) = λc(E) c/3. A key
potential discriminant between these two theoretical models is the measured efficiency of
e+e− acceleration, as the latter model requires approximately all of the pulsar spindown
power to be converted into e+e− pairs.

2.3.2 Improvements Required

Two areas of improvement are required to definitively determine the nature of the positron
excess. The first includes modeling improvements necessary to determine the supernova
remnant, pulsar, and dark matter contributions contributions to the positron flux. The
second includes additional cosmic-ray and γ-ray observations which can significantly con-
strain the characteristics and origin of the excess.

The precise modeling requirements depend on the scenario under consideration. For
supernova remnant secondary acceleration, the main uncertainties are related to the pro-
duction cross sections of electrons and positrons that is nowadays larger than at least 50%
[169]. In order to reduce these uncertainty estimations using the latest and precise cross
section data from CERN experiments should be used. To improve the theoretical calcula-
tion for the positron flux from PWNe, we need to use future and precise measurements of
HAWC, LHAASO and CTA to estimate the injection spectrum of positrons and the size of
the low diffusion bubble present around sources. For dark matter models, we must exam-
ine models with non-conventional features, e.g., models with long-lived boosted particles
in Refs. [170, 171], and interpret these models within a robust framework that includes
collider, indirect and direct detection constraints.

Critical observational improvements include advancements in the experimental sensi-
tivity to the positron anisotropy. Models indicate that a sensitivity to a dipole anisotropy
at the level of 10−4 − 10−3 would be required to discriminate between models powered
by nearby sources (e.g., pulsar and supernova models) and potential dark matter expla-
nations [172]. Expected improvements in the sensitivity of existing water-Cherenkov tele-
scopes (e.g., HAWC and LHAASO) and upcoming imaging atmospheric Cherenkov tele-
scopes (e.g., CTA) will be capable of both constraining the population of TeV halos as well
as placing improved γ-ray limits on dark matter indirect detection targets (e.g., dwarf
spheroidal galaxies).
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2.3.3 Future prospects

It is planned that AMS-02 will continue taking data until the end of the lifetime of the In-
ternational Space Station. Continuing the measurements will allow extending the energy
range of positrons towards higher energies and improve the accuracy of the spectrum. The
upcoming Cherenkov Telescope Array (CTA) with an order of magnitude improvement in
sensitivity over current telescopes will better detect, model and constrain TeV halo obser-
vations, and will also test a plethora of dark matter possibilities [173].

2.4 511 keV Line

Editor: Seodong Shin
Contributors: Jong-Chul Park, Meshkat Rajaee, Shunsaku Horiuchi, Volodymyr Takhistov

2.4.1 Status of the 511 keV line

The robust signal of 511 keV photon line originating from the decay of non-relativistic
positronium has been observed from the galactic center for over 40 years [174–178]. The
emission was first reported in 1972 by balloon-borne instruments and confirmed by sev-
eral other experiments such as OSSE [179] and more recently by the SPI spectrometer at
INTEGRAL [174] (for a review see Refs. [180, 181]). INTEGRAL/SPI has provided the
most reliable imaging of the signal and revealed that most of the positrons are distributed
in a nearly spherical region [174]. Although astrophysical sources such as Pulsar [182],
X-ray binaries [177], type Ia supernovae (SNIa) [183, 184] and compact object merg-
ers [185] are not excluded, it is challenging to explain how positrons emitted by astrophys-
ical sources could have a spherically symmetric morphology and a weak disk component.
A spherical spatial distribution and the flux associated with the 511 keV emission could
tantalizingly suggest a dark matter origin.

2.4.2 Improvements required

Further improvements in identifying the excess with dark matter scenarios can be made
with various complementary studies in accelerators and other astrophysical observations.
Since conventional explanations with MeV-scale light dark matter particle annihilations [186–
189] are now challenged by the constraints from delayed recombination [190] and null
results from dwarf galaxies [191], focuses should be given to other non-conventional ex-
planations such as eXciting dark matter (XDM) [151, 192–194], decaying DM [195–197],
pico-charged particles from dark matter decay [198, 199] and PBH DM imploding neutron
stars [200]. The XDM possibilities can be tested in low-energy and high-intensity acceler-
ators, which is beyond the scope of this white paper. The last possibility with pico-charged
particles can be tested by studying the correlation of the 511 keV emission with dwarf
galaxies and halo magnetic fields. Future observations will make it possible to study the
magnetic field structure of dwarf galaxies more precisely [201]. Improved understanding
of neutron star population distribution, abundance of heavy elements from r-process nu-
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cleosynthesis as well as kilonova observations will allow to further explore the scenario of
PBH DM imploding neutron stars [200].

2.4.3 Future Prospects

Future prospects include more detailed understanding of spatial features (i.e. morphology)
of the 511 keV signal. Recently, reanalysis of the INTEGRAL/SPI data [202] has reported
a departure from the spatial morphology motivated by spherical DM distribution; instead,
a preference for a correlation with the stellar distribution in the Milky Way bulge was
found. Correlation with stellar distribution hints at the origin such as compact object
mergers [185], instead of some alternatives such as DM annihilation or decay. In addition,
evidence was reported for a preference for a slight deviation from the stellar distribution,
which may be due to kinematic kicks (e.g., supernova natal kicks) or propagation effects.
Further studies of these departures from sphericity, their robustness, and interpretations
would help constrain whether the 511 keV signal is related to DM or not. Moreover,
proposed gamma-ray telescopes such as AMIGO [203] or e-ASTROGAM [204] which are
aimed at characterizing the diffuse MeV-scale gamma-ray emission from the halo of the
Milky Way will help constraining the possible scenarios.

