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Abstract

While astrophysical and cosmological probes provide a remarkably precise and con-
sistent picture of the quantity and general properties of dark matter, its fundamental
nature remains one of the most significant open questions in physics. Obtaining a
more comprehensive understanding of dark matter within the next decade will require
overcoming a number of theoretical challenges: the groundwork for these strides is
being laid now, yet much remains to be done. Chief among the upcoming challenges is
establishing the theoretical foundation needed to harness the full potential of new ob-
servables in the astrophysical and cosmological domains, spanning the early Universe to
the inner portions of galaxies and the stars therein. Identifying the nature of dark mat-
ter will also entail repurposing and implementing a wide range of theoretical techniques
from outside the typical toolkit of astrophysics, ranging from effective field theory to
the dramatically evolving world of machine learning and artificial-intelligence-based
statistical inference. Through this work, the theory frontier will be at the heart of
dark matter discoveries in the upcoming decade.

1 Introduction

Astrophysical and cosmological observations have historically played a critical role in the
study of dark matter, underpinning our confidence that there is a missing mass component
of the Universe. The evidence that observational measurements provide for dark matter
is collected across many length scales. The earliest hints for dark matter arose from its
gravitational effects on galaxies, explaining the observed flatness of rotation curves [1–4].
Gravitational lensing has also detected dark matter surrounding galaxy clusters [5]. On yet
larger scales, the cosmic web of large-scale surveys [6], as well as the fluctuations of the
cosmic microwave background (CMB) [7], have both been integral in the development of the
cold dark matter (CDM) paradigm, where 85% of the Universe’s matter budget is dark.

A complete theory of particle dark matter1 will ultimately describe how it interacts with
visible matter, as well as whether it interacts with other dark states in its own separate sec-
tor. Moreover, any such theory will be successful on both the largest scales of the Universe
as well as the smallest (i.e., sub-galactic) scales. Over the next decade, astrophysical and
cosmological probes will provide powerful tests of fundamental questions about dark matter,
playing a unique and complementary role to the terrestrial dark matter experimental pro-
gram. This review will focus on five specific theory questions where concrete advancements
are anticipated during this time period:

• Is the Cold Dark Matter paradigm correct?

In the CDM paradigm, dark matter is collision-less and non-relativistic during structure
formation. A natural consequence of this is the prediction of an abundance of low-mass
dark matter halos down to ∼ 10−6 M� [8]. Observations that provide information
on the matter power spectrum at small scales and various redshifts, therefore, will
play a pivotal role in confirming the CDM hypothesis. Evidence of small-scale power

1In this white paper, we focus on the general class of particle dark matter candidates and refer the
reader to other Snowmass contributions for a description of primordial black holes (PBHs) as a dark matter
candidate.
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suppression could, for example, suggest that dark matter is warmer (i.e., not non-
relativistic) during structure formation [e.g. 9], is not collision-less [e.g. 10], is wave-
like rather than particle-like [e.g. 11], or underwent non-trivial phase transitions in the
early Universe [e.g. 12]. As we will discuss, upcoming astrophysical surveys have the
potential to start probing halo masses to much lower values and/or higher redshifts
than previously accessible, opening the opportunity of definitively testing the CDM
hypothesis.

• Is dark matter production in the early Universe thermal?

The observed relic abundance of dark matter can be explained through a thermal
freeze-out mechanism (see [e.g. 13, 14] for recent reviews). In this picture, dark matter
is kept in thermal equilibrium with the photon bath at high temperatures through weak
annihilation processes. Once dark matter becomes non-relativistic, dark matter is still
allowed to annihilate, but the reverse process is kinematically forbidden. The continued
annihilation of dark matter causes its comoving number density to be Boltzmann sup-
pressed, until it freezes out due to Hubble expansion overcoming the annihilation rate.
This process sets the present-day dark matter abundance. Importantly, the predicted
abundance is sensitive to the detailed dark matter physics, including its particle mass
as well as its specific interactions with the Standard Model. Weakly Interacting Mas-
sive Particles (WIMPs) provide a classic example of the freeze-out paradigm. In this
case, a O(GeV–TeV) mass particle that is weakly interacting yields the correct relic
abundance. As we will demonstrate, upcoming astrophysical surveys will have the op-
portunity to definitively test key aspects of the WIMP hypothesis by searching for the
rare dark matter annihilation and decay products that arise from the same interactions
that set its abundance in the early Universe. A combination of improved instruments
and the so-far non-observation of WIMPs has also led to the exploration of probing
dark matter candidates that are lighter or heavier than the canonical WIMP window,
and which often have a non-thermal origin in the early Universe. This broadening of
the possible dark matter candidates that one can search for in indirect detection will
continue to be driven by the theory community.

• Is dark matter fundamentally wave-like or particle-like?

Model-independent arguments that rely on the phase-space packing of dark matter
in galaxies have been used to set generic bounds on its minimum allowed mass. In
particular, a fermionic dark matter candidate can have a minimum mass of ∼ keV [15],
while a bosonic candidate can have a minimum mass of ∼ 10−23 eV [11]. Moreover,
when the dark matter mass is much less than ∼ eV, its number density in a galaxy
is so large that it can effectively be treated as a classical field. Oftentimes referred
to as “axions” or “axion-like particles” (ALPs), these ultra-light bosonic states can
have distinctive signatures due to their wave-like nature. The QCD axion [16–19],
originally introduced to address the strong CP problem, is a particularly well-motivated
dark matter candidate for which there are clear mechanisms for how to generate the
correct abundance today [20–23]. In this framework, the axion mass and coupling are
fundamentally related to each other through the symmetry-breaking scale of the theory.
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As we show, upcoming searches for astrophysical axions will have the sensitivity reach
to probe highly-motivated mass ranges for the QCD axion.

• Is there a dark sector containing other new particles and/or forces?

In a generic and well-motivated theory framework, dark matter can exist in a “dark
sector” that communicates with the Standard Model through specific portal interac-
tions. Within the dark sector, there can be multiple new states, as well as new forces
that mediate interactions between the dark particles. Recent theory work has demon-
strated classes of dark sector models that yield the correct dark matter abundance
(see [e.g. 24] for a review), oftentimes for lower dark matter masses than expected for
WIMPs. Dark sector models can lead to a rich phenomenology for both astrophysical
and terrestrial dark matter searches, as we will discuss. Two properties of the dark
sector where upcoming astrophysical surveys will be able to make decisive statements
are the presence of self interactions between dark matter particles [25] and new light
degrees of freedom.

• How will the development of numerical methods progress dark matter searches?

Given the sheer volume and complexity of data expected from astrophysical surveys
in the upcoming decade, the development of effective observational and data analy-
sis strategies is imperative. Novel machine learning and statistical tools will play an
important role in maximizing the utility of these datasets. In particular, scalable infer-
ence techniques and deep learning methods have the potential to open new dark matter
discovery potential across several frontiers. Another critical numerical component to
harness the anticipated flood of astrophysical data in the next decade is the further
development of cosmological and zoom-in simulations needed to interpret the survey
results. We will comment on how such simulations are essential for understanding the
implications of particular dark matter models on small-scale structure formation.

This list is not intended to be comprehensive, but rather to provide well-motivated exam-
ples of areas where fundamental advancements are expected with upcoming astrophysical
and cosmological probes. We have divided this white paper into two separate discussions
reflecting what we can learn about dark matter from its interactions with visible matter
in astrophysical systems (Sec. 2) as well as its early-Universe behavior and its role in the
formation of structure (Sec. 3). Each section briefly reviews some of the most promising
observational probes for tackling the specific theory questions delineated above. Sec. 4 is
dedicated to the exciting advancements expected in applications of statistics and machine
learning to astrophysical studies of dark matter. We conclude in Sec. 5.

Complementarity with additional White Papers: We note that there are a num-
ber of white papers which contain results complementary to the discussion we provide here.
A non-exhaustive list includes Dark Matter Numerical Simulations [26], Data-Driven Cos-
mology [27], Dark Matter Physics from Halo Measurements [28], Ultra-heavy Particle Dark
Matter [29], and Puzzling Excesses and How to Resolve Them [30]. We encourage interested
readers to look to these related white papers for further details of how the search for dark
matter will proceed in the coming decade.
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2 Dark Matter Interactions with Visible Matter

Historically, a strong motivation for the existence of an interaction between dark and visible
matter arises from the simple and compelling cosmologies described by the WIMP miracle or
freeze-in production of sterile neutrinos. These scenarios have also long motivated indirect
detection searches: the same interactions that generate dark matter could also be occurring
today and allow it to decay or annihilate into detectable signatures arising from astrophysical
sources. However, in the past decade, a substantial portion—although certainly not all—of
the well-motivated parameter space for these models has been excluded (see [e.g. 31, 32]).
Astrophysical searches for dark matter have broadened in perspective as the theoretical
community has realized that the potential mass and interactions dark matter could have are
much, much broader. In this section, we will highlight this paradigm shift, demonstrating
that while conventional searches continue, ideas to probe significantly heavier and lighter
dark matter are appearing and will continue to be developed in the coming years.

2.1 X-ray and γ-ray Dark Matter Signatures

If the dark matter of our Universe can decay or annihilate, then one of the most promising
channels for determining its particle nature is the detection of high-energy photons. In
the past decade, considerable progress has been made in photon-based indirect detection
for dark matter with masses O(keV–TeV), which we will predominantly focus on in this
section. This improvement has not been solely driven by the experimental observatories:
often theoretical insights have led to dramatic leaps forward in our ability to probe dark
matter. This bidirectional approach to progress must continue in the coming years.

