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Why νμ CC Zero Mesons?

Solving open questions in neutrino physics requires that we 
understand their interactions

More elastic interactions are easier to fully reconstruct

This channel also provides 
windows to:

● Probe weak-interaction 
structure of nucleons

● Constrain nuclear and Final 
State Interaction models

Stepping stone for more 
exclusive analyses

Important signal process for 
oscillation experiments

More inelastic
Higher energy
Smaller scale

one muon = νμ CC 

zero mesons ≈ 
enhanced fraction 
of close-to-elastic 
modes (QE, MEC )



9 Thanks to fellow novans for nicely introducing the experiment!

Far Detector
Near Detector

● Long-baseline accelerator neutrino experiment at Fermilab

● Two detectors (functionally identical) to measure oscillations

● Liquid scintillator tracking calorimeters

● 77% hydrocarbon, 16% Chlorine, 6% TiO2

Why at the NOvA Near Detector?
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13 Thanks to fellow novans for nicely introducing the experiment!

Far Detector
Near Detector

Flux at the Near 
Detector

96% νμ 

 ❬E❭~2 GeV

● Long-baseline accelerator neutrino experiment at Fermilab

● Two detectors (functionally identical) to measure oscillations

● Liquid scintillator tracking calorimeters

● 77% hydrocarbon, 16% Chlorine, 6% TiO2

NuMI beamline

The Near Detector receives a 
● high intensity, high purity beam
● in a dynamic energy region 

(interaction modes)

making it an excellent lab for 
neutrino interactions!

Great potential to 
contribute to joint fits 

with experiments at 
other neutrino 

energies and atomic 
number ranges

Why at the NOvA Near Detector?
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How do νμ CC Zero Mesons look at NOvA?

Prong = a trackable energy deposit

Neutrino beamNeutrino beam
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How do νμ CC Zero Mesons look at NOvA?

Zero Mesons

Zero Mesons
(also)

Meson:
Charged pion

Meson:
Neutral pion

Prong = a trackable energy deposit
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Need a tool to 

identify individual 

prongs by how to 

how they look in 

the detector

Prong = a trackable energy deposit

How to select νμ CC Zero Mesons events?
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The 5-label Single Particle Prong CVN

How to select νμ CC Zero Mesons events?

Prong = a trackable energy deposit

Detector picture
● Convolutional Visual Network

Takes pictures of the detector => applies 
convolutions to extract features

● Training

individual uniformly simulated particles of 5 
classes: muon, proton, pion, electron and photon

● Application

Takes a prong => provides five particle ID 
scores, for each class of particle

● The CNN in Akhsay’s talk acts at the event-level 
(used in NOvA oscillation analysis)

● This CVN acts at the prong-level (sub-event)
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The 5-label Single Particle Prong CVN

How to select νμ CC Zero Mesons events?

Prong = a trackable energy deposit

Prong reconstruction
● Convolutional Visual Network 

Takes pictures of the detector => applies 
convolutions to extract features

● Training

individual uniformly simulated particles of 5 
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● This CVN acts at the prong-level (sub-event)
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The 5-label Single Particle Prong CVN

How to select νμ CC Zero Mesons events?

Prong = a trackable energy deposit

● Convolutional Visual Network (CVN) 

Takes pictures of the detector => applies 
convolutions to extract features

● Training

individual uniformly simulated particles of 5 
classes: muon, proton, pion, electron and photon

● Application

Takes a prong => provides five particle ID 
scores, for each class of particle

● The CNN in Akhsay’s talk acts at the event-level 
(used in NOvA oscillation analysis)

● This CVN acts at the prong-level (sub-event)
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Particle ID
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How to select νμ CC Zero Mesons events?

Detector picture
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How to select νμ CC Zero Mesons events?

Event with CVN ID
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How to select νμ CC Zero Mesons events?

Event with CVN ID
Find a muon

● The longest prong 
longer than 5 m

OR, if none

● The prong with highest 
MuonID

Separate this prong 
from further selection
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How to select νμ CC Zero Mesons events?

Event with CVN ID

Reject events with Mesons

● Tag neutral pions

Reject event if any prong has high 
EMID = ElectronID + PhotonID

● Tag charged pions

Rank prongs by PionID:

(1st) Leading pion candidate

2nd Leading pion candidate

3rd Leading pion candidate

...

Use ProtonID, MuonID and PionID  
to reject background events

Find a muon

● The longest prong 
longer than 5 m

OR, if none

● The prong with highest 
MuonID

Separate this prong 
from further selection
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How to select νμ CC Zero Mesons events?

Event with CVN ID

Reject events with Mesons

● Tag neutral pions

Reject event if any prong has high 
EMID = ElectronID + PhotonID

● Tag charged pions

Rank prongs by PionID:

(1st) Leading pion candidate

2nd Leading pion candidate

3rd Leading pion candidate

...