2.5 3.5 keV Line

Editor: Nicholas Rodd
Contributors: Jong-Chul Park, Nicholas Rodd, Shunsaku Horiuchi, Volodymyr Takhistov

2.5.1 Status of the 3.5 keV line

The 3.5 keV line is an anomalous X-ray line discovered in 2014 in both galaxy clusters and
the Andromeda galaxy [205, 206], using the XMM-Newton and Chandra telescopes. While
atomic transitions produce many lines at X-ray energies throughout the Universe, it is pos-
sible that the anomaly is not associated with any known process (although see Ref. [207]).
The hypothesis has been put forward that the line could be a signature of decaying DM,
an exciting possibility is a predicted decay mode of sterile neutrino DM [208, 209]. The
sterile neutrinos, if produced through oscillations in the Early Universe [210], would con-
stitute warm dark matter (WDM) [211] with the right level of matter suppression to ex-
plain small-scale structures of the Local Group (Milky Way and Andromeda galaxies) satel-
lites [212]. Intriguingly, depending on cosmological evolution and theoretical model, the
putative 3.5 keV X-ray signal line could correspond to a sterile neutrino with a mixing
large enough to be tested in upcoming laboratory experiments [213, 214]. In the years
following its discovery, there were results that both saw the line in additional objects [215–
217], and a number who searched for it but found no evidence of the emission [218–224],
although given astrophysical uncertainties it was argued the results were not entirely in-
consistent [225]. (For a contemporaneous review, see Ref. [226].) Further, the possibility
was put forward that a conventional astrophysical explanation in the form of charge ex-
change may explain the signal [227, 228].
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More recently, searches with significantly enhanced sensitivity have been devised that
exploit the considerable archival data collected by XMM-Newton, exploiting the fact that
every observation the instrument has made looks through a column density of the DM in
the Milky Way [229–231]. These analyses saw no evidence for an excess at 3.5 keV, and
place the simplest DM interpretations of earlier detections under considerable tension,
even under the most conservative assumptions for the DM distribution in the Milky Way.
A non-detection has also been reported from a large suite of archival Chandra data [232].
There has been discussion around the validity of these non-detections [233] (although
see the response in Ref. [230] and the public version of these analyses in Ref. [234]),
suggesting that the field has not coalesced around a resolution for the anomaly.

2.5.2 Future Prospects

An observation with future instruments such as the XRISM telescope or Micro-X sounding
rocket [235], would likely lead the field to converge on the anomaly having or not having
a simple dark-matter origin.

3 Direct Detection

3.1 Annual modulation in Sodium Iodide

Editor: Liang Yang
Contributors: Govinda Adhikari, Maŕıa Luisa Sarsa, Seodong Shin, Liang Yang

3.1.1 Annual Modulation signals of the DAMA experiment

The DAMA/LIBRA (Large sodium Iodide Bulk for RAre processes) collaboration oper-
ates 250 kg ultra-low background NaI scintillators as dark matter detectors at the Gran
Sasso National Laboratory (LNGS), Italy. It has consistently reported an excess of mod-
ulating low energy events between 2-6 keVee region as the annual modulation signal of
dark matter. Total accumulated data from DAMA/NaI (the prior generation experiment)
and DAMA/LIBRA phase1+phase2 show a single-hit residual rate of (0.0103 ± 0.0008)
cpd/kg/keVee, a measured phase of (145 ± 5) day, and a measured period of (0.9987 ±
0.0008) year with a significance of 12.9σ [236], consistent with expected modulation sig-
nal from dark matter particle interactions. The collaboration claims that no systematics
or side reaction can mimic the annual modulation signal [237]. The detectors were up-
graded with higher quantum efficiency PMTs in 2012 for DAMA/LIBRA phase2 operation.
The upgrade combined with new analysis techniques helped to lower the software thresh-
old from 2 keVee to 1 keVee. Phase2 data alone reports over 6 annual cycles corresponding
to a total exposure of 1.13 ton·yr and observes that the modulation signal persists with
a significance of 9.5 σ in the region of 1-6 keVee[236]. For the future, the collaboration
plans to further reduce the analysis threshold and equip all PMTs with miniaturized low
background preamplifier and improve the electronic chain with higher resolution digitiz-
ers [238].
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The DAMA claimed dark matter signal is controversial because other direct detection
experiments with different target materials (Xe, Si, Ge) have failed to observe the sig-
nal based on standard WIMP models. Many theoretical attempts have been made to ex-
plain the discrepancy between different target materials but none has succeeded. Others
have proposed modulating backgrounds as explanations of the observed signal including,
among others, seasonal variation in muon flux & modulation, scintillator phosphorescence
effects, ambient temperature, and spallation neutrons from muons in the surrounding rock.
DAMA has refuted and ruled out most proposed backgrounds but has not convinced the
community that the observed modulation signal is due to dark matter. Independent exper-
iments with the same target material NaI(Tl) as DAMA would go a long way to resolve the
controversy, allowing a model-independent test of the annual modulation signal. However,
the lack of a deep understanding and/or modelling of quenching factors for scintillation
of nuclear recoils in NaI(Tl) introduces some systematics in this test for DM candidates
releasing the energy through nuclear recoils [239–244]. Better measurements of quench-
ing factors for crystals having different properties using the same analysis methods and
set-ups would help [245]. Currently, two experiments, ANAIS at Canfranc Underground
laboratory in Spain and COSINE-100 at Yangyang Underground laboratory in South Korea
are running with Thallium-doped NaI detector as the target media and published their
physics results [246–250]. Other experiments including COSINE-200, SABRE, PICOLON
are actively working on growing ultra-low background NaI(Tl) crystals to improve the ex-
perimental sensitivity [251–253], while COSINUS uses NaI as scintillating bolometers to
achieve event discrimination [254].