The fundamental ingredient for indirect searches are observational datasets. A partial
summary of the present and future landscape is provided in Fig. 1. At the highest energies,
significant progress will be achieved beyond the existing reach of H.E.S.S. [35], HAWC [36],
and similar observatories, through a combination of CTA [37], SWGO [38], and LHAASO [39]
(the last of which is already in operation, see [e.g. 40]). The combined dark matter discovery
potential of these telescopes is significant. CTA has the possibility to discover the higgs-
ino [41], one of the most well-motivated WIMP candidates. However, its ability to do so will
depend on whether or not the broad program to understand electroweak effects for TeV scale
dark matter can determine its annihilation spectrum and cross section with sufficient accu-
racy [42–51]. Observations at these energies further open the path to probing dark matter
with masses above the unitarity limit, mχ & 100 TeV [52]. The space of models, cosmologies,
and production mechanisms for such ultra-heavy dark matter is being actively developed,
see [e.g. 29]. Discovering these models requires a detailed understanding of the spectrum of
particles that emerge from their annihilation or decay, and how those states propagate to
Earth. In recent years, public codes have been developed for the propagation of high-energy
states [53–57]. For the spectra, the most widely used approach exploits an analogy with
colliders so that Pythia [58–60] can be used for the calculation, as in PPPC4DMID [61, 62].
This analogy breaks down at higher energies—indeed, existing LHAASO projections simply
end at mχ = 100 TeV due to an absence of theoretical calculations available above that
scale [63]. The first steps towards reliable spectra at higher masses has recently been taken
in [64], although there remains significant work. The importance of these developments for
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Figure 1: The exposure of existing and upcoming X-ray and γ-ray instruments which can
search for the decay or annihilation of dark matter. Significant progress in the coming years
is expected at O(TeV–PeV) energies, a full exploitation of which will require theoretical
developments in the models and spectra of heavy dark matter. Such work will also com-
plement instruments searching for even higher energy photons, such as PAO [33, 34]. At
O(keV–GeV) energies, the expected observational progress is far more modest at the level
of exposure. Exposure—the product of effective area, E , and observation time, T—partially
controls how many photons an instrument will detect on average for a given dark matter
flux. We caution that this is just one metric by which instruments can be compared: for
certain dark matter searches, the field of view or energy resolution can be critical, and then
the improvements made at lower energies will be more substantial. Regardless, improved
analysis strategies will be crucial to further enhance the dark matter reach for this lower
band. At the top of the figure, we highlight the approximate mass range of several canonical
particle dark matter (DM) scenarios; one can roughly associate this mass range with the
corresponding energy range of probes, although this connection is only approximate.

γ-ray searches has been considered in [65, 66].
In the O(keV–GeV) band, observations must be made from space as the interaction

of photons with the atmosphere does not produce a sufficiently detectable signature on the
Earth’s surface. This sets a fundamental limitation: a 1 m2 instrument operating for a decade
has an exposure of ∼1012.5 cm2 s. At keV and GeV energies, this is roughly the sensitivity al-
ready achieved by XMM-Newton [67, 68] and Fermi [69, 70], with smaller exposures achieved
for the intervening energies with NuSTAR [71, 72], INTEGRAL [73], and COMPTEL [74].
In the longer term, instruments such as Athena [75], AMEGO [76], and e-ASTROGAM [77]
can improve our sensitivity, but at many energies, the best anticipated datasets are already
on disk. Progress will therefore be critically reliant on new insights for how to exploit the
data. This is happening on many fronts, including identifying new objects in which to search
for dark matter signals, such as newly discovered Milky Way dwarfs [78–83], galaxy cata-
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logs [84, 85], or dark substructure [86–105], as well as the development of techniques such
as cross correlation with different datasets [106–113], improvements in our modeling of dif-
fuse backgrounds [114–117], the extension to axion searches as we describe in Sec. 2.4, and
the exploitation of the dark matter brightness of the ambient Milky Way [32, 118–120]. To
expand on a single example, in [120] it was demonstrated that the roughly twenty years of
X-ray images collected by XMM-Newton, when combined with the insight that all of these
observations occur through a column density of the Milky Way, allowed for a search for dark
matter decay that was more than an order of magnitude stronger than previous analyses.
The results were strong enough to considerably disfavor the longstanding 3.5 keV line dark
matter anomaly [121, 122] (although see also [123, 124]). More generally, there remains sev-
eral unexplained dark matter anomalies in this energy window whose resolution will depend
on further insights from the theory community; for an extended discussion, we refer to [30].

An additional strategy that has been developed recently considers dark matter that scat-
ters and becomes captured within celestial bodies. The dark matter can then annihilate,
generating a signal that depends on the mediator between the dark and visible sectors.
If the mediator is short-lived (or insufficiently boosted), the annihilation products will re-
main within the celestial object, raising its temperature. Instead, a long-lived (or suffi-
ciently boosted) mediator leads to annihilation products outside the body, which can then
be searched for by telescopes. The strongest constraints on long-lived or boosted mediator
models are due to γ-ray searches, as the γ-ray backgrounds for celestial objects are very
low. An excellent candidate is the Sun, and solar γ-ray searches have been performed us-
ing both Fermi [125–128] and HAWC [129], yielding strong constraints on GeV−TeV dark
matter [130–132]. Optimizing for both proximity and size, the next best celestial body is
Jupiter, and Fermi observations have been used to constrain sub-GeV dark matter [133].
More broadly, analogous emission from the full population of brown dwarfs and neutron
stars can constrain sub-GeV to TeV dark matter [134] (see also [135]). These searches are
inherently multimessenger: solar dark matter searches for neutrinos have been performed
with Super-Kamiokande [136], IceCube [137], and ANTARES [138]. Above O(100) GeV,
the neutrinos will be attenuated as they exit the Sun, and a long-lived mediator again im-
proves detectability [130, 139]. The scenario involving short-lived mediators can be studied
with optical and infrared telescopes, including Hubble, JWST, and Roman observations of
neutron stars [140–144], white dwarfs [141, 145], population III stars [146–149], and brown
dwarfs and exoplanets [150].

2.2 Indirect Searches with Astrophysical Neutrinos

While searches for dark matter in the electromagnetic spectrum may be more extensively
developed, there is no fundamental reason that the first discovery could not happen through
a different channel. If that channel is neutrinos, then the coming decade will be particularly
exciting.

Already the possibility of dark matter decaying or annihilating to neutrinos can be probed
from MeV to PeV masses through a combination of instruments ranging from Borexino to
IceCube. For a recent review, see [151]. The detection of O(TeV−PeV) neutrinos at IceCube
is particularly tantalizing. While the experimental collaboration has produced limits under
the assumption that the observed flux does not originate from dark matter [152, 153], a
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complete understanding of where these neutrinos originate is lacking. (Although in 2017, a
∼ 300 TeV neutrino event was shown to be coincident with a flaring γ-ray blazar [154], which
would make this the third extraterrestrial source ever detected in neutrinos after the Sun
and Supernova 1987A.) There has been considerable work by theorists to determine whether
the IceCube flux could have a component with a dark matter origin, see [e.g. 54, 155–163],
and the question remains open.

A fundamental aspect of high-energy neutrino searches, and of high-energy indirect detec-
tion more generally, is its multimessenger nature: generically, a signal of heavy dark matter
annihilation or decay will appear in multiple channels. If PeV scale dark matter decays to
neutrinos, there will be a significant probability for the hard neutrinos to emit a W or Z
boson and thereby produce additional Standard Model final states, including photons. As
a consequence, γ-ray datasets provide important context for dark matter interpretations of
the IceCube dataset (see [e.g. 53, 118, 164]).

This multimessenger strategy will continue to future instruments that will probe neutri-
nos at ever higher energies. Already, there are tools available that make a partial accounting
of the underlying physics of the unbroken Standard Model [64, 165], which build on the
observation that electroweak effects are generically relevant for heavy dark matter [61, 62].
As discussed for the corresponding photon signals, work remains to fully understand these
processes. The importance of such exploration is emphasized by the wide array of up-
coming observatories such as ARIANNA, RNA-G, POEMMA, Grand, IceCube-Gen2, and
KM3NET, which have the potential to probe dark matter with masses up to the GUT scale
of 1015 GeV [65, 166–169].

2.3 Dark Matter Signals from Charged Cosmic-rays

High-energy cosmic-rays have long been a probe of new physical phenomena in the Milky
Way. This is particularly true for antimatter cosmic-rays, a field which PAMELA and AMS-
02 have brought into a precision era, providing a challenge to our understanding of the
antimatter sources and generating claims of a possible dark matter contribution.

In antiprotons, there are claims of an excess in the AMS-02 data peaking near 10 GeV [170,
171]. The excess appears robust to systematic uncertainties on the production cross sections,
cosmic-ray injection rates, and the effects of propagation through the interstellar medium and
heliosphere [172, 173]. The anomaly has a local significance of 3–5 σ and is consistent with
the possibility that it is generated by the same dark matter models which could be generating
the Galactic center γ-ray excess [170, 172–174] (a compelling possibility given the astrophys-
ical uncertainties for the two signals would be uncorrelated, although see [175]). The results
at present do not account for the full correlation matrix of the dataset, although attempts
to estimate the covariance suggest that it can significantly reduce the significance of the
excess [176–178]. At present, the AMS-02 collaboration has not released their correlation
matrix, which will be critical in establishing or repudiating the antiproton excess. Look-
ing forward, the GAPS experiment will provide an alternative measurement of low-energy
antiprotons [179] that will improve the modeling of the propagation of antinuclei in the in-
terstellar medium and heliosphere [180]. More broadly, the combination of high-precision
measurements of multiple cosmic-ray species and the observation of cosmic-ray protons and
electrons from different time periods will further reduce the astrophysical uncertainties.
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For sufficiently massive dark matter, any flux of antiprotons is expected to be accompa-
nied by heavier anti-nuclei cosmic-rays [181–183]. While dark matter can only provide at
most a small excess over the astrophysical backgrounds in antiprotons, the backgrounds are
highly suppressed for more massive anti-nuclei [184–189], making them a potential smoking
gun signal of new physics. Tantalizingly, the AMS-02 collaboration has presented results
of the detection of several antihelium events [190], where essentially no background events
were expected. While tentative, if confirmed, this result could revolutionize cosmic-ray and
high-energy physics. Heavier anti-nuclei are, however, plagued by a number of uncertainties,
particularly as related to their productions (see [e.g. 191, 192]). At present, these uncer-
tainties imply their predicted fluxes can vary by orders of magnitude [181, 183]. Future
low-energy collider measurements will be instrumental in reducing those uncertainties [191],
and the first such measurements have recently been provided [193, 194].