Use ProtonID, MuonID and PionID  
to reject background events

Find a muon

● The longest prong 
longer than 5 m

OR, if none

● The prong with highest 
MuonID

Separate this prong 
from further selection

Backgrounds
● Wrong sign: Anti-νμ CC

● νμ CC N-Mesons (most likely pions)

● νe or Anti-νe CC events
● NC events
● Others
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(1)  Preselection

Based on parent νμ CC Inclusive analysis: 

● Reconstruction quality 
● Containment of tracks and showers 
● Interaction vertex in a fiducial volume 

● MuonID: Find a muon using a Boosted Decision Tree taking dE/dX and scattering 
likelihood of tracks as inputs

νμ CC Zero Mesons Selection: 
Summary
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νμ CC Zero Mesons Selection: 
Number of Prongs

● Very few signal events 
have five or more prongs

● Interactions that tend to 
produce less particles
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νμ CC Zero Mesons Selection: 
Number of Prongs

● Very few signal events 
have five or more prongs

● Interactions that tend to 
produce less particles

● Select events up to four 
prongs: 

Purity: 42% → 47%

Efficiency: drops by <1% 
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νμ CC Zero Mesons Selection: 
Highest EMID in the event

● Events with 2+ prongs 
(at least one prong other 
than the muon)

● Zero Mesons (signal and 
Wrong Sign) fall at high 
EMID
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νμ CC Zero Mesons Selection: 
Highest EMID in the event

● Events with 2+ prongs 
(at least one prong other 
than the muon)

● Zero Mesons (signal and 
Wrong Sign) fall at high 
EMID

● Cut where Efficiency x 
Purity is maximum, 
EMID <= 0.872

Purity 47% → 49%

Efficiency drops by <1% 



32

νμ CC Zero Mesons Selection: 
1st Pion Candidate: ProtonID

● Events with 2+ prongs 
(at least one prong other 
than the muon)

● Zero Mesons (signal and 
Wrong Sign) fall at very 
low ProtonID
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νμ CC Zero Mesons Selection: 
1st Pion Candidate: ProtonID

● Events with 2+ prongs 
(at least one prong other 
than the muon)

● Zero Mesons (signal and 
Wrong Sign) fall at very 
low ProtonID

● Cut where Efficiency x 
Purity is maximum 
ProtonID > 0.072

Purity 47% → 55%

Efficiency drops by 4%
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(at least one prong other 
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● Yields important 
additional purity gains
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νμ CC Zero Mesons Selection: 
1st Pion Candidate: PionID

● Events with 2+ prongs  
(at least one prong other 
than the muon)

● Yields important 
additional purity gains

● Cut where Efficiency x 
Purity is maximum 
PionID<=0.662

Purity 55% → 62%

Efficiency drops by 5%
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νμ CC Zero Mesons Selection: 
2st Pion Candidate: ProtonID

● Events with 3+ prongs  
(at least two prongs other 
than the muon)

● Zero Mesons (signal and 
Wrong Sign) fall at very 
low ProtonID

● Yields ~0.2% purity gain
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νμ CC Zero Mesons Selection: 
2st Pion Candidate: ProtonID

● Events with 3+ prongs  
(at least two prongs other 
than the muon)

● Zero Mesons (signal and 
Wrong Sign) fall at very 
low ProtonID

● Yields ~0.2% purity gain

● Cut where Efficiency x 
Purity is maximum 
ProtonID > 0.042

Purity 61.6% → 61.8%

Efficiency drops by 0.5%
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νμ CC Zero Mesons Selection: 
Summary

(1)  Preselection

Reconstruction quality, containment of 
tracks, interaction vertex in fiducial 
volume and cut on MuonID

(2)  Number of prongs <=4

(3)  Highest EMID <= 0.872

(4)  Leading Pion Candidate (1st Pi)

●  ProtonID > 0.072

●  PionID <= 0.662

(5)  Second Pion Candidate (2nd Pi)

● ProtonID > 0.042 
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Before Selection

νμ CC Zero Mesons Selection: 
Preview of Selection: Muon Kinetic Energy

After Selection
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Summary 

● I have developed a selection for a channel defined by a close-to-
elastic final state

● This selection currently yields 88% efficiency (w.r.t. the starting 
preselected sample) and 62% purity

● Next steps

● Fine tune the signal: include low energy pions that are not 
visible in NOvA

● Evaluate strategies to constrain remaining backgrounds 

● Unfold reconstructed to true variables

● Efficiency studies and compute cross section

● Study of systematic uncertainties
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Thank you!
(picture of novans)
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Backup
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νμ CC Zero Mesons Selection: 
1st Pion Candidate: PionID

● Events with 2+ prongs 
(at least one prong other 
than the muon)

● Plain PionID distributions 
before applying EMID cut.
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