3.1.2 Current status of ANAIS and COSINE-100

ANAIS: ANAIS (annual modulation with NaI scintillators) is a dark matter direct detec-
tion experiment consisting of 112.5 kg of NaI(Tl) detectors in operation at the Canfranc
Underground Laboratory (LSC), in Spain, since August 2017. ANAIS’ goal is to confirm
or refute in a model independent way the DAMA/LIBRA positive result by studying the
annual modulation in the low-energy detection rate.

ANAIS-112 modules feature a very high light collection, at the level of 15 photoelec-
trons per keV in all nine modules. Another interesting feature is a Mylar window in the
middle of one of the lateral faces of the detectors, which allows to calibrate with exter-
nal sources of energies just few keV above the ROI for testing the DAMA/LIBRA result
([1–6] keV). Robust calibration down to the threshold is one of the assets of the exper-
iment. On the other hand, considering altogether the nine ANAIS-112 modules, the av-
erage background in the ROI is 3.6 cpd/kg/keV after three years of data taking, while
DAMA/LIBRA phase2 background is below 1 cpd/kg/keV. A full description of the exper-
iment performance after the first year and a detailed background model can be found in
Refs. [255, 256] and an update after the third year in Ref. [248].

ANAIS developed a blind analysis protocol in order to carry out unbiased annual mod-
ulation analysis in the region of interest, from 1 to 6 keVee. ANAIS-112 has presented
results corresponding to 1.5, 2 and 3 years, following that protocol [246–248]. The three-
year result, corresponding to an effective exposure of 313.95 kg·yr, provides a best fit in
the [1–6] keV ([2–6] keV) energy region for the modulation amplitude of -0.0034±0.0042
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cpd/kg/keV (0.0003±0.0037 cpd/kg/keV). This result supports the absence of modulation
in ANAIS-112 data, and it is incompatible with the DAMA/LIBRA result at 3.3 (2.6) σ, for
a sensitivity of 2.5 (2.7) σ. The analysis takes into account the background contribution,
without any subtraction, and including consistency checks and different modelling of the
background time dependence [248].

The statistical significance of ANAIS-112 result increases as expected and supports the
prospects of reaching a sensitivity above 3 σ in five years of operation [257]. The applica-
tion of machine learning techniques to the ANAIS data analysis is expected to result in a
relevant background reduction in the [1-2] keV energy region allowing for an increase in
sensitivity with respect to the published prospects. The data corresponding to the three-
year exposure are being reanalysed and results will be released in 2022.

COSINE-100: The COSINE-100 experiment, located at Yangyang underground lab in
South Korea, consists of 8 NaI(Tl) crystals with total mass of 106 kg. The crystals are
submerged in ∼2000 L liquid scintillator that serves as an active background veto system.
External backgrounds are further reduced by 3 cm copper and 20 cm of lead. Additionally,
37 muon counters are installed outside the lead shielding. Each crystal is optically coupled
to two PMTs. Most of these crystals show high light output of ∼15 photoelectron/keVee.
The experiment has been collecting physics data since September 2016.

Using 1.7 years of data, the collaboration has ruled out model-dependent dark matter
interpretations of the DAMA signals in the specific context of standard halo model with
the same NaI(Tl) target for various interaction hypotheses [258]. It also reported model
independent searches of the annual modulation signal using 1.7 years data with 2 keV
analysis threshold. The best fit for the 2–6 keVee range has a modulation amplitude of
0.0092±0.0067 counts/keV/kg/day with a phase of 127.2±45.9 days. This data is con-
sistent with both a null hypothesis and DAMA/LIBRA’s 2-6 keVee best fit value with 68%
confidence level [249]. Recently, the collaboration lowered the analysis threshold from
2 keV to 1 keV, improved event selection, and gained more precise understanding of the
detector background. With 2.82 yr livetime and 61.3 kg active mass, the collaboration re-
ports best-fit values for the modulation amplitude of 0.0067 ± 0.0042 (0.0050 ± 0.0047)
counts/(day·kg·keV) in the 1-6 (2-6) keV energy intervals with the phase fixed at 152.5
days. Again, the result is unable to distinguish between the DAMA observed modulation
and no modulation [250]. The detector will continue to operate until the end of 2022
when it will be replaced by the next phase of the experiment, COSINE-200.

