Status of the ν_μ Charged-Current (CC) Zero Mesons Cross-Section Measurement in the NOvA Near Detector

Sebastian Sanchez-Falero,
on behalf of the NOvA collaboration

New Perspectives 2021

August 19th, 2021

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Why ν_μ CC Zero Mesons?

Solving open questions in neutrino physics requires that we understand their interactions.

Quasielastic (QE)

Resonance (RES)

Deep Inelastic (DIS)

More inelastic
Higher energy
Smaller scale
Why ν_μ CC Zero Mesons?

Solving open questions in neutrino physics requires that we understand their interactions.

More elastic interactions are easier to fully reconstruct.

- Quasielastic (QE)
- Resonance (RES)
- Deep Inelastic (DIS)

More inelastic
Higher energy
Smaller scale
Why ν_μ CC Zero Mesons?

Solving open questions in neutrino physics requires that we understand their interactions

More elastic interactions are easier to fully reconstruct

Nuclear environment blurs underlying interaction:

- Partially known initial state
- Re-scattering
- Scattering off multi-particles
Why ν_μ CC Zero Mesons?

Solving **open questions in neutrino physics** requires that we understand their **interactions**

More elastic interactions are **easier to fully reconstruct**

Nuclear environment blurs underlying interaction:

- Partially known initial state
- Re-scattering
- Scattering off multi-particles

But we can measure a **final state**
Why ν_μ CC Zero Mesons?

Solving open questions in neutrino physics requires that we understand their interactions

More elastic interactions are easier to fully reconstruct

Nuclear environment blurs underlying interaction:
- Partially known initial state
- Re-scattering
- Scattering off multi-particles

But we can measure a final state

one muon = ν_μ CC
Why ν_μ CC Zero Mesons?

Solving **open questions in neutrino physics** requires that we understand their **interactions**

More elastic interactions are **easier to fully reconstruct**

Nuclear environment blurs underlying interaction:
- Partially known initial state
- Re-scattering
- Scattering off multi-particles

But we can measure a **final state**

one muon = ν_μ CC

enhanced fraction of close-to-elastic modes (QE, MEC)
Why ν_μ CC Zero Mesons?

Solving **open questions in neutrino physics** requires that we understand their **interactions**

More **elastic** interactions are **easier to fully reconstruct**

This channel also provides windows to:

- Probe **weak-interaction structure** of nucleons
- Constrain **nuclear and Final State Interaction** models

Stepping stone for more **exclusive analyses**

Important **signal process** for **oscillation experiments**

one muon = ν_μ CC

enhanced fraction of close-to-elastic modes (QE, MEC)
Why at the NOvA Near Detector?

- **Long-baseline** accelerator neutrino experiment at Fermilab
- **Two detectors** (functionally identical) to measure **oscillations**
- Liquid scintillator **tracking calorimeters**
- **77% hydrocarbon**, 16% Chlorine, 6% TiO$_2$

Thanks to fellow novans for nicely introducing the experiment!
Why at the NOvA Near Detector?

- **Long-baseline** accelerator neutrino experiment at Fermilab
- **Two detectors** (functionally identical) to measure oscillations
- Liquid scintillator **tracking calorimeters**
- **77% hydrocarbon**, 16% Chlorine, 6% TiO$_2$

Why at the NOvA Near Detector?

- **NuMI beamline**
- **Decay Pipe**

Flux at the Near Detector

96% ν_μ

$\langle E \rangle \sim 2$ GeV

Thanks to fellow novans for nicely introducing the experiment!
Why at the NOvA Near Detector?

- **Long-baseline** accelerator neutrino experiment at Fermilab
- **Two detectors** (functionally identical) to measure oscillations
- Liquid scintillator **tracking calorimeters**
- **77% hydrocarbon**, 16% Chlorine, 6% TiO₂

The Near Detector receives a
- high **intensity**, high **purity** beam

![Flux at the Near Detector]

96% ν_μ

$\langle E \rangle \sim 2$ GeV

Thanks to fellow novans for nicely introducing the experiment!
Why at the NOvA Near Detector?

- **Long-baseline** accelerator neutrino experiment at Fermilab
- **Two detectors** (functionally identical) to measure oscillations
- Liquid scintillator **tracking calorimeters**
- **77% hydrocarbon**, 16% Chlorine, 6% TiO₂

The Near Detector receives a
- high **intensity**, high **purity** beam
- in a **dynamic** energy region (interaction modes)
 making it an excellent lab for neutrino interactions!

Flux at the Near Detector

- 96% ν_μ
- $\langle E \rangle \sim 2$ GeV
Why at the NOvA Near Detector?