Cosmic-ray positrons are another potential dark matter probe. Given that positrons
quickly lose their energy as they propagate in the interstellar medium, the sources must be
increasingly localized to produce higher energy cosmic-rays. The rising positron fraction
measured by PAMELA [195], Fermi [196], and AMS-02 [197] has been widely discussed as
a putative signal of dark matter annihilation or, alternatively, of nearby pulsars or super-
nova remnants (see [e.g. 198–209]). Dark matter explanations are particularly challenged
by Planck measurements of the CMB temperature and polarization power spectra [210–212]
and have become increasingly fine-tuned although not entirely ruled out (see [e.g. 213, 214]).
Regardless, AMS-02 measurements remain a highly sensitive probe of dark matter anni-
hilation [215]; for instance, one can search for spectral features associated with the dark
matter mass [216, 217], although these must be interpreted carefully as astrophysical sources
can also generate such features [218, 219]. Existing and upcoming cosmic-ray and electro-
magnetic observations will be used to develop a deeper understanding of the properties of
positron sources [220–224], which will further advance the program of probing dark matter
with cosmic-rays.

2.4 Axion Indirect Detection

Recent years have seen significant development in indirect probes of axion dark matter. A
common strategy is to exploit a putative axion-photon coupling. This coupling could be
detected through the decay of axions to photons (which can be stimulated [225–232] or reso-
nantly enhanced [233–241]), axion-photon mixing in an external magnetic field [242] (which
can notably also imprint an asymmetry on the polarization spectrum, see [e.g. 243]), bire-
fringence [244–251], or the production of axions from non-orthogonal electric and magnetic
fields [252]. Axions could also couple to matter and thereby be produced abundantly in
stars via bremsstrahlung emission [253]. This process would produce anomalous cooling in
these objects, which can then be used to constrain axion-nucleon and axion-electron inter-
actions [254–259]; alternatively, these axions may convert back into photons in the magnetic
fields outside of the star, generating anomalous high-energy emission [260]. An example of
recent progress is shown in Fig. 2.

Radio searches: The mixing of axions and photons is greatly enhanced in the mag-
netospheres of neutron stars, owing to the large ambient magnetic fields and the resonant
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Figure 2: Recent constraints derived on the axion-photon coupling using radio observations
of the Galactic Center obtained with the Green Bank Telescope [261] (solid red, labeled
“GBT”); shown for comparison is the 10σ discovery limit for SKA in the same frequency band
(transparent red). These results are compared with the expected QCD axion parameter space
(yellow), two benchmark QCD axion models (brown, dot-dashed), existing constraints from
haloscopes (blue) [262–266] and CAST [267] (grey), and indirect searches using magnetic
white dwarfs (MWDs) [243, 260].

amplification possible due to the ambient plasma [227, 261, 268–274]. The characteristic
plasma mass near typical pulsars spans ∼ 0.1−100 µeV [275], which roughly corresponds to
the range of masses for which axions can simultaneously solve the strong CP problem and
constitute dark matter [276], and further to the frequency band of modern radio telescopes.
The radio signal is expected to appear as a forest of spectral lines centered about the axion
mass, with each line arising from a single neutron star in the Galactic population [261, 271].
If dark matter is predominantly in miniclusters rather than smoothly distributed, the events
will instead appear as transients spanning hours to weeks [277]. Initial estimates indicate
that near-future radio interferometers like the Square Kilometer Array may be capable of
discovering the QCD axion [270, 277]. Searches using existing infrastructure (including the
Effelsberg 100-m telescope, the Green Bank Telescope, and the Very Large Array) are al-
ready underway and have leading limits on the axion-photon coupling in the mass range
1 . ma . 20 GHz [261, 278, 279] (see Fig. 2 for the most recent analysis).

Recently, there has been significant theoretical progress in our understanding of the ra-
dio signal, including a careful treatment of photon refraction, resonant cyclotron absorption,
plasma-induced line broadening, anisotropic response of the medium in the photon produc-
tion process, and general relativistic effects [261, 273, 274, 280]. Yet many open questions re-
main, including how axions and photons mix in a highly magnetized inhomogeneous plasma,
how do charge distributions in active pulsars and magnetars impact the radio flux, what
are the properties and distributions of neutron stars in dense dark matter environments, do
we expect strong deviations from dipolar magnetic fields (and if so how does this impact
the radio signal), how are axions distributed on astrophysical scales (i.e., do they reside in
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tidally disrupted axion miniclusters, and if so what are the properties of these objects in the
Galactic Center), and how can we exploit the spatio-temporal properties of the radio signal
to improve analyses. These are questions to be answered in the next decade, and the answers
have the potential to establish radio searches as a powerful and robust probe of axion dark
matter.

X-ray and γ-ray searches: High-energy photons emitted from astrophysical sources
(including galaxies, blazars, supernovae, and quasars) may convert to axions in galactic-
and cluster-scale magnetic fields (axions could also be produced in stellar cores [281]). The
conversion probability depends on the magnetic field strength and configuration along the
photon trajectory, as well as the plasma frequency. At sufficiently large photon energies, the
photon-to-axion conversion probability becomes O(1) and is thus capable of generating large
absorption features in the electromagnetic spectrum. The efficiency of this conversion process
decreases at lower energies (at a fixed axion mass), generating small oscillatory features in
the observed spectrum. Using this idea, constraints on the axion-photon coupling have been
set using X-ray [282–286] and γ-ray [287–292] telescopes for masses m . 0.1 µeV (excluding
couplings gaγγ & 10−12 GeV−1 for ma . 10−11 eV), and they apply regardless of whether or
not axions contribute to dark matter. Future progress will be aided by improved high-energy
observations and by further understanding of galactic and cluster-scale magnetic fields.

2.5 Emission of Dark Sector States from Compact Objects

Standard Model particles in high-density environments, such as stars and supernovae, can
emit new weakly-coupled states that might exist beyond the Standard Model. The particles
emitted could either be dark matter themselves or, alternatively, part of a broader weakly-
coupled “dark sector,” which is potentially necessary to endow sub-GeV dark matter with
the correct relic abundance. The emission process can result in either observable deviations
from the Standard Model predictions on short timescales or long-term global changes to
the evolution of the compact object, both of which can be constrained. The theory frontier
has long played a crucial role in bridging the gap between astrophysical probes, complex
multi-body Standard Model calculations, and inference on new particle properties.

The paradigmatic example of “short-term” constraints comes from the successful explo-
sion of Supernova 1987A and the detection of neutrinos for the predicted ∼ 10-second-long
cooling phase [293, 294]. The qualitative agreement of this observation with Standard Model-
only numerical simulations [295, 296] has been used to constrain the properties of the QCD
axion with ever-increasing fidelity and sophistication [253, 297–303]. The theory frontier is
still grappling with these calculations. Upcoming challenges will be centered on application
of effective field theory techniques, which promise important changes in expected rates for
Standard-Model-only processes (such as nuclear and neutrino matrix elements and scattering
rates), as well as for beyond-the-Standard-Model rates.

A successful explosion of Supernova 1987A could also have been inhibited by a large dark
sector [303–306]. Broadly, Supernova 1987A provides the strongest bounds for any number
of new particles in the O(1–100 MeV) mass range, being cut off at high masses by Boltzmann
suppression from thermal production in the core, which attains temperatures between 30–
100 MeV [295, 307]. The power of these bounds at larger couplings is generally limited by
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the existence of a “trapping” limit. At couplings above the trapping limit, the new particles
are more tightly coupled than the Standard Model neutrinos and thus are unable to drain
the energy the neutrinos were observed to have taken away. Nevertheless, with the increasing
fidelity of numerical simulations [308], the region beyond the trapping limit is a clear avenue
for future theoretical and numerical investigations.

A second type of stellar constraint pertains most relevantly to particles that are substan-
tially lighter and more weakly coupled than the MeV range in which supernova limits excel.
In this mass range, dark matter must generally be non-thermal in order to avoid constraints
on the number of new radiation degrees of freedom in the early Universe. Thus, such limits
typically focus on bosonic particles such as the QCD axion, axion-like particles, Higgs-portal
scalars, and the dark photon. A powerful approach is to require new particle emission to be
subdominant to photon emission in stars [306, 309–312], analogous to the supernova bound
wherein the new emission is limited by the neutrino emission. If this rule were to be violated,
stellar lifetimes would be unacceptably short or other emission properties would change be-
yond measured values. A different method of constraining light particle emission from stars
has been made possible recently by LIGO-Virgo Collaboration observations of gravitational
waves and the corresponding mass census enabled by these observations, which are revealing
the characteristics of Pop-III stellar progenitors for the first time [313, 314]. One qualitative
prediction of Standard Model-only astrophysics is the existence of a “black hole mass gap”
formed from these objects at a characteristic mass scale slightly below 50 M� [315, 316]. New
particle emission, gravitational trapping of dark matter, or dark matter coevolution all could
change this mass scale [317–322]. Theory frontier activities in the stellar domain promise to
illuminate new, weakly-coupled particles that are not probed by other mechanisms [323].

A different route by which dark matter could impact a “long-term” observable of compact
objects is via the formation of a super-radiant cloud that extracts angular momentum from a
central black hole [324–328]. For a sufficiently low-mass dark matter particle, this could lead
to detectable changes in the observed black hole spin distribution [239, 329–369]. Future
theoretical explorations will lead to a more comprehensive understanding of the impacts of
backreaction of the superradiance on the conditions necessary to support the superradiant
instability.