Combined Analysis: COSINE-100 and ANAIS collaborations have made good progress
on probing the DAMA signal with the same target material. ANAIS-112 has refuted the
DAMA positive modulation with almost 3σ sensitivity in a model independent way with
three years of data, and is expected to surpass 4σ after completing six years of data taking
(along with 2023 data), while COSINE-100 has excluded WIMPs as responsible of the
DAMA/LIBRA signal in many scenarios. The two experiments have initiated discussions to
conduct a combined analysis to search for annual modulation signals. The joint effort will
not only have the best sensitivity to the DAMA signal in the near future, but will also allow
better understanding of the detector backgrounds and collaboration on improving analysis
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techniques, thus providing guidance for future NaI experiments.

3.1.3 Future prospects

ANAIS: ANAIS-112 will take data at least until August 2023, corresponding to six-year
exposure. The application of the new machine learning analysis based on Boosted Decision
Trees under development is expected to allow a sensitivity of 4σ to DAMA/LIBRA result.
To test DAMA/LIBRA beyond this level, other strategies are required. In the context of the
ANAIS project, but beyond the timeline of ANAIS-112 data taking, there is ongoing R&D
aiming at operating the sodium iodide crystals at low temperature and replacing the PMTs
by SiPMs. This approach offers several advantages: improvement of background budget
and light collection, and reduction of the contribution of anomalous events attributed
to the PMTs which at present reduce the experiment’s efficiency by requiring aggressive
data selection protocols. This new detector concept combined with new more radiopure
crystals could bring a high increase in sensitivity, both for low-mass WIMPs and testing of
DAMA/LIBRA result.

COSINE-200: COSINE collaboration has been developing its own protocol for growing
ultra-low background NaI crystals through powder purification, refining crystal growing
and encapsulation techniques. It has successfully grown clean small size crystals (0.61-
0.78 kg). Mass production of full size crystals is in progress with an expected background
level of less than 0.5 counts/kg/day/keV which is lower than those of the DAMA crystals.
COSINE-200, the next phase of the COSINE-100 experiment, is planned to start taking
data in 2023 with these low background crystals at the Yemilab in South Korea. Besides
providing more stringent tests of the DAMA results, COSINE-200 can perform low mass
dark matter searches with the low background and higher light yield detectors.

SABRE: SABRE (Sodium Iodide with Active Background Rejection Experiment) collabo-
ration is actively developing ultra-pure NaI crystal with the goal of achieving background
in the energy region of interest of the order of 0.1 count/day/kg/keV, that is several times
lower than the DAMA/LIBRA level. The crystals will be deployed in a liquid scintillator,
which serves as an active anti-coincidence veto. R&D crystals have achieved an intrinsic
background level comparable to DAMA [252]. The collaboration plans to deploy detec-
tors in the Northern hemisphere at Laboratori Nazionali del Gran Sasso (LNGS), in Italy,
and in the Southern hemisphere at the Stawell Underground Physics Laboratory (SUPL),
in Australia. This simultaneous measurement will help disentangle any subtle effect due
to cosmic muons, which have an opposite seasonal modulation in the two hemispheres.

PICOLON: The PICOLON (Pure Inorganic Crystal Observatory for LOw-energy Neutr(al)ino)
Collaboration has also focused its R&D efforts on growing ultra-pure NaI crystals. It has
successfully used a combination of recrystallization and ion exchange resins to reduce the
40K, 210Pb, and 226Ra backgrounds [253]. The recent result of 210Pb in the NaI(Tl) is less
than 5.7 µBq/kg. The collaboration plans to start the dark matter search at the Kamioka
Underground Laboratory with at least four NaI(Tl) scintillator modules, whose total mass
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is 23.4 kg, followed by phases II and III with total masses of 100 and 250 kg of NaI(Tl)
crystal.

COSINUS: The COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation
Underground Searches) collaboration employs cryogenic calorimeter techniques to mea-
sure both the phonon and light signals from a NaI crystal, which allows discrimination of
β/α events from the nuclear recoil events. The prototype detectors have achieved, ultra-
low 40K background, light energy threshold of ∼ 0.6keVee and phonon energy threshold of
5-6 keV [259]. Additional R&D is required to reach the goal of 1 keV for phonon threshold.
The experiment with up to 50 kg of crystals will be deployed at Gran Sasso Underground
Lab, Italy [254].

3.2 XENON1T Electronic Recoil Excess
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3.2.1 Overview of the XENON1T Excess

A low-energy electronic recoil (ER) excess below 7 keV and most prominent between 2–
3 keV was observed in the XENON1T dark matter experiment [260]. With a significance of
∼ 3.5σ, this excess could be a statistical fluctuation, a hint of a new background process,
or of new physics. With the more sensitive next-generation xenon experiments currently
taking data, more insights into the nature of the XENON1T excess should soon be available.
Here, we assume that the excess in XENON1T originates from physical events of some kind,
either from a previously unmodeled background, or from physics beyond the Standard
Model (SM). We first present potential backgrounds and how to confirm and/or reduce
their presence, then briefly discuss a selection of potential explanations involving new
physics, and conclude with an overview of the current status of the next-generation xenon
experiments.