- **Long-baseline** accelerator neutrino experiment at Fermilab
- **Two detectors** (functionally identical) to measure oscillations
- Liquid scintillator **tracking calorimeters**
- **77% hydrocarbon**, 16% Chlorine, 6% TiO$_2$

The **Near Detector** receives a
- high **intensity**, high **purity** beam
- in a **dynamic** energy region (interaction modes)

making it an excellent lab for neutrino interactions!

Great potential to contribute to **joint fits**
with experiments at other **neutrino energies** and **atomic number** ranges

NuMI beamline

Flux at the Near Detector

96% ν_μ

$\langle E \rangle \sim 2$ GeV

Thanks to fellow novans for nicely introducing the experiment!
How do ν_μ CC Zero Mesons look at NOvA?

Prong = a trackable energy deposit
How do ν_μ CC Zero Mesons look at NOvA?

Zero Mesons

Also

Meson: Charged pion

Meson: Neutral pion

Prong = a trackable energy deposit
How to select ν_μ CC Zero Mesons events?

Need a tool to identify individual prongs by how they look in the detector.

Prong = a trackable energy deposit
How to select ν_μ CC Zero Mesons events?

The 5-label Single Particle Prong CVN

- **Convolutional Visual Network**
 Takes pictures of the detector => applies convolutions to extract features

- **Training**
 individual uniformly simulated particles of 5 classes: muon, proton, pion, electron and photon

- **Application**
 Takes a prong => provides five particle ID scores, for each class of particle

- The **CNN** in Akhsay’s talk acts at the **event-level**
 (used in NOvA oscillation analysis)

- This **CVN** acts at the **prong-level (sub-event)**

Prong = a trackable energy deposit
How to select ν_μ CC Zero Mesons events?

The 5-label Single Particle Prong CVN

- **Convolutional Visual Network**
 Takes pictures of the detector => applies convolutions to extract features

- **Training**
 individual uniformly simulated particles of 5 classes: muon, proton, pion, electron and photon

- **Application**
 Takes a prong => provides five particle ID scores, for each class of particle

- The CNN in Akhsay’s talk acts at the event-level (used in NOvA oscillation analysis)
- This CVN acts at the prong-level (sub-event)

Prong = a trackable energy deposit
How to select ν_μ CC Zero Mesons events?

The 5-label Single Particle Prong CVN

- Convolutional Visual Network (CVN)
 Takes pictures of the detector => applies convolutions to extract features

- Training
 individual uniformly simulated particles of 5 classes: muon, proton, pion, electron and photon

- Application
 Takes a prong => provides five particle ID scores, for each class of particle

- The CNN in Akhsay’s talk acts at the event-level (used in NOvA oscillation analysis)
- This CVN acts at the prong-level (sub-event)

Prong = a trackable energy deposit
How to select ν_μ CC Zero Mesons events?

The 5-label Single Particle Prong CVN

- **Convolutional Visual Network**

 Takes pictures of the detector => applies convolutions to extract features

- **Training**

 Individual uniformly simulated particles of 5 classes: muon, proton, pion, electron and photon

- **Application**

 Takes a prong => provides five particle ID scores, for each class of particle

- The CNN in Akhsay’s talk acts at the **event-level** (used in NOvA oscillation analysis)

- This CVN acts at the **prong-level (sub-event)**

Prong = a trackable energy deposit
How to select ν_μ CC Zero Mesons events?

The 5-label Single Particle Prong CVN

• **Convolutional Visual Network**
 Takes pictures of the detector => applies convolutions to extract features

• **Training**
 individual uniformly simulated particles of 5 classes: muon, proton, pion, electron and photon

• **Application**
 Takes a prong => provides five particle ID scores, for each class of particle

• The CNN in Akhsay’s talk acts at the **event-level**
 (used in NOvA oscillation analysis)

• This CVN acts at the **prong-level (sub-event)**

Prong = a trackable energy deposit
How to select ν_μ CC Zero Mesons events?
How to select ν_μ CC Zero Mesons events?

Event with CVN ID
How to select ν_μ CC Zero Mesons events?

Find a muon

- The longest prong longer than 5 m

OR, if none

- The prong with highest MuonID

Separate this prong from further selection
How to select ν_μ CC Zero Mesons events?

Find a muon

- The longest prong longer than 5 m
- OR, if none

The prong with highest MuonID

Separate this prong from further selection

Reject events with Mesons

- Tag neutral pions
 Reject event if any prong has high $EMID = ElectronID + PhotonID$

- Tag charged pions
 Rank prongs by PionID:

 (1st) Leading pion candidate
 2nd Leading pion candidate
 3rd Leading pion candidate
 ...

 Use ProtonID, MuonID and PionID to reject background events
How to select ν_μ CC Zero Mesons events?

Event with CVN ID

Find a muon

- The longest prong longer than 5 m

OR, if none

- The prong with highest MuonID

Separate this prong from further selection

Reject events with Mesons

- Tag neutral pions

 Reject event if any prong has high $EMID = ElectronID + PhotonID$

- Tag charged pions

 Rank prongs by PionID:

 (1st) Leading pion candidate

 2nd Leading pion candidate

 3rd Leading pion candidate

 ...

