Fermilab **BENERGY** Office of Science

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

QMiR Crab Cavity for ILC

Andrei Lunin, Vyacheslav Yakovlev October 27, 2021

ILC Workshop on Potential Experiments

Outline

- General Requirements for the ILC deflecting cavities
 - HOM impedance limitation due to resonance excitation
 - Transverse effects
 - Single-bunch effects
- QMiR Deflecting Cavity for ANL/SPX
 - Conceptions
 - Production and Testing
- QMiR (2.6 GHz) scaled version for ILC
 - **RF Power Requirements**
 - HOM and Wakefields Analysis
 - Mechanical Analysis (LFD and dF/dP)
 - Frequency Tuner and Dressed Cavity Design
- Conclusions

- The kick voltage is inverse proportional to frequency $(V_t \sim f^{-1})$
- The CC space is limited by a close beamlines distance (< 0.2 m)
- Small CC aperture (< 10 mm) results in large transverse kick
- Crab cavity @2.6 GHz looks a good compromise

🛟 Fermilab

Crab Cavity HOM Impedance Limits

Resonant HOM Excitation ($U_{HOM} = k_0 x_0 I_p r_{\perp}$) can cause:

a) Crabbing voltage distortion

- HOM kick voltage should be less than the crabbing voltage

 $U_{HOM} \ll U_0 \, \sigma_z \omega_{RF}/c$ or $r_\perp \ll rac{U_0 \, \sigma_z \omega_{RF}/c}{k_0 x_0 I_p}$

- b) Beam emittance dilution
 - HOM kick should be less than the transverse momentum spread

$$U_{HOM} \ll \frac{\sigma_{p_{\perp}}c}{e} = \frac{p_{\parallel}c}{e} \sqrt{\frac{\varepsilon}{\gamma\beta}} \quad or \quad r_{\perp} \ll \frac{E}{k_0 x_0 I_p} \sqrt{\frac{\varepsilon}{\gamma\beta}}$$

For max beam offset @CC: $x_0 < \sigma_x$ and $y_0 < \sigma_y$

- Horizontal Shunt Impedance Limit

 $r_x f_{HOM} \ll$ 61 MOhm·GHz

- Vertical Shunt Impedance Limit

 $r_y f_{HOM} \ll$ 0.67 MOhm·GHz

🛟 Fermilab

Crab Cavity Transverse Wakefields Limits

Incoherent CC excitation (single-bunch effect) can cause:

a) Crabbing voltage distortion

- Transverse kick should be less than the crabbing voltage

 $U_{kick} \ll U_0 \sigma_z \omega_{RF}/c$ or $k_\perp \ll \frac{U_0 \sigma_z \omega_{RF}/c}{qx_0}$

- b) Beam emittance dilution
 - Transverse kick should be increase the bunch emittance

$$U_{kick} \ll \frac{\sigma_{p_{\perp}}c}{e} = \frac{p_{\parallel}c}{e} \sqrt{\frac{\varepsilon}{\gamma\beta}} \text{ or } k_{\perp} \ll \frac{E}{qx_0} \sqrt{\frac{\varepsilon}{\gamma\beta}}$$

For max beam offset @CC: $x_0 < \sigma_x$ and $y_0 < \sigma_y$

Horizontal Kick Factor Limit $k_x << 2.3 \times 10^3 \text{ V/pC/m}$ Vertical Kick Factor Limit $k_y << 2.5 \times 10^3 \text{ V/pC/m}$

HOM-free Deflecting Cavity

The key idea is based on the formation of TE "ghost" modes

Reprinted from the PROCEEDINGS OF THE IRE VOL. 46, NO. 2, FEBRUARY, 1958 FRINTED IN THE U.S.A.

- Rediscovered in 1990s by G. Stupakov and S. Kurennoy [1]
- Further development of RFD at ODU (J. Delayen) [2]
- Transverse kick is produced by Quasi-TE modes which form transition zones with grad_t(E_z)
 - no contradiction with the Panofscy/Wenzel theorem!

PHYS. REV. VOL. 49-1, 1994
 PHYS. REV. SPECIAL TOPICS - ACCELERATORS AND BEAMS 16, 012004 (2013)

Compact HOM-free Deflecting Cavity QMIR

Quasi-Waveguide Multicell Deflecting Resonator [1]

- Proposed as replacement of Mark-II deflecting cavity for APS/SPX project

🚰 Fermilab

A. Lunin, I. Gonin, M. Awida, T. Khabiboulline, V. Yakovlev, A. Zholents, Physics Procedia 79 (2015) 54 – 62
 Zachary Conway on behalf of ANL PHY LINAC Development Group, 04/23/2013

QMIR Prototype Production and Testing

- Cavity received EP-treatment before the test
- Measured maximal deflecting voltage of 2.7 MV exceeded the design goal of 2.0 MV @2K vertical test of QMiR prototype [1]
- Relatively low Q_0 (3E8) is due to extra RF losses at covering flanges
- Further QMiR development was stopped due to the cancelation of ANL/SPX project

Z. Conway, et al., "Development and Test Results of a Quasi-waveguide Multicell Resonator", IPAC14, Dresden, Germany, 2014

Operating Dipole Mode

Integrated vertical kick along the cavity axis (solid red curve is the overall kick, dotted blue and green curves are electric and magnetic kicks).

