

A multi-channel cryogenic low-noise skipper-CCD readout ASIC

Troy England¹, Fabricio Alcalde Bessia^{2,3}, Hongzhi Sun¹, Leandro Stefanazzi¹, Davide Braga¹, Miguel Sofo Haro^{2,4}, Shaorui Li¹, Juan Estrada¹, Farah Fahim¹

¹Fermi National Accelerator Laboratory, Batavia, Illinois, USA

²Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

³Instituto Balseiro, San Carlos de Bariloche, Argentina

⁴Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Argentina

Talk Abstract

- Skipper CCDs provide exceptionally low noise useful for dark matter detection
- MIDNA ASIC enables scaled cryogenic Skipper CCD readout
- Noise performance proven to specification at room temperature with CCD
- Liquid nitrogen measurements show functionality with more to come
- Future development will integrate more sensitive signals and averaging capability

Skipper CCDs for Exceptionally Low Noise

- Skipper CCDs and similar technologies enable the non-destructive readout of the same pixel many times [1-4]
 - The noise can be lowered by averaging many shorter reads rather than one long read
 - It continues the decreasing noise trend with longer measurement times otherwise limited by 1/f noise
- There are still limits to this approach
 - Leakage in the charge transport in the CCD (low)
 - Speed of the various readout stages and clocking
- A skipper CCD has demonstrated the lowest ever, 0.068 e-rms, noise floor in CCDs [3]

🛟 Fermilab

[1] White et al., "Characterization of Surface Channel CCD Image Arrays at Low Light Levels."

[2] Janesick, J.R., et al. "New advancements in charge-coupled device technology: sub-electron noise and 4096×4096 pixel CCDs." [3] Tiffenberg, Javier, et al. "Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD."
[4] Fernández Moroni et al., "Sub-Electron Readout Noise in a Skipper CCD Fabricated on High Resistivity Silicon."

OSCURA 4 year Research and Development Effort

"DOE Dark matter New Initiatives" FNAL, LBNL, PNNL, U. Chicago, U. Washington, Stony Brook University.

Fermilab is leading the effort to develop a skipper-CCD dark matter detector with active mass of 10 kg of Silicon.

Taking the skipper-CCDs to their full potential as dark matter detectors.

Fabrication of <u>skipper-CCDs is being adapted to the</u> <u>changes in the semiconductor industry. We have</u> <u>new CCDs from Microchip</u> and are testing the fabrication results.

24 Gigapixel digital camera for dark matter!

Cooling, readout, packaging and testing of the required <u>4000 skipper-CCD sensors require</u> engineering solutions that are not available yet for scientific CCDs.

Sensors designed by Steve Holland at LBNL.

Radiation background required is $\approx 10x$ lower than state of the art experiments.

An ASIC to Support Scaling to 28 Gigapixels, MIDNA

- MIDNA is a prototype cryogenic low-noise skipper-CCD readout ASIC
- It is an enabling technology for the OSCURA dark matter detection project
- Integrates multiple readout channels onto a single chip, replacing numerous costly PCB components and saving valuable physical space
 - 4 channels on prototype chip
- Uses 2.5 V transistors for voltage room in 65 nm CMOS process
- Operates at 120 Kelvin for optimum CCD performance
 - COTS devices not guaranteed to specification
- The ASIC input referred noise must be less than one third of the CCD output noise

Most difficult and constraining requirement

MIDNA Signal Chain

- Preamplifier largely responsible for noise performance drives power consumption
- DC Restore prevents the saturation of the integrator sticking baseline to V_{REF}
- Buffer to provide the current necessary for the Integrator
- Switchable Integrator to implement CDS on chip with efficient bandwidth

Chip Image and Tape Out Structures

• Each channel is about 150 µm x 1 mm; Chip is 2 mm x 1 mm

2 mm Bias Integ Preamp Digital DC Res Control reamp Buff Channel E'E Integ

‡ Fermilab

1 mm

Room Temperature MIDNA with Cooled CCD Testing Setup

DAQ board and MIDNA at room temperature

CCD is in cold chamber at \approx 120 Kelvin

MIDNA (shielded)

Room Temp. MIDNA and Cooled CCD Gain Measurements

- Fe-55 X-ray source → 5.9 keV photons → 1639 e- on average
- Histogram of single photon hits

Room Temp. MIDNA and Cooled CCD Noise Measurements

- Measured as the standard deviation on the overscan pixels, region of no charge
- 10 µs integration time in each direction

Matches performance of discrete solution with smaller footprint and at one tenth of the power!

Cooled MIDNA Functionality

- Functionality proven in liquid nitrogen!
- Measurements inside of temperature controlled dewar are still in progress

 At room temperature, single integration noise with MIDNA alone is successfully 1/3 of noise with CCD included!

- At room temperature, single integration noise with MIDNA alone is successfully 1/3 of noise with CCD included!
- Averaging saturates out likely due to 1/f noise being injected after CDS
- Mitigations are being investigated

- At room temperature, single integration noise with MIDNA alone is successfully 1/3 of noise with CCD included!
- Averaging saturates out likely due to 1/f noise being injected after CDS Ri
- Mitigations are being investigated
- Liquid nitrogen setup requires long ribbon cabling that is coupling in noise even without dunking
- Dunking continues to make it worse

- At room temperature, single integration noise with MIDNA alone is successfully 1/3 of noise with CCD included!
- Averaging saturates out likely due to 1/f noise being injected after CDS
- Mitigations are being investigated
- Liquid nitrogen setup requires long ribbon cabling that is coupling in noise even without dunking
- Dunking continues to make it worse
- Follows $\frac{1}{\sqrt{NSAMP}}$ much better while starting much higher
- More work to come

Results and Future Work for MIDNA

- Successfully less than 1/3 of CCD noise even at room temperature!
- Cryogenic functionality down at 77 Kelvin!
- Controlled temperature testing with CCD in progress
- Starting design work for next version of chip
- Grow to many more channels to follow the CCD, up to 64
 - Project scaling is currently limited by cost of readout
- Integrate reference generator and analog-to-digital converter
 - Greatly reduce the sensitive analog signals going off chip
- Enable digital processing of data on chip
 - The ADC combined with on-chip memory enables many averaged reads internally
 - Improves noise, power, and complexity compared to analog solutions, especially off chip

MIDNA Chip Image

🔁 Fermilab

Thanks!

