

Cryocooler conduction-cooled SRF cavities for compact particle accelerators

Ram C. Dhuley, PhD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

FERMILAB-SLIDES-21-121-DI-TD

Topics for today

- Basics of Superconducting Radio Frequency cavities
- > SRF based compact accelerators for industrial applications
- Fermilab R&D for conduction-cooled SRF cavity
- Fermilab design and development of compact SRF accelerators
- Summary and outlook

Some SRF basics

3

RF cavity working principle

- Metallic cells maintain a standing-wave RF field
- Particle bunches in phase with the RF field gain energy

- RF fields penetrate a penetration depth, δ in the metallic cell walls and dissipate heat in the *surface resistance*, R_s
 - A coolant on the outside extracts the heat and prevents the cavity from heating above its design temperature

RF surface resistance

Why is RF surface resistance a key parameter?

- Dissipated power in the cavity is proportional to its surface resistance
- The cost of cooling the cavity (coolant fluid, temperature, fluid pumping power, etc.) scales with dissipated power
- With hundreds of cavities in a particle accelerator, the cavity cooling cost forms a significant fraction of accelerator operating cost

Keeping low RF surface resistance is therefore necessary to reduce the accelerator operating cost.

Normal conducting vs. superconducting cavities

How does the surface resistance compare?

Water cooled copper cavity at room temperature

$$R_s = \frac{1}{\sigma\delta} = \sqrt{\frac{\mu_0\omega}{2\sigma}}$$

6

 ω = angular frequency σ = electrical conductivity

With $\sigma \sim 5.8 \times 10^7$ S/m at 1.5 GHz and 300 K, we get $R_s = 10 \text{ m}\Omega$

<u>Liquid helium cooled niobium cavity ≤ -5 K</u>

$$R_{s} = R_{BCS}(T) + R_{res}$$

$$\approx A \frac{\omega^{2}}{T} \exp\left(\frac{-1.85T_{c}}{T}\right) + R_{res}$$

At 1.5 GHz and 2 K, and neglecting the residual R_{res} , we get $R_s = 20 n\Omega$

Normal conducting vs. superconducting cavities

Ratio of surface resistance at 1.5 GHz:

$$\frac{R_s(niobium, 2K)}{R_s(copper, 300K)} = \frac{20\,n\Omega}{10\,m\Omega} \sim 10^{-6}$$

🔁 Fermilab

Penalty for 2 K cryogenics: $\eta_{Carnot} = 0.67\%$ $\eta_{plant} \simeq 20\%$

Even after accounting the premium for 2 K cryogenics, SRF drives down the cooling driven operating cost by a factor ~1000 !

The significantly lower surface resistance in SRF also offers other benefits:

- Cavities can be operating with 100% RF duty cycle that facilitate production of high average power particle beams
- Cavities can be made with larger aperture (by relaxing shunt impedance) that reduce loss of high-power beams during transport through the cavity

Nb₃Sn cavities further reduce the cryogenic penalty

Nb₃Sn cavities operate at ~4 K with performance similar to niobium cavities at 2 K - These are bulk niobium cavities with a few micron layer of Nb₃Sn on the RF surface

8

SRF accelerators – applications landscape

Current usage dominated by basic research needs: colliders, FELs, proton and neutron sources

Potential industrial applications: e-beam radiation treatment of flue gases, municipal/industrial wastewater, sewage

https://doi.org/10.1016/j.radphyschem.2012.01.030

Tailoring SRF for industrial applications

10 11/17/2021 R.C. Dhuley, PhD | Cryocooler conduction-cooled SRF | IUAC Seminar

Industrial applications and scope of SRF accelerators

Electron beam radiation processing applications

- Water/sludge/medical waste decontamination
- Flue gas cleanup
- Medical device sterilization
- Strengthening of asphalt pavements

Radiation processing requires:

- Beam energy: 0.5-10 MeV
- Beam power: >>100 kW

Industrial settings demand:

- Low capital and operating expense
- Robust, reliable, turnkey operation

http://accelconf.web.cern.ch/AccelConf/napac2016/talks/thb3io02_talk.pdf

<u>1-meter long</u> SRF linac (niobium or Nb₃Sn cavities) operating at <u>10 MV/m</u> can provide the required energy

Small SRF surface resistance enables <u>continuous wave (cw)</u> operation, leading to high average beam power

At present, SRF accelerators are designed to operate with complex liquid helium cryogenic systems!