3.2.2 Potential Backgrounds

Tritium. Among all possible backgrounds, tritium is the most eye-catching candidate [260,
261]. Tritium is a pure β emitter with a Q-value of 18.6 keV and its continuous energy
spectrum peaks exactly between 2–3 keV [262]. The concentration of tritium required to
explain the excess is extremely small, at around 3 atoms per kilogram of xenon. In general,
two possibilities are considered for tritium to be introduced to an underground detector:
1) cosmogenic activation of detection media and detector materials above ground during
fabrication, transportation, etc [263], and 2) its natural abundance in H2O and H2 [264],
i.e. tritiated impurities that can emanate from detector materials during operation. Since
the half life of tritium (12.3 years) is longer than typical data taking time of a detector
(which is of order of a couple years), tritium does not decrease significantly by its decay;
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however, it can be removed by a Hydrogen Removal Unit (HRU) during xenon purifica-
tion [265]. A rigorous check of tritium hypothesis requires a more sensitive detector that
comes with a larger exposure and a lower background level. A dedicated evacuation of
a detector during commissioning is expected to reduce aforementioned tritiated impuri-
ties. In addition, it could be useful to study the ER rate change with different purification
speeds that might change the equilibrium rate of tritiated impurities.

37Ar. Another potential background that should be highlighted is 37Ar [266], which de-
cays via electron capture (EC) with a half life of 35 days and can yield a 2.8 keV peak [267].
37Ar is also possible to be in an underground detector by cosmogenic activation above
ground [268] and detector air leaks during operation [260, 269]. Consequently, the cos-
mogenic activation of 37Ar should be taken into account for experiment planning, while
regular measurements of 37Ar activity in the lab air are necessitated. 37Ar can be ef-
fectively removed by a cryogenic distillation system, which has been demonstrated by
XENON1T [270] and PandaX-4T [271]. 37Ar was concluded not likely to explain the ex-
cess by the XENON collaboration, as its presence had been suppressed to a negligible level
due to the long underground time of xenon and the underground cryogenic distillation be-
fore the science run started, as well as ruled out by the conservative estimation of detector
leak and the measured 37Ar activity in the lab air [260].

Modeling of Known Backgrounds. There are also claims of potential systematic mis-
modeling in the XENON1T analysis, albeit mainly at much higher energies than the excess
region [272]. On the other hand, an independent analysis using the Noble Element Sim-
ulation Technique (NEST) largely confirmed the conclusion from XENON1T; i.e. that the
excess was unlikely to originate from systematic effects [266]. In addition, the spectral
shape of 214Pb β decay, the dominant background in the XENON1T experiment as well as
the next-generation xenon experiments, is not precisely measured at low energies where
some calculations suggest a possible increasing rate [260, 273, 274]. Last but not least,
the 2νββ from 136Xe could have different spectral shapes as well [275], which might alter
the excess rate to some extent. It would be useful to measure these energy spectra with
dedicated calibrations and/or analyses with the next generation experiments.

Other Backgrounds. According to Ref. [276], additional backgrounds could be present
in underground detectors due to cosmogenic production and activation during neutron
calibration. Some backgrounds deposit low-energy peaks in the excess region, e.g. 41Ca
(3.3 keV, EC) and 49V (4.5 keV, EC), while some β emitters have broader spectra, e.g. 106Ru
(39.4 keV Q-value) and 137Cs (1176 keV Q-value). However, it should be pointed out that
the confirmation of any of those backgrounds requires more investigations, such as rigor-
ous studies of the production rate and more importantly the removal by the purification
system, as well as a rate consistency check from data.
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3.2.3 New Physics

The XENON1T excess has been met with significant interest from the community, with 100
papers hitting the arXiv within the first month of its publication. Here we highlight a few
candidates that might be consistent with the XENON1T excess.

Non-DM Candidates: Solar Axions, Bosonic Matter, Solar Neutrinos The energy range
of the XENON1T excess could be consistent with absorption of a beyond-SM light particle
produced in the Sun, for instance a new scalar, pseudoscalar, or vector species [277, 278].
Being produced in the Sun, a detection of such particles would not necessarily shed light
on the nature of dark matter, but would still be exciting markers of new physics.

One potential new-physics explanation of the excess is the absorption of solar axions
or axion-like particles (ALPs), a primary hypothesis considered by the XENON Collabo-
ration [260]. If these pseudoscalars exist, they could be produced in the Sun via their
couplings to electrons, photons, and nucleons, and then absorbed in detection media by
the axio-electric effect [260] and inverse Primakoff effect1 [279, 280]. The XENON1T
excess could be consistent with a solar axion/ALP signal with axion-electron coupling
gae ∼ 3 × 10−12; however, this is in strong tension with astrophysical analyses of stellar
cooling and X-rays [278]. Considering in particular the so-called QCD axion models, which
would also resolve the strong CP problem in particle physics [281], the limits on the axion
couplings can be converted to constraints on the axion mass. In this case the XENON1T ex-
cess would be most consistent with a DFSZ-type axion [282] with mass O(100) meV [260].

If the XENON1T excess persists in the next-generation xenon experiments described
below, it should be possible to distinguish the solar axion hypothesis from other possible
hypotheses, such as the tritium background, by the spectral shape difference [260]. For
a true confirmation of a possible axion signal, however, observing the same signal with
a different technology would be required, e.g. the planned International Axion Observa-
tory (IAXO) [283]. Considering other bosons as well, future improvements can be made
by complementary searches of such light particles in low energy and high luminosity ac-
celerators. Clarification of various astrophysical processes constraining the new particle
absorption possibilities can also guide the theoretical expectations.