3 Dark Matter Origins and Structure Formation

Traditional methods of dark matter indirect detection are centered around the idea of de-
tecting the Standard Model byproducts of dark matter interactions within astrophysical
systems. New dark matter physics can also be indirectly observed through its impact in
the early Universe and on the subsequent formation and evolution of collapsed structures
of matter (see Fig. 3). Using such detection methods can cover regions of dark matter pa-
rameter space that are complementary to regions probed by traditional methods. Crucially,
gravitational indirect detection is necessary to probe certain classes of dark matter theories
that require the extreme conditions of the early Universe or dark sector theories that have
rich phenomenology but do not couple to known physics except through gravity. In this
section, we explore the theoretical progress made in this area, often going hand-in-hand with
advancements in numerical simulations, and discuss the importance of continued theory ef-
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Figure 3: Schematic representation of the coverage of current and future probes of dark
matter physics across various ranges of redshift z (i.e., eras that observable photons or
signals primarily originate from), wave number k, and the corresponding halo mass Mhalo.
The ranges of individual probes are approximate. Note that some of the listed probes
are well-established observationally, while some are still in nascent phases of observational
development, but they all represent complementary probes of dark matter. We do not include
probes that only affect background evolution and thus do not have an associated scale k to
display in this figure. Similar figures can be found in [e.g. 370–372].

forts to take full advantage of the influx of cosmological and astrophysical data expected
over the next decade.

3.1 Early-Universe Evolution

The present-day abundance of dark matter may have been established after a period in which
dark matter particles were in thermal and chemical equilibrium with some larger thermal
reservoir, or it may have been established despite never attaining thermal equilibrium with
its environment. The former case, which we refer to as “thermal” dark matter, whether that
thermal equilibrium is attained with the Standard Model itself or with a secluded thermal
bath, is commonly considered to be UV-insensitive: the initial conditions of the dark matter
abundance will be erased by the thermal equilibrium condition. The latter case of “non-
thermal” dark matter leads to a large number of observables that can potentially persist
from the earliest moments of dark matter genesis.

One exception to the rule that thermal dark matter is insensitive to early-Universe mi-
crophysics could be if the dark sector underwent a first-order phase transition. This could
generate a gravitational wave signal [e.g. 373–377], which would remain thermally decou-
pled, even if dark matter particles were in thermal equilibrium. In fact, the occurrence of
the first-order phase transition requires the dark sector to be at least self-thermalised. The
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most widely studied example of this kind is a dark sector Higgs mechanism, resulting in a
phase transition that can be first order if the sector contains a number of bosonic degrees of
freedom [374]. Dark sector confinement may also lead to the generation of a gravitational
wave signal, if the global symmetry is large enough at the time of breaking [e.g. 378–381].
Such scenarios have been studied in the context of axion models [380] and bound state
formation such as dark quark nuggets [378]. Theoretical progress is necessary before the
gravitational wave phenomenology of first-order phase transitions can be studied reliably:
it has been demonstrated that even in perturbative models, two-loop thermal effects must
be included to achieve better than O(1) numerical accuracy [382–384]. Estimations of the
gravitational wave spectrum in non-perturbative hidden sector models have used low- or
high-energy effective field theories (see [379] for a comparison), but their validity breaks
down in the vicinity of the phase transition. Future theory frontier efforts will be critical in
understanding this break down and extending the range of reliable predictions for models of
new physics.

Non-thermal dark matter may produce gravitational wave signals, but more generally
leads to a multitude of other tests of early-Universe physics. For instance, the evolution
of the post-inflationary axion can result in an abundance of axion miniclusters [385–390],
which can potentially be discovered with dedicated search strategies [391–398]. Accurate
predictions for the spectrum and abundance of such miniclusters requires early-Universe
simulations of the post-inflationary axion, which are inherently difficult to perform due to
a separation of scales and large systematic uncertainties. Therefore, additional large-scale
simulations and systematic tests are needed in the future to improve results.

Lastly, we note that the abundances of thermal and non-thermal dark matter are both
affected by the evolution of the Universe between the end of inflation and the onset of Big
Bang nucleosysthesis (BBN), and we cannot assume that the Universe was radiation domi-
nated throughout this period [399]. If dark matter chemically decouples while the Universe
is not radiation dominated, the larger Hubble rate at a given temperature causes an earlier
freeze-out and an enhanced relic abundance [400–404]. If the subsequent transition to radi-
ation domination involves the creation of new Standard Matter particles, as occurs after an
early matter-dominated era, then the relic abundance of dark matter is diluted [400, 405–
408]. An early matter-dominated era also enhances dark matter density perturbations on
scales that enter the horizon prior to the onset of the final radiation-dominated epoch [409].
Significant progress has been made in understanding the impact this has on the abundance
of sub-Earth-mass microhalos [409, 410] and how the minimum halo mass depends on the
properties of dark matter [411–414], as well as the properties of the particle responsible for
the early matter-dominated era [415–418]. These microhalos provide a new observational
probe of the early Universe; their impact on the dark matter annihilation rate can be con-
strained using the isotropic gamma-ray background [413, 415, 419], and they can be detected
gravitationally using pulsar timing arrays [420–423] and observations of stellar microlensing
events in galaxy clusters [424, 425]. Further study is needed to understand whether the CMB
and the 21cm background could further constrain dark matter annihilation in early-forming
microhalos.
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3.2 Early-Universe Structure Formation

The standard cosmological model of ΛCDM describes the large-scale structure of the Universe
extremely well. The presence of CDM is crucial through its contribution to the overall energy
density and through its density perturbations at early times. Comprising about 84% of the
matter content in the Universe [426], the gravitational influence of dark matter is key in
the formation of structure. Thus, cosmological observations provide important and unique
insight into new dark matter physics that disturb the predictions of CDM.

Light degrees of freedom: A wide variety of dark matter models introduce new light
degrees of freedom in the Universe at early times. In particular, dark sectors may contain
light or massless force carriers, such as dark photons, that thermalize dark matter at a
temperature that generally differs from the Standard Model bath. The introduction of new
relativistic species alters the expansion rate of the Universe during radiation domination,
in turn affecting CMB anisotropies [e.g. 427] and predictions of the abundances of light
elements created during BBN [e.g. 428, 429]. Standard contributions to the energy density
of radiation during the BBN and CMB eras include photons and neutrinos, assuming their
masses are not too large; however, neutrinos decouple from the photon bath at temperatures
∼ 1 MeV, and their energy density contribution is encoded in the parameter Neff . For the
three active neutrinos of the Standard Model, recent calculations yield NSM

eff = 3.044 [430–
433], and deviations ∆Neff ≡ Neff − NSM

eff from this value could imply the existence of
non-standard physics. Current CMB and BBN observations constrain Neff to be close to its
Standard Model value [e.g. 426]; therefore, in order to incorporate new massless species in
a cosmological model, the dark sector temperature has to be lower than that of the photon
bath to avoid contributing too much to the relativistic energy budget.

Thermal dark matter itself can contribute to the relativistic energy density during BBN
if its mass is . 20 MeV. Additionally, if the dark matter relic abundance is set through a
standard freeze-out process, dark matter may annihilate into neutrinos or visible particles,
which in turn alter weak interaction rates that determine primordial abundances. Dark
matter coupled to neutrinos or charged particles generates a positive or negative contribution,
respectively, to Neff . Thus, cosmological observations can provide robust bounds on the
mass of dark matter, for a given spin and annihilation channel [434, 435, 435–439]. In
the future, CMB-S4 will obtain a sensitivity to new thermalized, light relics corresponding
to ∆Neff < 0.06 at 2σ [440]. Dedicated theory work will be needed to understand the
implications of CMB and BBN constraints across a variety of dark sector models.

CMB spectral distortions: Measurements of the CMB energy spectrum provide
an opportunity to search for new physics that impacts the thermal history of the Uni-
verse. Deviations of the CMB spectrum from a perfect blackbody, referred to as spec-
tral distortions, are sensitive to processes that inject energy into (or extract energy from)
the photon-baryon plasma at redshifts z . 2 × 106. Current measurements of the CMB
spectrum show that it is extremely close to a blackbody with a present-day temperature
T0 = 2.72548 ± 0.00057 K [441, 442], with spectral distortions smaller than a few parts in
105 [441]. Proposed experimental concepts could probe spectral distortions at least three
orders of magnitude smaller [443], thus opening new windows into exotic physics in the early
Universe. Several known processes within the standard ΛCDM cosmological model generate
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spectral distortions [444]. In addition, spectral distortions may be generated through dark
matter interactions with Standard Model particles.

Dark matter annihilating or decaying into photons or electrically charged particles would
inject energy into the photon-baryon plasma, hence distorting the CMB energy spectrum [445].
CMB anisotropies are significantly more sensitive to s-wave annihilations than spectral dis-
tortions [445]; however, spectral distortions could be more sensitive to p-wave annihilations
[446], depending on the specifics of the dark matter model. In addition, spectral distor-
tions can constrain decaying particles with lifetimes 106 sec . τ . 1012 sec, to which CMB
anisotropies are insensitive. For such short lifetimes, the decaying particle could only com-
prise a small fraction of the total dark matter abundance [447].

Alternatively, dark matter particles may extract energy from the photon-baryon plasma
if they scatter elastically with photons, electrons, or nuclei [446, 448]. Indeed, if dark matter
is heavier than ∼ 1 keV, it is non-relativistic by z ∼ 2 × 106 and therefore cools down
adiabatically faster than the thermalized photon-baryon plasma. Elastic scattering would
therefore lead to a systematic transfer of heat from the plasma to the dark matter fluid.
This effect is increasingly large for light, thus more abundant, dark matter particles. While
current spectral distortion limits only constrain elastically-scattering dark matter particles
with masses mχ . 100 keV, proposed experiments could extend this sensitivity to ∼ GeV
masses. Continued theoretical work is needed to ensure robust predictions [e.g. 449].

CMB anisotropies and dark matter annihilation/decay: Dark matter annihilation
or decay via electomagnetic channels injects energy into the photon-baryon plasma, which
increases the free-electron fraction xe around and after cosmological recombination at z .
1100. The increase in xe delays the last scattering epoch and affects the photon diffusion scale
(and hence the damping of CMB anisotropies at small scales). Additionally, an increased xe
in the low-redshift tail of recombination suppresses CMB anisotropies on small scales and
increases large-scale polarization fluctuations, an effect qualitatively similar to an increase
in the reionization optical depth [450].