 Use ProtonID, MuonID and PionID to reject background events

Backgrounds

- Wrong sign: Anti-ν_μ CC
- ν_μ CC N-Mesons (most likely pions)
- ν_e or Anti-ν_e CC events
- NC events
- Others
(1) **Preselection**

Based on parent ν_μ CC Inclusive analysis:

- Reconstruction **quality**
- **Containment** of tracks and showers
- Interaction vertex in a **fiducial** volume
- **MuonID**: Find a muon using a Boosted Decision Tree taking dE/dX and scattering likelihood of tracks as inputs
νµ CC Zero Mesons Selection: Number of Prongs

- Very few **signal** events have five or more prongs
- Interactions that tend to produce less particles
ν_μ CC Zero Mesons Selection: Number of Prongs

- Very few signal events have five or more prongs.
- Interactions that tend to produce less particles.
- Select events up to **four prongs**:
 - Purity: 42% → 47%
 - Efficiency: drops by <1%
ν_μ CC Zero Mesons Selection: Highest EMID in the event

- Events with **2+ prongs** (at least one prong other than the muon)
- Zero Mesons (**signal** and **Wrong Sign**) fall at high EMID
ν_μ CC Zero Mesons Selection: Highest EMID in the event

- Events with **2+ prongs** (at least one prong other than the muon)
- Zero Mesons (**signal** and **Wrong Sign**) fall at high EMID
- **Cut where Efficiency** \times **Purity is maximum,** EMID ≤ 0.872

 Purity 47% → 49%
 Efficiency drops by <1%
CC Zero Mesons Selection:
1st Pion Candidate: ProtonID

- Events with 2+ prongs (at least one prong other than the muon)
- Zero Mesons (signal and Wrong Sign) fall at very low ProtonID

![Graph showing NOvA Simulation with various categories]
ν_μ CC Zero Mesons Selection: 1st Pion Candidate: ProtonID

- Events with 2+ prongs (at least one prong other than the muon)
- Zero Mesons (signal and Wrong Sign) fall at very low ProtonID
- Cut where Efficiency x Purity is maximum

ProtonID > 0.072

Purity 47% \rightarrow 55%

Efficiency drops by 4%
ν_μ CC Zero Mesons Selection:

1st Pion Candidate: PionID

- Events with 2+ prongs (at least one prong other than the muon)
- Yields important additional purity gains
CC Zero Mesons Selection:

1st Pion Candidate: PionID

- Events with 2+ prongs (at least one prong other than the muon)
- Yields important additional purity gains
- Cut where Efficiency x Purity is maximum
 PionID <= 0.662
 Purity 55% → 62%
 Efficiency drops by 5%
\(\nu \) CC Zero Mesons Selection: 2st Pion Candidate: ProtonID

- Events with 3+ prongs (at least two prongs other than the muon)
- Zero Mesons (signal and Wrong Sign) fall at very low ProtonID
- Yields \(\sim 0.2\% \) purity gain
νμ CC Zero Mesons Selection:

2nd Pion Candidate: ProtonID

- Events with **3+ prongs** (at least two prongs other than the muon)
- Zero Mesons (**signal** and **Wrong Sign**) fall at very low ProtonID
- Yields ~0.2% purity gain
- **Cut where Efficiency x Purity is maximum**

 Purity 61.6% → 61.8%

 Efficiency drops by 0.5%
ν_μ CC Zero Mesons Selection: Summary

(1) Preselection

Reconstruction quality, containment of tracks, interaction vertex in fiducial volume and cut on MuonID

(2) Number of prongs ≤ 4

(3) Highest EMID ≤ 0.872

(4) Leading Pion Candidate (1$^{\text{st}}$ Pi)

- ProtonID > 0.072
- PionID ≤ 0.662

(5) Second Pion Candidate (2$^{\text{nd}}$ Pi)

- ProtonID > 0.042
νμ CC Zero Mesons Selection:
Preview of Selection: Muon Kinetic Energy

Before Selection

After Selection
Summary

- I have developed a **selection** for a channel defined by a close-to-elastic final state.
- This selection currently yields **88% efficiency** (w.r.t. the starting preselected sample) and **62% purity**.

- **Next steps**
 - **Fine tune the signal**: include low energy pions that are not visible in NOvA.
 - Evaluate strategies to constrain remaining backgrounds.
 - Unfold reconstructed to true variables.
 - Efficiency studies and compute cross section.
 - Study of systematic uncertainties.
Thank you!

MAY 2020
Backup
νμ CC Zero Mesons Selection:

1st Pion Candidate: PionID

- Events with 2+ prongs (at least one prong other than the muon)
- Plain PionID distributions before applying EMID cut.