Simplifying SRF cryogenics for industrial settings

Nb₃Sn cavity with 10 MeV dissipates \sim 6-8 W @ \sim 4.5 K (1 m x 10 MV/m cw; 650 MHz/1.3 GHz)

Use commercial, off-the-shelf <u>4 K cryocoolers</u>

(helium plant not required)

Cryocoolers offer

- Closed cycle cooling at \sim 45 K and \sim 4 K
- Compact, small footprint
- Reliability (MTBM > 2 years non-stop operation)
- Turnkey operation (no trained operator needed, turn ON/OFF with push of a button)

Simplifying SRF cryogenics for industrial settings

Remove cavity dissipation *with* thermal conduction (conduction cooling)

(conventional liquid helium bath not required)

Absence of cryogenic liquids

- Compact, simplified construction
- No pressure vessel safety concerns
- Facilitates deployment in remote locations

Fermilab vision for SRF industrial accelerators

Vision: Develop compact, turnkey e-beam source for environmental and industrial applications (~10 MeV, >>100 kW)

http://accelconf.web.cern.ch/AccelConf/napac2016/talks/thb3io02_talk.pdf

Pathway: Nb₃Sn SRF cavities

- cw operation enables high average beam power
- Low Rs (high Q₀) @ >4 K allows conduction-cooling using 4 K closed-cycle cryocoolers

R.D. Kephart, *SRF2015*. <u>https://accelconf.web.cern.ch/srf2015/papers/frba03.pdf</u> Patents: US10390419B2, US10070509B2, US9642239B2

Fermilab R&D for a conductioncooled SRF cavity

15 11/17/2021 R.C. Dhuley, PhD | Cryocooler conduction-cooled SRF | IUAC Seminar

Conduction cooled Nb₃Sn SRF development

Goal: demonstrate 10 MV/m cw on an Nb₃Sn cavity with cryocooler conduction cooling

Our choice:

- Single cell 650 MHz, <u>Nb₃Sn coated niobium</u> cavity
- Cryomech <u>PT420 cryocooler</u>
 (2 W @ 4.2 K with 55 W @ 45 K)
- High purity aluminum for the conduction cooling link

Cavity preparation for conduction link attachment

Conceptualization of conduction cooling

Development of conduction cooling

E-beam weld recipe development

- Full penetration
- Avoid weld beads on the RF surface

Conduction ring

Courtesy: C. Grimm (Fermilab)

Ring-welded single cell 650 MHz cavity

Characterization of thermal resistance

1. Cavity-link (niobium-aluminum) bolted thermal contacts

Test joint details

A plate Nb plate Nb plate Linch Linch Steel disc spring (to apply force)

R.C. Dhuley, M.I. Geelhoed, J.C.T. Thangaraj, *Cryogenics*, 2018. https://doi.org/10.1016/j.cryogenics.2018.06.003

Selected design: 4 mil indium, ~4 kN force

Characterization of thermal resistance

2. Thermal characterization of high purity aluminum

Conduction link design and performance verification

🛠 Fermilab

J. Thompson and R.C. Dhuley, 2019. <u>https://doi.org/10.2172/1546003</u> R.C. Dhuley *et al.*, *IEEE Trans. Appl. Supercond.*, 2019. <u>https://doi.org/10.1109/TASC.2019.2901252</u>

Conduction-cooled SRF cavity measurement setup

R.C. Dhuley et al., IOP Conf. Ser.: Mat. Sci. Eng., 2020. https://doi.org/10.1088/1757-899X/755/1/012136

‡ Fermilab

First results with the conduction-cooled Nb₃Sn cavity

R.C Dhuley, S. Posen, M.I. Geelhoed, O. Prokofiev, J.C.T. Thangaraj, *Supercond. Sci. Technol.*, 2020. https://doi.org/10.1088/1361-6668/ab82f0