Through these effects, CMB anisotropies are sensitive to very rare dark matter annihila-
tion or decay processes [212, 451], since as little energy as ∼ 1 eV per baryon suffices to signifi-
cantly alter the ionization history. In particular, even for dark matter produced in a standard
freeze-out scenario, residual annihilation at z . 1100 may have a significant impact on CMB
anisotropies, long after they no longer change the dark matter abundance. Planck data
constrain the dark matter s-wave annihilation cross section to 〈σv〉 . 3 × 10−28(mχ/GeV),
ruling out a standard freeze-out production of dark matter for mχ . 10 GeV [7]. Planck
data also constrain the lifetime of decaying dark matter to τ & 1024–1025 sec, depending on
the decay channel [452, 453], orders of magnitude larger than the age of the Universe. Near-
future and planned CMB-anisotropy missions could achieve a factor of ∼ 30 improvement in
the sensitivity over current Planck limits on dark matter annihilation and decay [454].

More exotic dark matter candidates, such as PHBs, can be probed by CMB anisotropies
through similar effects. PBHs can inject energy in the photon-baryon plasma through either
Hawking radiation for masses M . 1017 g [453] or accretion-powered radiation for masses
M &M� [455–457]. In contrast with the rather clean and well-understood physics involved
in dark matter annihilation or decay [212, 458], the complex physics of accretion is highly
uncertain and much theory work remains to be done to make existing limits more robust.
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While the effects described above arise from changes to the average free-electron fraction,
inhomogeneous energy injection from dark matter would also lead to spatial fluctuations in
xe [459, 460]. These fluctuations would induce non-Gaussianities in CMB anisotropies, which
could be a complementary avenue to probe energy injection from dark matter.

CMB anisotropies and dark matter scattering: Elastic scattering between dark
matter and Standard Model particles in the early Universe can alter the evolution of per-
turbations, impacting CMB temperature, polarization, and lensing anisotropies. Scattering
processes heat the dark matter fluid and induce a drag force from the exchange of momen-
tum. The primary effect of the scattering is inhibiting the clustering capabilities of dark
matter, thus washing out structure on a variety of observable scales. As a result, the CMB
power spectra experience damping at large multipoles `, corresponding to small angular
scales on the sky, for models where dark matter decouples from baryons prior to matter-
radiation equality [461–467]. For models such as millicharged dark matter, scattering takes
place at later times, and CMB anisotropy currently provides some of the best observational
bounds on such models [e.g. 464, 468, 469]. The theoretical developments and numerical
implementation into Boltzmann codes, such as CAMB and CLASS, have enabled CMB searches
of dark matter scattering with baryons [461–467], electrons [470, 471], photons [472–474],
and neutrinos [475, 476]. The strength of the interaction is a key parameter that controls
the amount of power suppression in the CMB primary anisotropy, but including an energy
or velocity dependence of the interaction influences the shape of the suppression, potentially
allowing a way to distinguish between various scattering models. Even in the case of dark
sectors, dark matter scattering with dark radiation [477–479] produces features in the CMB
power spectra that can be differentiated from other models [480]. Changing Neff can have a
similar effect of suppressing the CMB damping tail, but possible degeneracies can be broken
using CMB lensing anisotropies [481].

Upcoming ground-based instruments, such as the Simons Observatory [482] and CMB-
S4 [440], will measure the CMB with better precision at high ` and a much higher angular
resolution than current experiments, allowing for greater sensitivity to dark matter interac-
tions. In terms of theoretical development, most investigations have focused on thermal relic
models, while future investigations of models where dark matter is produced non-thermally
will also be of high interest in context of CMB probes. Furthermore, there is a notable
synergy between the CMB primary anisotropy and other probes of the structure growth in
the Universe, which can be further exploited in self-consistent analyses of CMB with other
observables, for specific dark matter models.

21-cm line at high redshifts: The redshifted 21-cm line of neutral hydrogen presents a
unique probe of the post-recombination Universe, prior to the birth of the first stars (cosmic
dark ages, z = 30–100) and right after it (cosmic dawn, z = 5–30)—see [e.g. 483, 484]
for reviews. The corresponding absorption signal imprinted on the CMB backlight during
cosmic dawn [485] captures the state of hydrogen gas and various microphysical processes
that control it at this early epoch; mapping the absorption signal provides a (3D) view of
the Universe at epochs that no other probes can reach. Many dark matter processes can
affect the temperature of baryons during cosmic dawn, in turn affecting the 21-cm signal.
The experiments targeting this era can use this connection to probe dark matter interactions
with the visible sector.
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A well-motivated model that can affect the 21-cm signal involves dark matter scattering
with baryons through a light mediator [466, 468, 486–492]. For millicharged dark matter,
current 21-cm measurements (e.g., from EDGES in the global signal [493] or HERA for
fluctuations [494]) exclude millicharges as low as qχ ∼ 10−6 e [488] (where e is the electron
charge), even if less than a percent of dark matter is millicharged. Alternatively, models
of dark photons that kinetically mix with Standard Model photons, with mixing parameter
ε ∼ 10−7 [495], can create a radio background that affects the 21-cm signal [495–497].
Additionally, a classical WIMP, for instance, can heat gas through annihilations [498, 499],
and similar effects occur in case of decaying dark matter and dark-photon dark matter [500,
501]; each in turn can affect the thermal properties of baryons during cosmic dawn. Even
more exotic models, such as evaporating or accreting PBHs, can produce heating [502, 503].

The 21-cm signal during cosmic dawn is sensitive to structure formation because the
first galaxies emit photons that produce Wouthuysen-Field coupling [485], critical for the
21-cm absorption feature to arise. Those first galaxies were hosted in halos with masses
∼ 106 M� [504–507], which correspond to fluctuations with wavenumbers as large as k ≈ 100–
200 Mpc−1. As a consequence, altering the corresponding scales in the linear matter power
spectrum affects the abundance of the first galaxies and the timing of the 21-cm signal [508].
Small scales are often very sensitive to dark matter microphysics and can be used to probe
warm dark matter and other beyond–CDM models.

While there are claims that the global (sky-averaged) signal has already been detected [493],
the tomographic signal is yet to be measured [494] from interferometers such as HERA [509],
LOFAR, MWA, or SKA [510]. However, it is expected that these observatories can yield
constraints on the matter power spectrum up to k = 100 Mpc−1 at the ∼ 10% level [508],
which can place powerful constraints on specific dark matter candidates such as ETHOS
models [511], warm dark matter [512], or fuzzy dark matter [513].

High-redshift galaxy luminosity function: The luminosity function (i.e., counting
the number of galaxies versus their luminosity) provides a tracer of the abundance of dark
matter halos at the redshifts of measurement. UV luminosity functions are constructed from
the HST Ultra Deep Fields (HUDF), where the UV light from the most massive galaxies
at z = 4–10 is detected by the visible/IR filters at the HST [514, 515]. JWST observations
will significantly contribute to constraining the population of early galaxies in the coming
decade. There measurements can be used to determine the matter power spectrum during
reionization up to k = 10 Mpc−1 [372, 516, 517] and can provide probes of warm dark
matter [518–521], fuzzy dark matter [522, 523], and ETHOS models [524].

Lyman-α forest: The clustering of matter at intermediate redshifts traced by the red-
shifted forest of Lyman-α absorption lines is a sensitive probe of dark matter physics. Several
authors have forward-modeled the Lyman-α forest to place lower limits on the thermal relic
warm dark matter mass of O(3–5) keV [525–528], where the details of the constraints de-
pend on astrophysical assumptions about the temperature, density, and redshift evolution of
baryons in the intergalactic medium [529, 530]. Other dark matter models such as those with
dark matter–baryon interactions, ultra-light axions, and PBHs have also been constrained
using similar methods [531–534], although there are dark matter-related modeling challenges
in some cases [e.g. 535]. From a theoretical standpoint, the development of Lyman-α forest
emulators [e.g. 536] has contributed to recent advances and will become increasingly impor-
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tant to enable robust, joint inference of cosmological, astrophysical, and dark matter physics
in the coming decade. From an observational standpoint, dark matter analyses have gener-
ally been performed using ∼ 10s of high-resolution spectra (e.g., VLT, HIRES/KECK; [525]),
∼ 100s of intermediate-resolution spectra (e.g., XQ-100; [527]), or ∼ 1000s of low-resolution
spectra (e.g., SDSS/BOSS; [528]). Ongoing spectroscopic surveys including DESI will signif-
icantly enhance the number and redshift coverage of available high-resolution quasar spectra,
potentially allowing for percent-level measurements of the Lyman-α flux power spectrum on
small scales [537].

3.3 Present-Day Structure

Probes of small-scale structure at low redshifts have recently emerged as a key means to
test a variety of dark matter properties, including its production mechanism, primordial
temperature, self- and Standard Model-interactions, and minimum particle mass. These
probes can broadly be categorized according to whether they rely on observations of the
baryonic contents of low-mass halos or not. Here, we summarize the current status and
future prospects for each of these probes, along with key theoretical considerations. In par-
ticular, we emphasize that connecting theoretically motivated predictions for dark matter’s
gravitational imprints to precise analytic and simulation-based predictions for small-scale
structure distributions is a critical area for work over the next decade.

Massive galaxy clusters provide a unique opportunity to stringently test the CDM
paradigm of structure formation. Combining strong and weak gravitational lensing detected
in high-resolution images of massive clusters has revealed that the dark matter subhalos of
cluster galaxies are less massive and less spatially extended compared to those hosting equiv-
alent luminosity field galaxies, indicating that tidal stripping of dark matter is efficient in
these dense, violent environments—see review by [538] and, for a critical analysis of the range
of lens modeling methodologies, see [539] and [540] for recent developments. Comparison of
the derived subhalo mass function from observed cluster lenses with CDM simulations has
revealed that while the abundance and mass function of substructures was well reproduced,
the radial distribution of subhalos was discrepant [541]. Subhalos are more concentrated in
the inner regions of observed clusters than predicted by CDM simulations.