Another stellar explanation of the excess that has been considered is solar neutri-
nos with non-standard interactions. Perhaps the most straightforward such interaction
arises from an enhanced neutrino magnetic moment, with the XENON1T result suggest-
ing µν ∼ 2 × 10−11 µB [260]. Similarly to the solar axion hypothesis, this value for the
neutrino magnetic moment is in strong tension with astrophysical constraints [284]. More-
over, many other models involving solar neutrinos and nonstandard interactions have been
considered, e.g. other electromagnetic interactions, neutrino self-interactions, active-to-
sterile transition dipole moments, and light mediators, some of which can avoid existing
constraints [285–287]. The parameter space of fitting the excess in these models can affect
cosmological and astrophysical observations. The existence of new neutrino interactions
can be tested in various neutrino experiments throughout the world, including but not
limited to GEMMA, CHARM-II, and Borexino [288].

1The original XENON analysis did not include the Inverse Primakoff effect.
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DM Candidates: Boosted Dark Matter, Exothermic Dark Matter, Bosonic Dark Matter
In general, the excess cannot be explained in terms of conventional, i.e., non-relativistic
and single component, light WIMP recoiling electron [289]. Therefore future improve-
ments should be made by testing alternative explanations in dark sector theories be-
yond WIMP. The first category is boosted dark matter (BDM) where the incoming light
dark matter is boosted with relativistic energy by dark-sector structures [290–298], astro-
physical processes [299–302], scattering with charged cosmic rays [303–307], scattering
with cosmic-ray neutrinos [308–310] or inelastic collision of cosmic rays with the atmo-
sphere [311, 312] so that it can have enough kinetic energy inducing the recoil energy
above 1 keV at XENON1T [308, 312–316]. Interestingly, the first proposal of highly en-
ergetic electronic recoil by BDM at direct detection experiments including XENON1T was
made in Ref. [297], followed by the actual search in COSINE-100 in 2018 [317]. The sec-
ond category is exothermic inelastic dark matter (XDM) [318] where the incoming dark
matter down-scatters the electron target producing a lighter dark matter component and
transfers enough energy corresponding to the mass difference between the two dark mat-
ter components [319, 320]. The last category is bosonic dark matter where the incoming
dark matter can be absorbed by detection media in the same way as bosonic matter pro-
duced in the Sun, including hidden photon dark matter, ALPs dark matter, etc. Bosonic
dark matter can induce a mono-energetic peak centered around its rest mass and the most
favored mass by the excess is 2.3 keV/c2 [260].

In all explanations, dedicated analyses of the atomic physics effects should be consid-
ered since the excess is observed at relatively low electronic recoil energy that is far below
the electron mass. These effects are due to the fact that target electrons are bound to the
atom and in a state of interactions with other electrons as well as the nuclei. Therefore,
the target electrons can no longer be treated as free at-rest particles and a theoretical im-
provement containing realistic treatments are required. Adding to this, complementary
searches of light DM at low energy and high luminosity accelerators, e,g, Ref. [321], are
required.

3.2.4 Status and Prospects of Next-generation Xenon Experiments

XENONnT As the upgraded version of XENON1T, XENONnT features a sensitive mass
of 5.9 tonne liquid xenon that is increased by a factor of 3 and a total ER background
expected to be reduced by a factor of 6 [322]. The activity of 222Rn that is the parent of
the dominant 214Pb background was determined to be 4.2µBq/kg in XENONnT through
emanation measurements [323]. 222Rn was then decreased by a factor of ∼2 by the online
radon column in XENONnT and is expected to be further reduced by another factor of
2 by switching into the final mode [324]. The xenon purity is also greatly improved by
using the innovative liquid xenon purification system. The electron lifetime achieved in
XENONnT is about one order of magnitude larger than the maximum drift time, meaning
that almost all the liberated electrons from an interaction are able to drift upwards to the
liquid surface without losing to the electronegative impurities [324]. With just a couple
months of data, XENONnT is able to give more insights into the excess, in particular the
preference between the solar axion hypothesis and the tritium hypothesis should the excess
remains. A result is expected from XENONnT soon as the experiment is currently taking
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science data.

LZ LUX-ZEPLIN (LZ) is a next-generation dark matter experiment using a 7 tonne active
mass of liquid xenon [325]. The expected low energy electronic recoil response of LZ to
a variety of physics scenarios was recently presented in Ref. [326]. Seven physical pro-
cesses were considered: 1) an enhanced neutrino magnetic moment and 2) an effective
neutrino millicharge, both for pp-chain solar neutrinos, 3) solar axions, 4) ALPs dark mat-
ter, 5) hidden photon dark matter, 6) mirror dark matter, and 7) leptophilic dark matter.
Most of them have been proposed as possible explanations for the XENON1T excess. In all
cases, significant progress over current sensitivity limits is expected. Moreover, the first few
months of data from LZ should provide a rigorous test of the excess. The study also investi-
gated the sensitivity dependence on the 222Rn level realized in actual data, which remains
somewhat uncertain, showing that the dependence is fairly minimal. It also highlighted
the impact on discovery sensitivity arising from ‘unexpected but possible’ backgrounds,
specifically 37Ar and 3H. In a real experimental dataset, evidence for new physics would
not be claimed if the observed excess were similarly consistent with some unexpected but
possible background contamination. While in real data an externally-derived constraint
on 37Ar and 3H concentrations or rates might be available, in this work a more conserva-
tive approach was taken in which no such constraint was assumed. This results in zero
discovery sensitivity for signals with spectral shape identical to that of either 37 Ar or 3H,
and sensitivity that is reduced for any signal with sufficiently high overlap with either of
these two backgrounds. Similarly to XENONnT, a result is expected from LZ soon.