Getting to 10 MV/m cw

1) Improved Nb₃Sn coating

- Suspected cause for Q-slope degradation was thin regions (coating 1)
- Added extra SnCl₂ nucleation agent relative to previous coating to attempt to improve uniformity (coating 2)
- New coating (coating 2) showed substantial improvement (over coating 1)

Getting to 10 MV/m cw

2) Improve magnetic hygiene around the cavity during cooldown (remove magnetic disc springs)

3) Controlled, spatiallyuniform cooldown of the cavity across Nb₃Sn T_c = 18 K (reduces thermocurrent induced flux trapping)

Results with new Nb₃Sn coating (R.C. Dhuley arXiv:2108.09397v1)

Conduction link performance, cavity thermal stability

Comparison of measured and simulated link thermal conductance Computed cavity surface temperature at steady state with ${\sim}10$ MV/m cw

- Ring temperature = 5.95 K, RF dissipation = 2.4 W

A new frontier in SRF is simplifying the cooling methods!

Fermilab

650 MHzwelded niobium rings

Jefferson Lab

https://doi.org/10.1088/1757-899X/755/1/012136

- ≻ 1.5 GHz
- Cold sprayed + electrodeposited copper

Cornell University

https://arxiv.org/abs/2002.11755

- ➢ 2.6 GHz
- Copper clamps

Design and development of e-beam accelerator based on conduction cooled SRF cavities

- Design studies for a 10 MeV, 1000 kW accelerator
- Prototype development of a ~1.6 MeV, ~20 kW accelerator

Design of a 10 MeV, 100 mA e-beam accelerator

- ✓ RF design of a 5-cell 650 MHz cavity
- ✓ Beam transport simulations
 (external injection 300 keV → 10 MeV)
- ✓ Calculation of 4 K heat load, cryocooler selection
- Design and thermal simulations of conduction link
- Cryostat design and integration (thermal and magnetic shield, vacuum vessel, couplers)
- ✓ Cost assessment of the 10 MeV accelerating module

Design and multiphysics simulation of a conduction-cooled 5-cell SRF cavity

Courtesy : R. Kostin (Euclid Techlabs)

Prototype cryogen-free SRF electron accelerator development

Goal: Component production, integration, and demo of a 1.6 MeV, 20 kW accelerator

650 MHz Nb₃Sn cavity (Cryoload ≈3.8 W @ 5 K)

Integrated thermionic cathode

Low heat leak coupler (<1 W)

Courtesy : I. Gonin, V. Yakovlev (Fermilab)

Prototype cryogen-free SRF electron accelerator development

Cryostat assembly

20 kW Solid State RF Amplifier

Cryomech PT420 coolers

Courtesy : M.I. Geelhoed (Fermilab)

New R&D facilitated by cryocooler-cooled SRF cavities

32 11/17/2021 R.C. Dhuley, PhD | Cryocooler conduction-cooled SRF | IUAC Seminar

Development of SRF based field emission sources

PI: Dr. Philippe Piot (NIU/Argonne National Lab.)

NIU-Fermilab collaboration

- field emission cathode with nanostructured surface located in high e-field region of an SRF cavity
- use cw operation to produce high repetition rate field emission (high I_{ava})

Mohsen et al., https://doi.org/10.1016/j.nima.2021.165414

Cryocooled based standalone SRF modules

Cryocooled SRF has already been picked up by the particle accelerator industry!

S. Kutsaev et al., <u>https://ieeexplore.ieee.org/document/9119112/</u>

A SRF QWR cooled by pulse tube coolers for beamline upgrade at Argonne National Laboratory

Summary and outlook

- Fermilab has demonstrated 10 MV/m cw gradient with conduction-cooled SRF cavity
 - This is an enabler for high-efficiency e-beam sources for industrial uses of electron irradiation
- Design and development of prototype SRF based compact ebeam accelerators is in progress
- Conduction-cooled SRF has opened new avenues for SRF R&D
 Universities as well as industry has already capitalized on this new opportunity

Acknowledgement

This presentation has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Thanks for your attention!

Questions?

37 11/17/2021 R.C. Dhuley, PhD | Cryocooler conduction-cooled SRF | IUAC Seminar