A recent study of Galaxy-Galaxy Strong Lensing (GGSL) in clusters found that observed
small-scale cluster substructures (on ∼ 5–10 kpc scales) are more efficient strong lenses
than predicted by CDM simulations by more than an order of magnitude [542]. Further
theoretical investigation will be needed to evaluate if this large discrepancy arises from
hitherto undiagnosed systematic issues within simulations, or if in fact this serves as a hint
for deviations from the CDM paradigm. Numerical effects arising from the resolution limits
of simulations that lead to artificial subhalo disruption [543] cannot account for the order of
magnitude GGSL gap, as they are at most a 20% effect [544]. Importantly, baryonic feedback
processes must be carefully investigated as a potential culprit for the discrepancy, as it is
well understood that they alter the internal structure of cluster galaxies. This motivates a
comparison of simulated galaxy clusters across several independent CDM simulations.

The GGSL discrepancy could potentially be revealing that dark matter might not be col-
lisionless, especially in the extremely dense cluster environments. For elastic self-interactions
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that are velocity dependent (with large interaction cross sections), halos can undergo gravo-
thermal collapse just as stellar systems. When this occurs, the inner halo develops a negative
heat capacity due to outward transfer of energy [545], resulting in a significant enhancement
of the concentration of the inner density profile—precisely in the direction needed to address
the GGSL discrepancy [546]. The transformation produced by core-collapse motivates the
investigation of this particular class of self-interacting models more deeply. Moreover, totally
inelastic self-interactions can result in a collapse time-scale up to two orders of magnitude
shorter than for the elastic case [547], for smaller interaction cross sections. Further theo-
retical study is needed to map out the space of self-interacting dark matter models that can
potentially account for the GGSL discrepancy.

Dwarf galaxies are the smallest dark matter-dominated baryonic systems in the Uni-
verse and form in halos with Mhalo . 1010 M�, down to the galaxy formation threshold
of Mhalo ∼ 108 M� [548, 549]. Thus, the smallest “ultra-faint” dwarf galaxies [550] are a
particularly sensitive probe of low-mass halo abundances, which reflect dark matter’s small-
scale gravitational clustering. To date, ultra-faints have exclusively been detected within the
virial radius of the Milky Way as satellite galaxies; recent wide-field photometric surveys,
including the Sloan Digital Sky Survey, Pan-STARRS1, and the Dark Energy Survey, have
increased the number of known Milky Way satellites to roughly 60 systems (see [551] for a
recent census of the Milky Way satellite population). These observations have been used
to constrain the warm dark matter particle mass at the level of 6.5 keV, the particle mass
of fuzzy dark matter at the level of 2.9 × 10−21 eV, and the dark matter–proton interac-
tion cross section at the level of 10−29 cm2 [552] (also see [548, 553–557]). Over the next
decade, observational facilities, including the Vera C. Rubin Observatory and the Nancy
Grace Roman Space Telescope, are expected to significantly improve upon current dwarf
galaxy discovery power, both within and well beyond the virial radius of the Milky Way [e.g.
558, 559]. With these upcoming improvements, continued theoretical developments are key
to properly interpreting possible deviations of halo abundances from the CDM expectation.

In addition to their mass abundances, the individual properties and population statistics
of dwarf galaxies are also sensitive to dark matter microphysics. For example, dark matter
self-interactions can both suppress the inner densities of halos in a mass-dependent fash-
ion [560–564] and eventually drive these systems towards gravothermal core collapse [545,
565–572]. These effects provide a mechanism for explaining the observed diversity of galactic
rotation curves [573–576], although current observations are not yet sufficient to distinguish
this scenario from feedback-affected CDM halos [577]. Conservative constraints based on
the observed inner-most densities of dwarf galaxies such as Draco [e.g. 578], coupled with
constraints from galaxy clusters [e.g. 579], demonstrate that self-interacting dark matter
models with velocity-dependent interactions must undergo some degree of gravothermal col-
lapse [580]. This observation may provide a mechanism to explain observations suggesting
that the most centrally-dense Milky Way dwarfs also have the smallest orbital pericen-
ters [581]. Improved theoretical modeling of dwarf properties and populations will be needed
to harness the full potential of current and upcoming surveys that are amassing information
on dwarf galaxies of Milky Way-like systems [582, 583], as well as improved stellar kinematic
data on the Milky Way’s dwarfs from observatories like Gaia [584].

Strong gravitational lensing allows us to detect low-mass halos within lens galaxies
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and along the line of sight via their effect on the observed multiple images of a background
source. This process is purely gravitational and independent of whether these low-mass halos
contain any baryons. It thus provides a unique approach to test dark matter models by
probing the low-mass end of the halo and subhalo mass functions beyond the local Universe.
The detection of low-mass halos with strongly lensed quasars is mainly based on so-called
flux ratio anomalies—that is, changes induced to the relative flux of the multiple images [e.g.
585–587]. In images of strongly lensed galaxies, a local change of the surface brightness
distribution of the data, reflecting a change in the relative position of the images, is the
tell-tale signature of the presence of low-mass halos [e.g. 588–592]. This method is often
referred to as the gravitational imaging technique.

Flux ratio anomalies and the gravitational imaging technique are complementary ap-
proaches that are subject to individual and shared sources of systematic errors [593, 594].
The two techniques can also differ in their sensitivity to low-mass haloes. Depending on
the size of the background source, flux ratio anomalies typically probe the halo and subhalo
mass functions down to masses as low as ∼ 107 M� and potentially below. The number of
available lens systems and the precision of the flux measurement then set the precision with
which one can constrain the halo and subhalo mass functions [595]. For example, [596] and
[593] constrain the warm dark matter particle mass at 5.2 (5.5) keV at the 95% confidence
level using eight (seven) quadruply imaged quasars.

The sensitivity to low-mass halos reached by the gravitational imaging technique is highly
dependent on the angular resolution of the observations [597]. At present, only a handful of
systems for which Very Long Baseline Interferometry observations are available can probe
the halo mass function down to ∼ 106 M� [598]. From a sample of 20 HST-observed galaxy-
galaxy lensed systems (sensitivity ∼ 1010M�), [594] infer a limit on the warm dark matter
particle mass of 1.02 keV using both detections [599] and non-detections [600, 601].

At present, the relatively low number of gravitational lens systems with high-enough data
quality significantly limits the constraints on dark matter from both flux-ratio anomalies and
the gravitational imaging technique. Luckily, ongoing and future surveys with instruments
such as Euclid, the Vera Rubin, and SKA will increase the number of known gravitational
lens systems by several orders of magnitudes [602–604]. This data, coupled with follow-up
observations with, e.g., the ELT, TMT, and JWST, is projected to deliver tight constraints
on the halo and subhalo mass function [595, 605].

Stellar streams are the tidally disrupted remnants of dwarf galaxies and globular clus-
ters. Recently, the combination of astrometric, photometric, and spectroscopic observations
has led to the discovery of a plethora of new streams orbiting the Milky Way [606–608] and
intriguing structure in the density profiles of nearby streams like GD-1 [609] and ATLAS–
Aliqa Uma [610]. These substructured streams—and particularly the gaps in stream density
profiles and other unexpected, off-stream features—have been modeled to place constraints
on the properties of individual perturbers and candidate dark matter subhalos that may
have gravitationally perturbed these streams [611], as well as the population statistics of
subhalo perturbers in cold and warm dark matter contexts [612, 613]. Deeper photometric
measurements from upcoming facilities will continue to increase the population of known
streams and reveal their fine-grained density structure, with potential sensitivity to subhalos
as small as ∼ 106 M�, regardless of their baryonic content [559, 614].
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Figure 4: Simplified comparison of likelihood-based and simulation-based algorithms in the
space of number of required/affordable simulations vs. number of model parameters (includ-
ing parameters of interests, uncertain parameters, and random states of the simulator). In
general, the simulation requirements of likelihood-based techniques grows significantly with
the number of model parameters. Instead, simulation-based inference techniques can—in
principle—directly focus on estimating marginal posteriors for parameters of interest, inde-
pendently of the total number of parameters. This reduces the need for parameter reduction
techniques and enables the comparison of complex simulation results with complex data.

4 Machine Learning and Statistics

Over the next decade, astrophysical data relevant for the study of the nature of dark matter
will increase not only in volume, but also in complexity and detail. Upcoming gamma-
ray and radio observatories like the Cherenkov Telescope Array (CTA) [37] and the Square
Kilometer Array (SKA) [615, 616] will produce petabytes of data [55]. Fully exploiting this
data for scientific purposes will require increasingly detailed and complex physical models,
which bring along higher computational costs for simulations, as well as a larger number
of uncertain parameters, including those characterizing signal and background systematics.
Established algorithms for parameter inference, like Markov Chain Monte Carlo (MCMC),
nested sampling [617, 618], and Approximate Bayesian Computation (ABC) often require
a very large number of simulation runs, which often grow significantly as the number of
model parameters increases; see Fig. 4 for an illustration. In many settings, it becomes
impractical to compare physical models in their full complexity and detail with the data.
As a result, analyses are often limited by the inference tools rather than statistics [619,
620]. Modern statistical algorithms based on deep learning and differentiable programming
techniques can overcome the limitations of established techniques. Recent reviews can be
found in [619, 621, 622], and we will provide a brief overview of promising techniques and
suggest necessary developments here.

Scalable inference techniques: Stochastic variational inference (SVI) [623, 624] ap-
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proaches inference of the posterior as an optimization problem, circumventing the need
to sample from high-dimensional parameter spaces. The most commonly employed opti-
mization target is here the evidence lower bound (ELBO) [623]. It can be conveniently
optimized using stochastic gradient descent (SGD), provided the physical simulator is fully
differentiable with respect to all model parameters. This approach can scale to very high
dimensional inference problems. Example applications are deblending starfields [625], dis-
entangling the components of gamma-ray emission [626, 627], and strong gravitational lens-
ing [628, 629]. One challenge with SVI is that through the mode-seeking nature of the reverse
KL divergence [630], it tends to underestimate the posterior variance, potentially leading to
over-confident posteriors. An important theoretical development front is the construction
of differentiable forward models and simulators [e.g. 631, 632], which is easily admitted us-
ing modern automatic differentiation tools [633, 634], or the use of differentiable surrogate
models when this is not feasible [635, 636].