Freq	2815 MHz
V _{kick}	2 MV
E _{max}	55 MV/m
B _{max}	76 mT
(R/Q) _Y	1040 Ω
G	130
W _{STOR}	0.23 J

🛟 Fermilab

HOM Damping in the APS Ring

QMiR Cavity Monopole HOMs

Monopole HOMs RF power is radiated to the Upstream beam pipe !

‡ Fermilab

QMiR Cavity for ILC (scaled to 2.6 GHz)

- There are two Same Order Modes (SOM) that have a low (R/Q)*Q
- SOM/HOM external couplings Qext < 10⁴
- SOM/HOMs longitudinal and transverse impedances (@1mm):
 (R/Q)z <= 100 Ω, (R/Q)x <= 1 Ω and (R/Q)y <= 10 Ω
- SOM/HOM spectrum is sparse and strongly damped

QMiR Cavity for ILC (scaled to 2.6 GHz)

 $\left(\frac{r_{\perp}}{o}\right) = 1040 \text{ Ohm } (@2.6 \text{ GHz})$ **Operation mode** Maximal dipole *horizontal* HOM $\left(\frac{r_{\perp}}{o}\right)_{v}$ < 10 Ohm (@2.5 GHz); $Q < 1 \times 10^5$ (< $Q_{max} \approx 2.4 \times 10^6$) $\left(\frac{r_{\perp}}{Q}\right)_{v}$ < 10 Ohm (@4 GHz); Maximal dipole *vertical* HOM $Q < 1 \times 10^4 (< Q_{max} \approx 1.7 \times 10^6)$ *k_z* ≈ 45 V/pC Incoherent losses $P_{rad} \approx k_z q^2 n_b f_{rep} = 3 W$ $k_x = 100 (< 2300) \text{ V/pC/m}$ Horizontal kick factor* $k_{\nu} = 400 \ (< 2500) \ V/pC/m$ Vertical kick factor*

* GdfidL calculation for 0.3 mm bunch length (cross check with ECHO-3D code is ingoing)

QMiR cavity meets the ILC/CC horizontal and vertical HOM impedance requirements

🚰 Fermilab

12 10/27/21 A. Lunin | QMIR Crab Cavity for ILC

QMiR Cavity for ILC RF Power

- RF power needed to maintain the crabbing voltage should compensate
 - the ohmic losses in the cavity (negligible for SRF cavities)
 - voltage induced by the beam if the is off the cavity axis
- The maximal required RF power for the detuned cavity:

$$P = \frac{U_0^2}{4Q\left(\frac{r_{\perp}}{Q}\right)} \left[\left(1 + \frac{I_p Q\left(\frac{r_{\perp}}{Q}\right) k_0 x_0}{U_0}\right)^2 + \left(\frac{2Q\Delta\omega}{\omega_0}\right)^2 \right]$$

- For max beam offset $x_0 < 1$ mm and $\Delta f < 1$ kHz (LFD, microphonics)

- Beam OFF: $P_{min} \approx 200 \text{ W}$ Optimal Coupling: $Q_L \approx 1 \times 10^6$ Beam ON & Microphonics: $P_{max} \approx 500 \text{ W}$
- Required RF power from the generator (overhead 100%):

Mechanical Analysis LFD and dF/dP (by I. Gonin)

QMiR LFD and dF/dP are less than the cavity bandwidth (few kHz)

Mechanical Analysis of Frequency Tuning (by I. Gonin)

Maximum frequency tuning range: ~ 1..2 MHz

‡ Fermilab

10

-1464

169

10

33

10

QMiR Cavity Slow Tuner Design (by V. Polubotko)

Compact lever-type frequency tuner

LHe Vessel Dressed QMiR Cavity

Design of frequency tuner integrated with dressed cavity is ongoing

🛟 Fermilab

Conclusions

□ Preliminary requirements for the ILC Crab Cavity developed

- A Quasi-Waveguide Multicell Deflecting Resonator (QMIR) is a good option for the ILC Crab Cavity
- QMIR is very compact and simple;
- It has sparse HOM spectrum;
- It has acceptable loss/kick factors;
- For the deflecting voltage of about 0.9 MV the cavity has considerably small surface fields, E_p ≈25 MV/m, B_p ≈ 35 mT.
- No MP in operation voltage domain.
- QMIR cavity is considered now for Elletra-2, Trieste.
- Fermilab can design, build and test QMIR cavity for ILC application.

Backup Slides

EM design of the QMiR deflecting cavity

- Model is fully parameterized
- The frequency derivation was calculated for each parameter in order to preserve the operating mode frequency on the stage of geometry creation.
- General ellipsoid is used for hollow surface representation
- Global optimum search algorithm

Backup Slides

Same Order Mode (SOM) Damping

- The fundamental coupler waveguide is used to suppress SOM modes
- The FPC is purposely shifted from the cavity center in order to provide external coupling for the operating mode and damping lower frequency dipole modes simultaneously

‡ Fermilab

Backup Slides

High Order Modes (HOM) Damping

2.6 GHz QMiR for ILC Crab Cavity

For the ILC bunch length (0.3 mm rms), the loss and kick factors: k_loss <= 50 V/pC and k_kick <= 0.1 V/pC/mm