PandaX-4T PandaX-4T is a dark matter experiment located at China Jinping Under-
ground Laboratory (CJPL) [327]. With a sensitive target of 3.7 tonne liquid xenon, PandaX-
4T reported the first dark matter search result using commissioning data of 0.63 tonne·year
exposure and has placed the most stringent limit for WIMP-nucleon spin-independent cross
section so far [328]. However, PandaX-4T was not able to investigate the origin of this
excess due to tritium leftover during a calibration for PandaX-II [329], which is the prede-
cessor of PandaX-4T. Due to the same reason, a similar ER search performed by PandaX-II
after the observation of the excess only concluded that the XENON1T excess is within its
constraints [329]. PandaX-4T is currently undertaking a tritium removal campaign and
then restarts physics searches [328]. The key issue to investigate the XENON1T excess is
to have a robust measurement on the spectra of radon background at low energies. Ded-
icated calibrations and measurements on temporal variations under different purification
conditions are planned at PandaX-4T, thus it is expected that an independent investigation
on the XENON1T excess will be delivered from PandaX-4T in the near future.

3.3 Solid State detectors (electron and phonon signals)
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Nearly all solid-state detectors currently operating with thresholds lower than 1 keV
have observed statistically significant excesses of events that rise monotonically with de-
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creasing energy, as one would expect from a dark matter signal [330]. These excess rates
have received considerably less attention, for example than the XENON excess, because
both backgrounds and detector response in the sub-keV energy regime are far less well-
understood, making systematic uncertainties large and often difficult to quantify. In fact,
many of these excess rates are likely coming from new background sources and detector
physics that was simply not observable with higher threshold devices. Here, we categorize
these excess rates based on similar behavior and detector readout, along with plausible
origins for each other than dark matter.

3.3.1 Low energy excess from Solid State detectors

Dark Rates Notably, over the last decade a number of technologies have developed (for
the first time) sensitivity to single electron-hole pair creation [331–335]. This achieve-
ment substantially increases sensitivity to dark matter, but also to previously unexplored
or unmodeled background processes that also give rise to individual electron-hole pair
generation. All detectors are expected to have a fundamental dark rate based on thermal
excitation of charges over the band gap of the material, but no detector has yet reached
this limitation. Dark rate contributions can be broken into three categories: events accu-
mulated during readout, events which scale with surface area exposure, and events which
scale with bulk exposure [336]; the last of these is the most dangerous, as it precisely mim-
ics the behavior of dark matter. It is also possible for dark rates to produce multi-electron
events in an ionization detector, for example through event pile-up, but also through dark
rate processes that are spatially correlated, such as from material defects. The best dark
rates achieved come from silicon CCDs, with current limits on single(multiple) electron
rates at 5(0.05) Hz/kg in SENSEI [333] and 7 Hz/kg in DAMIC [337].

Cherenkov Emission Recent work has shown that secondary emission from radiogenic
backgrounds may cause rates that are peaked, similar to a dark matter signal [338].
These backgrounds can mimic dark matter scattering in the low-energy regime and do
not spectrally match predictions from direct radiogenic sources, like Compton scatter-
ing [339, 340].

Low-yield Detector Effects All cryogenic detector technologies either instrumented with
TES or NTD sensor readout observe event excesses containing thousands of events with
energies rising below a few hundred eV down to detector threshold [341–344]. While
these excess rates far exceed the typical 5σ requirement for a detection, they cannot yet
be taken as evidence for a dark matter signal as they are not quite consistent across detec-
tors. More importantly, some experiments (in particular CRESST [345]) observe a clearly
decaying time dependence of the excess rates, which is in strong disagreement with the
slightly modulating time dependency one would expect from a dark matter signal. Of the
cryogenic detectors, CRESST-III observes by far the lowest rate in this regime using CaWO4

crystals.

Other One solid-state detector excess does not fall into the categories listed above, specif-
ically the excess observed above the 50 eV analysis threshold of DAMIC at SNOLAB [346,
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347]. This excess rate differs from those above in a number of ways. First, DAMIC has
demonstrated that the excess events likely cannot be attributed to the known systematic
uncertainties present in their background model, as they appear to be spatially consistent
with events occurring in the bulk of the detector material [347]. Second, the silicon CCDs
used by DAMIC have been calibrated to have highly linear energy response all the way
down to the analysis threshold of the excess [348]. Finally, the overall rate of the excess is
quite low compared to other ionization detectors, consisting of only 17 events above 50 eV
in 11 kg-days [346].