The use of differentiable models also allow for inference via gradient-assisted Monte Carlo
methods like Hamiltonian Monte Carlo, which have higher sample efficiency and scale better
with parameter dimension than traditional Monte Carlo techniques.

Methods based on deep learning: The likelihood function, which is a fundamental
input to most established techniques including SVI, can be extremely difficult to compute,
due to required marginalization over various unobserved instrumental and physical parame-
ters (see Fig. 4 for an illustration). Simulation-based inference (SBI) methods (see [637, 638])
circumvent the evaluation of likelihoods by directly mapping observations and simulations
onto summary statistics that are subsequently statistically interpreted. A classical SBI tech-
nique is ABC [639]. Various recently developed neural SBI methods use the training of
deep neural networks both to generate informative summary statistics as well as perform-
ing estimation of posteriors, likelihoods [e.g. 640, 641], or likelihood-to-evidence ratios [e.g.
642]. This procedure can require orders of magnitude fewer simulations than established
techniques [643, 644], see Fig. 4. Neural SBI has been used, for instance, for dark mat-
ter substructure inference [628, 645–647], dark matter indirect detection with gamma-ray
data [648–650], and binary microlensing [651]. Fronts where still significant theoretical de-
velopment is required are neural network architectures tailored to the structure of typical
astrophysical data, which can significantly reduce simulation costs for simulation-based al-
gorithms, and simulation-efficient training algorithms. This includes, for example, efforts to
develop interpretable and/or explainable architectures for astrophysical data processing and
the use of inference algorithms that produce statistically sound results for the purposes of
scientific discovery and hypothesis testing [652]. These developments will also help foster
community trust in results relying on deep learning methods, which have historically seen
reluctance in adoption due to their reputation as black boxes.

In general, deep learning-based techniques enable more information to be extracted from
data without requiring the use of simplified data representations and low-dimensional sum-
mary observables. Although this has the potential to significantly enhance the sensitivity
of astrophysical dark matter searches, it can make typical methods more sensitive to how
specific features in the data are modeled. This underscores the need for increased attention
to accurately modeling the data.

Infrastructure and workforce: Realizing these goals will require development of both
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software and human resources. Given the potentially steep theoretical learning curve associ-
ated with the aforementioned statistical methods, the development of easy-to-use inference
tools [e.g. 644, 653] adopting good documentation practices with end practitioners in mind
is crucial.

Finally, given the necessity of cross-disciplinary expertise in developing these methods and
tools, we recommend, through appropriate hiring practices and promotion options, viable
career trajectories at the intersection of statistical methods and astrophysical data analysis
for new physics. A concerted effort in this direction has demonstrated success in certain fields
of cosmological [654] and collider [655] data analysis. At the training stage, the existence of
Ph.D. schools as well as curriculum-based learning of data analysis techniques is encouraged.

5 Conclusions

We are entering an era which holds the promise of resolving many of the most basic questions
we have about dark matter. How was dark matter produced in the early Universe? Is dark
matter a single missing piece or part of a broader dark sector? Is dark matter cold, warm,
or better thought of as a wave? And above all else: what is dark matter?

A central source for optimism that the answer to these questions may be within our grasp
is the upcoming advancements in instruments and observations. Yet, as we have outlined,
the role of the theory community is not to simply wait for the experimental program to
provide the answers to these questions, but instead to work with, extend, and optimize dark
matter searches. Indeed, there is considerable work ahead for theorists to determine the
behavior of dark matter and how this would manifest in our observations, and further in the
development of techniques such as machine learning that could be required to confidently
detect an eventual signal. While there are many challenges to overcome, as we have reviewed,
there are clear paths for doing so. Viewed as a whole, there is every reason to be confident
that in the coming years we will finally tease apart the mysteries of dark matter and move
into a future where rather than wondering what dark matter is, we are instead asking how
its particle nature modifies galaxies, cosmology, and possibly even opens a path towards
understanding the broader world of physics that exists beyond the Standard Model.
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M. López-Caniego, P. M. Lubin, Y. Z. Ma, J. F. Maćıas-Pérez, G. Maggio, D. Maino,
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[411] J. Fan, O. Özsoy, and S. Watson, “Nonthermal histories and implications for
structure formation,” Phys. Rev. D 90 no. 4, (2014) 043536, arXiv:1405.7373
[hep-ph].

[412] G. B. Gelmini and P. Gondolo, “Ultra-cold weakly interacting massive particles:
relics of non-standard pre-big-bang-nucleosynthesis cosmologies,” J. Cosmology
Astropart. Phys. 2008 no. 10, (Oct., 2008) 002, arXiv:0803.2349 [astro-ph].

[413] A. L. Erickcek, K. Sinha, and S. Watson, “Bringing Isolated Dark Matter Out of
Isolation: Late-time Reheating and Indirect Detection,” Phys. Rev. D 94 no. 6,
(2016) 063502, arXiv:1510.04291 [hep-ph].

[414] I. R. Waldstein, A. L. Erickcek, and C. Ilie, “Quasidecoupled state for dark matter in
nonstandard thermal histories,” Phys. Rev. D 95 no. 12, (2017) 123531,
arXiv:1609.05927 [astro-ph.CO].

[415] C. Blanco, M. S. Delos, A. L. Erickcek, and D. Hooper, “Annihilation Signatures of
Hidden Sector Dark Matter Within Early-Forming Microhalos,” Phys. Rev. D 100
no. 10, (2019) 103010, arXiv:1906.00010 [astro-ph.CO].

[416] A. L. Erickcek, P. Ralegankar, and J. Shelton, “Cannibal domination and the matter
power spectrum,” Phys. Rev. D 103 no. 10, (2021) 103508, arXiv:2008.04311
[astro-ph.CO].

[417] A. L. Erickcek, P. Ralegankar, and J. Shelton, “Cannibalism’s lingering imprint on
the matter power spectrum,” JCAP 01 no. 01, (2022) 017, arXiv:2106.09041
[hep-ph].

[418] G. Barenboim, N. Blinov, and A. Stebbins, “Smallest remnants of early matter
domination,” JCAP 12 no. 12, (2021) 026, arXiv:2107.10293 [astro-ph.CO].

[419] M. S. Delos, T. Linden, and A. L. Erickcek, “Breaking a dark degeneracy: The
gamma-ray signature of early matter domination,” Phys. Rev. D 100 no. 12, (2019)
123546, arXiv:1910.08553 [astro-ph.CO].

[420] J. A. Dror, H. Ramani, T. Trickle, and K. M. Zurek, “Pulsar Timing Probes of
Primordial Black Holes and Subhalos,” Phys. Rev. D 100 no. 2, (2019) 023003,
arXiv:1901.04490 [astro-ph.CO].

58

http://dx.doi.org/10.1103/PhysRevD.84.083503
http://arxiv.org/abs/1106.0536
http://dx.doi.org/10.1103/PhysRevD.92.103505
http://arxiv.org/abs/1504.03335
http://arxiv.org/abs/1504.03335
http://dx.doi.org/10.1103/PhysRevD.90.043536
http://arxiv.org/abs/1405.7373
http://arxiv.org/abs/1405.7373
http://dx.doi.org/10.1088/1475-7516/2008/10/002
http://dx.doi.org/10.1088/1475-7516/2008/10/002
http://arxiv.org/abs/0803.2349
http://dx.doi.org/10.1103/PhysRevD.94.063502
http://dx.doi.org/10.1103/PhysRevD.94.063502
http://arxiv.org/abs/1510.04291
http://dx.doi.org/10.1103/PhysRevD.95.123531
http://arxiv.org/abs/1609.05927
http://dx.doi.org/10.1103/PhysRevD.100.103010
http://dx.doi.org/10.1103/PhysRevD.100.103010
http://arxiv.org/abs/1906.00010
http://dx.doi.org/10.1103/PhysRevD.103.103508
http://arxiv.org/abs/2008.04311
http://arxiv.org/abs/2008.04311
http://dx.doi.org/10.1088/1475-7516/2022/01/017
http://arxiv.org/abs/2106.09041
http://arxiv.org/abs/2106.09041
http://dx.doi.org/10.1088/1475-7516/2021/12/026
http://arxiv.org/abs/2107.10293
http://dx.doi.org/10.1103/PhysRevD.100.123546
http://dx.doi.org/10.1103/PhysRevD.100.123546
http://arxiv.org/abs/1910.08553
http://dx.doi.org/10.1103/PhysRevD.100.023003
http://arxiv.org/abs/1901.04490


Snowmass2021 Theory Frontier: Astrophysical and Cosmological Probes of Dark Matter

[421] H. Ramani, T. Trickle, and K. M. Zurek, “Observability of Dark Matter Substructure
with Pulsar Timing Correlations,” JCAP 12 (2020) 033, arXiv:2005.03030
[astro-ph.CO].

[422] V. S. H. Lee, A. Mitridate, T. Trickle, and K. M. Zurek, “Probing Small-Scale Power
Spectra with Pulsar Timing Arrays,” JHEP 06 (2021) 028, arXiv:2012.09857
[astro-ph.CO].

[423] M. S. Delos and T. Linden, “Dark Matter Microhalos in the Solar Neighborhood:
Pulsar Timing Signatures of Early Matter Domination,” arXiv:2109.03240

[astro-ph.CO].
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E. Gaztanaga, D. W. Gerdes, D. Gruen, R. A. Gruendl, J. Gschwend, G. Gutierrez,
W. Hartley, K. Honscheid, B. Hoyle, D. J. James, M. D. Johnson, E. Krause,
N. Kuropatkin, O. Lahav, H. Lin, M. A. G. Maia, M. March, P. Martini,
F. Menanteau, C. J. Miller, R. Miquel, R. C. Nichol, A. A. Plazas, A. K. Romer,
M. Sako, E. Sanchez, B. Santiago, V. Scarpine, R. Schindler, M. Schubnell,
M. Smith, R. C. Smith, F. Sobreira, E. Suchyta, M. E. C. Swanson, G. Tarle,
D. Thomas, D. L. Tucker, A. R. Walker, R. H. Wechsler, and DES Collaboration,
“Stellar Streams Discovered in the Dark Energy Survey,” ApJ 862 no. 2, (Aug.,
2018) 114, arXiv:1801.03097 [astro-ph.GA].

[607] R. A. Ibata, K. Malhan, and N. F. Martin, “The Streams of the Gaping Abyss: A
Population of Entangled Stellar Streams Surrounding the Inner Galaxy,” ApJ 872
no. 2, (Feb., 2019) 152, arXiv:1901.07566 [astro-ph.GA].

[608] T. S. Li, A. P. Ji, A. B. Pace, D. Erkal, S. E. Koposov, N. Shipp, G. S. Da Costa,
L. R. Cullinane, K. Kuehn, G. F. Lewis, D. Mackey, J. D. Simpson, D. B. Zucker,
P. S. Ferguson, S. L. Martell, J. Bland-Hawthorn, E. Balbinot, K. Tavangar,
A. Drlica-Wagner, G. M. De Silva, J. D. Simon, and S5 Collaboration, “S5: The
Orbital and Chemical Properties of One Dozen Stellar Streams,” arXiv e-prints
(Oct., 2021) arXiv:2110.06950, arXiv:2110.06950 [astro-ph.GA].

[609] A. M. Price-Whelan and A. Bonaca, “Off the Beaten Path: Gaia Reveals GD-1 Stars
outside of the Main Stream,” ApJ 863 no. 2, (Aug., 2018) L20, arXiv:1805.00425
[astro-ph.GA].

[610] T. S. Li, S. E. Koposov, D. Erkal, A. P. Ji, N. Shipp, A. B. Pace, T. Hilmi,
K. Kuehn, G. F. Lewis, D. Mackey, J. D. Simpson, Z. Wan, D. B. Zucker,
J. Bland-Hawthorn, L. R. Cullinane, G. S. Da Costa, A. Drlica-Wagner, K. Hattori,
S. L. Martell, S. Sharma, and S5 Collaboration, “Broken into Pieces: ATLAS and
Aliqa Uma as One Single Stream,” ApJ 911 no. 2, (Apr., 2021) 149,
arXiv:2006.10763 [astro-ph.GA].

[611] A. Bonaca, D. W. Hogg, A. M. Price-Whelan, and C. Conroy, “The Spur and the
Gap in GD-1: Dynamical Evidence for a Dark Substructure in the Milky Way Halo,”
ApJ 880 no. 1, (July, 2019) 38, arXiv:1811.03631 [astro-ph.GA].

76

http://dx.doi.org/10.1093/mnras/stac191
http://dx.doi.org/10.1093/mnras/stac191
http://arxiv.org/abs/2010.13221
http://dx.doi.org/10.3847/1538-4357/aacdab
http://dx.doi.org/10.3847/1538-4357/aacdab
http://arxiv.org/abs/1801.03097
http://dx.doi.org/10.3847/1538-4357/ab0080
http://dx.doi.org/10.3847/1538-4357/ab0080
http://arxiv.org/abs/1901.07566
http://arxiv.org/abs/2110.06950
http://dx.doi.org/10.3847/2041-8213/aad7b5
http://arxiv.org/abs/1805.00425
http://arxiv.org/abs/1805.00425
http://dx.doi.org/10.3847/1538-4357/abeb18
http://arxiv.org/abs/2006.10763
http://dx.doi.org/10.3847/1538-4357/ab2873
http://arxiv.org/abs/1811.03631


Snowmass2021 Theory Frontier: Astrophysical and Cosmological Probes of Dark Matter

[612] N. Banik, J. Bovy, G. Bertone, D. Erkal, and T. J. L. de Boer, “Evidence of a
population of dark subhaloes from Gaia and Pan-STARRS observations of the GD-1
stream,” MNRAS 502 no. 2, (Apr., 2021) 2364–2380, arXiv:1911.02662
[astro-ph.GA].

[613] N. Banik, J. Bovy, G. Bertone, D. Erkal, and T. J. L. de Boer, “Novel constraints on
the particle nature of dark matter from stellar streams,” J. Cosmology Astropart.
Phys. 2021 no. 10, (Oct., 2021) 043, arXiv:1911.02663 [astro-ph.GA].

[614] N. Banik, G. Bertone, J. Bovy, and N. Bozorgnia, “Probing the nature of dark
matter particles with stellar streams,” J. Cosmology Astropart. Phys. 2018 no. 7,
(July, 2018) 061, arXiv:1804.04384 [astro-ph.CO].

[615] C. L. Carilli and S. Rawlings, “Science with the Square Kilometer Array: Motivation,
key science projects, standards and assumptions,” New Astron. Rev. 48 (2004) 979,
arXiv:astro-ph/0409274.

[616] R. Braun, T. Bourke, J. A. Green, E. Keane, and J. Wagg, “Advancing Astrophysics
with the Square Kilometre Array,” PoS AASKA14 (2015) 174.

[617] J. Skilling, “Nested sampling,” in AIP Conference Proceedings. AIP, 2004.
https://doi.org/10.1063/1.1835238.

[618] W. J. Handley, M. P. Hobson, and A. N. Lasenby, “polychord: nested sampling for
cosmology.,” Monthly Notices of the Royal Astronomical Society 450 (June, 2015)
L61–L65, arXiv:1502.01856 [astro-ph.CO].

[619] R. Alves Batista et al., “EuCAPT White Paper: Opportunities and Challenges for
Theoretical Astroparticle Physics in the Next Decade,” arXiv:2110.10074

[astro-ph.HE].

[620] R. Trotta, “Bayesian methods in cosmology,” 1, 2017. arXiv:1701.01467

[astro-ph.CO].

[621] S. Algeri et al., “Statistical challenges in the search for dark matter,”
arXiv:1807.09273 [hep-ph].

[622] E. D. Feigelson, R. S. de Souza, E. E. O. Ishida, and G. Jogesh Babu, “21st Century
Statistical and Computational Challenges in Astrophysics,” Annual Review of
Statistics and Its Application 8 (Mar., 2021) 493–517, arXiv:2005.13025
[astro-ph.IM].

[623] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational
inference,” Journal of Machine Learning Research 14 no. 4, (2013) 1303–1347.
http://jmlr.org/papers/v14/hoffman13a.html.

[624] C. Zhang, J. Butepage, H. Kjellstrom, and S. Mandt, “Advances in variational
inference,” 2018.

77

http://dx.doi.org/10.1093/mnras/stab210
http://arxiv.org/abs/1911.02662
http://arxiv.org/abs/1911.02662
http://dx.doi.org/10.1088/1475-7516/2021/10/043
http://dx.doi.org/10.1088/1475-7516/2021/10/043
http://arxiv.org/abs/1911.02663
http://dx.doi.org/10.1088/1475-7516/2018/07/061
http://dx.doi.org/10.1088/1475-7516/2018/07/061
http://arxiv.org/abs/1804.04384
http://dx.doi.org/10.1016/j.newar.2004.09.001
http://arxiv.org/abs/astro-ph/0409274
http://dx.doi.org/10.22323/1.215.0174
http://dx.doi.org/10.1063/1.1835238
https://doi.org/10.1063/1.1835238
http://dx.doi.org/10.1093/mnrasl/slv047
http://dx.doi.org/10.1093/mnrasl/slv047
http://arxiv.org/abs/1502.01856
http://arxiv.org/abs/2110.10074
http://arxiv.org/abs/2110.10074
http://arxiv.org/abs/1701.01467
http://arxiv.org/abs/1701.01467
http://arxiv.org/abs/1807.09273
http://dx.doi.org/10.1146/annurev-statistics-042720-112045
http://dx.doi.org/10.1146/annurev-statistics-042720-112045
http://arxiv.org/abs/2005.13025
http://arxiv.org/abs/2005.13025
http://jmlr.org/papers/v14/hoffman13a.html


Snowmass2021 Theory Frontier: Astrophysical and Cosmological Probes of Dark Matter

[625] R. Liu, J. D. McAuliffe, and J. Regier, “Variational inference for deblending crowded
starfields,” 2021.

[626] R. H. Leike, M. Glatzle, and T. A. Enßlin, “Resolving nearby dust clouds,”
Astronomy & Astrophysics 639 (Jul, 2020) A138.
http://dx.doi.org/10.1051/0004-6361/202038169.

[627] S. Mishra-Sharma and K. Cranmer, “Semi-parametric γ-ray modeling with gaussian
processes and variational inference,” 2020.

[628] A. Coogan, K. Karchev, and C. Weniger, “Targeted likelihood-free inference of dark
matter substructure in strongly-lensed galaxies,” 2020.

[629] K. Karchev, A. Coogan, and C. Weniger, “Strong-lensing source reconstruction with
variationally optimised gaussian processes,” 2021.

[630] I. J. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,” CoRR
abs/1701.00160 (2017) , arXiv:1701.00160. http://arxiv.org/abs/1701.00160.

[631] C. Modi, F. Lanusse, and U. Seljak, “FlowPM: Distributed TensorFlow
implementation of the FastPM cosmological N-body solver,” Astron. Comput. 37
(2021) 100505, arXiv:2010.11847 [astro-ph.CO].

[632] C. Modi, F. Lanusse, U. Seljak, D. N. Spergel, and L. Perreault-Levasseur,
“CosmicRIM : Reconstructing Early Universe by Combining Differentiable
Simulations with Recurrent Inference Machines,” arXiv:2104.12864

[astro-ph.CO].

[633] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,
G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX:
composable transformations of Python+NumPy programs,” 2018.
http://github.com/google/jax.

[634] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
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