3.3.2 Near and future prospects

Significant advances in low-threshold detectors will allow further exploration of these ex-
cess event rates, along with robust calibration and modeling of detector backgrounds in
this new energy regime. These efforts, already underway, will reveal whether a true dark
matter signal could be hiding amongst the noise. For example, the application of Skip-
per CCDs by SENSEI-100, DAMIC-M [349, 350], and Oscura [351, 352] will thoroughly
probe the viability of the DAMIC at SNOLAB excess rate by leveraging the lower thresh-
old (single electron-hole pair, ∼ 4 eV) of such devices while continuing to push to lower
single-electron dark rates in silicon detectors. Meanwhile, advancements in cryogenic de-
tectors, for example through the application of KIDs [353, 354] or GJJs [355] should
enable lower thresholds for phonon or electron-recoil detection. Another approach would
be the usage of identical detectors with identical readout but different target materials,
which might whether the excess is a material effect. There are further efforts on the way
to use specialized veto-systems, to test the dependence on external stress and surface con-
tamination. Furthermore, the discovery of the sensitivity of quantum detectors, and in
particular qubits [356–358], to ionization radiation opens a new frontier of lower thresh-
old detector development, which will in turn provide a much stronger lever with which to
explore these excess rates.

4 Conclusions and Outlook

Many tantalizing excesses have been reported across dark matter direct detection and in-
direct detection experiments. We have discussed future directions for both the theoretical
and experimental fronts in order to understand the origin of these excesses.

An GeV-scale excess at the heart of our Galaxy has been detected in gamma rays by
the Fermi Large Area Telescope (Fermi-LAT). The statistical significance of this “Galactic
Center Excess” is well-established, but the field has still not converged on identifying its
origin. Leading explanations are either weak-scale annihilating dark matter, or a new
population of gamma-ray emitting pulsars. The key barrier to understanding the nature of
the excess is obtaining an accurate model for the Galactic diffuse gamma-ray foreground
– this component makes up the bulk of the gamma rays in the region, but is not well
understood. We extensively (and almost exhaustively) discuss the possible avenues to
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resolve this excess, from complementary discovery avenues, improved modeling avenues,
and improved fitting and characterization methods.

An excess of GeV cosmic-ray antiprotons in the AMS-02 observations has been iden-
tified. If a signal of dark matter annihilation, it requires similar mass, cross section and
annihilation channels to those required to explain the GCE. To establish the robustness
of this excess, the underlying correlations of the AMS-02 systematic errors are needed.
The observation of antideuteron or antihelium nuclei by AMS-02 and future GAPS and
GRAMS will be an unambiguous signal of new physics. Antiproton and antinuclei dark
matter searches will benefit from future production cross section measurements from in-
elastic hadronic collisions at low center-of-mass energies, and from further reduction of
the astrophysical cosmic-ray propagation modeling uncertainties.

Observations of the rising positron fraction have sparked considerable intrigue over the
past fifteen years due to their potential dark matter explanations. However, high-energy
gamma-ray observations over the last few years have produced significant evidence that
astrophysical e+e- acceleration by a population of high-energy pulsars is the most likely
explanation for the excess positron flux observed at Earth. In closing this mystery, these
TeV halos have added new questions, as their morphology indicates that the simple picture
of isotropic and homogeneous particle diffusion throughout the Milky Way is violated on
moderate scales. Understanding this new phenomenon may play an important role in dark
matter indirect detection searches over the next decade, using both positrons as well as
cosmic-ray and gamma-ray probes.

The 511 keV line from the decay of non-relativistic positrionium coming from the
galactic center has been observed for over 40 years. In particular, the satellite telescope
INTEGRAL/SPI has provided a nearly spherical morphology of the signal. Various non-
conventional dark matter scenarios have been proposed to explain the excess, which can
be complementarily tested in accelerators and astrophysical observations. More detailed
understanding of the morphology of the signal is crucial in identifying the origin of the
signal.

The 3.5 keV line is an anomaly detected in the X-ray band that has been interpreted
as a possible hint of decaying dark-matter. First observed in the datasets of XMM-Newton
and Chandra in 2014, the anomaly exhibited several properties expected of dark mat-
ter, although possible astrophysical explanations such as charge exchange or a potassium
emission line were also discussed. Challenges to the simplest dark-matter interpretations
have arisen from non-observations, particularly from the halo of the Milky Way. Future
instruments such as XRISM have the potential to largely resolve the debate.

The DAMA/LIBRA experiment has observed an annual modulation signal in NaI(Tl)
detectors with a significance of 12.9σ. The dark matter interpretation of the signal is
incompatible with direct dark matter search experiments with other target materials (Xe,
Si, Ge). Recent experiments (ANAIS, COSINE-100) using the same target material NaI(Tl)
have put strong constraints on the DAMA dark matter results. Future experiments with
ultra-pure crystals will be able to definitively test the annual modulation signal.

The XENON1T dark matter experiment observed a low-energy electronic recoil excess,
which is below 7 keV and mostly prominent between 2 and 3 keV. This excess could origi-
nate from unmodeled backgrounds or physics beyond the Standard Model. Several poten-
tial backgrounds are discussed and the methods to mitigate, confirm and reject them are
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also proposed, including tritium and 37Ar. A selection of new physics models are presented,
such as solar axions, solar neutrinos, boosted dark matter. More insights into this excess
are expected to be available soon from several next-generation xenon experiments that are
taking data now.

Solid-state particle detectors measuring sub-keV energy depositions observe statistically-
significant excess rates that must be understood in order to maximize the sensitivity to dark
matter. Significant effort is underway in order to resolve the possible origins of these excess
rates, which likely include single electron dark rates, secondary emission from radiogenic
sources, and crystal cracking due to material stresses (e.g. clamping forces). While these
difficult-to-model processes are likely responsible for the majority of these excess rates, it
remains plausible that some of the unmodeled excess rates are from dark matter scattering.
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