

Superconducting Accelerators for High-Power X-ray production

Thomas K Kroc, PhD Virtual Technical Meeting on the Recent Development of Radiation Generators for Industrial Applications 29 September 2021

Fermi National Accelerator Laboratory

- National Laboratory: Funded by the Department of Energy (OHEP)
- Mission: High Energy Physics Research (Discovery Science)
- To carry out that mission Fermilab designs, builds, & operates: High Energy, High Power (MW), High reliability Accelerators
- 6800 acre (2750 ha) site, ~\$360M/yr budget, Staff of 1700, > 2200 users
- 350 Accelerator Scientists and Engineers + 300 technical staff (+ANL)
- Largest collection of Accelerator Experts in the world
- Broad skills in accelerator design, simulation, fabrication, integration & test

Fermilab

• Also well versed in industry/university partnerships

IARC @ Fermilab

News and events	
Technology Developm	nent
Electron beam applic	ations
Capabilities and facili	ties
Resources	
Working with us	
Contact us	

Search

Scientists and engineers at IARC work side by side with industrial partners to research and develop breakthroughs in accelerator science and technology and translate them into applications for the nation's health, wealth and security.

The mission of IARC, which is part of ogies developed by Fermilab towards commercialization and, with industry partners, help create products and services that improve the health, wealth and security of the nation.

Located on the Fermilab campus, this 83,000 square foot, state-of-the-art building houses offices, technical and educational space to study cutting-edge accelerator technologies. In addition to attracting new private industry partners that will create new high-tech jobs, the center also collaborates with local universities and serves as a training facility for a new generation of scientists, engineers and technical staff in accelerator technology. These partnerships make critical contributions to the technological and economic health of Illinois and place the state in a position to become the world leader in accelerator research, development and industrialization.

list to receive updates on the work being done

Motivation for focus on medical device sterilization

Approx 50% of single use medical devices are sterilized with gamma rays from decay of Co-60

- Worldwide, 400 MCi of 600 MCi permitted
- Medical Device industry growing at 7% per annum
- Cobalt production is behind market demand by 5%
- Sterilization capacity shortages are looming BPSA is aggressively pursuing X-ray by end of 2022
- Radioisotope security concerns

250 kW Industrial SRF accelerator – under development

• Energy: ~ 10

MeV

Power: 250 KW

Turn-key operation

- High reliability
- Low cost
- Small: Cryostat
 ~ 0.7 m dia
 - ~ 1.5 m long

😤 Fermilab

- Modified existing 650 MHz cavity
- Magnetron RF source and commercial Cryo-cooler
- Modular design scales to MW class industrial applications

- Total weight 3000-5000 lbs → viable for mobile applications
- Mobile platform enables many new applications
- Environmental applications

20 kW prototype

Integrated electron gun – no LEBT

Nb₃Sn – Raises the critical temperature, T_c

- Sn vapor evaporated onto Nb cavity surface, Sn reacts with Nb to form Nb₃Sn at elevated temperatures
- Reasons for choosing vapor diffusion:
 - Only process shown to produce Nb₃Sn SRF cavities with high Q₀ at E_{acc} >1 MV/m
 - Extremely close match of thermal expansion coefficient: avoid delamination
 - High temperatures ~1100 C: low T_c Nb-Sn phases not thermodynamically stable
 - Strict control of impurities no copper involved
 - Can achieve very clean grain boundaries
 - Relatively smooth surface to avoid field enhancement

SEM images of Nb₃Sn film coated on Nb: a) surface, b) cross section

Close match of CTE between Nb and Nb₃Sn for strong bond at cryogenic temperatures

Challenge of Closed Structure

Good performance already: 9-cell 1.3 GHz, open on both sides

This project: 1.5-cell 650 MHz, open on one side

🚰 Fermilab

Sn vapor flow is below 100 cm viscous regime – line-Viscous d Pipe diameter *d* of-sight is a factor Transition regime 10 High performance Molecular coatings in complex 9-10-4 10-3 10⁻² 10⁻¹ 10⁰ 10¹ 10^{2} 103 10^{-5} cell cavity give hope Molecular flow Continuous flow Knudsen flow hPa Kn > 0.5 Kn < 0.01 0.01 < Kn < 0.5 Pressure p for 1.5 cell Low vacuum Medium vacuum High/Ultra-high vacuum

https://www.pfeiffer-vacuum.com/en/know-how/introduction-to-vacuum-technology/fundamentals/types-of-flow/

What is a conduction-cooled SRF cavity?

- SRF cavities require cooling near 4 Kelvin to operate in the superconducting state. The cooling is traditionally provided by <u>liquid</u> <u>helium</u>.
- The 20 kW accelerator will be the first ever to use an SRF cavity <u>without liquid helium</u>
- Cavity is cooled *via* thermal conduction using:
 - High thermal conductivity link
 - Mechanical 4 K cryocoolers

Characterization of link thermal conductor

5N purity aluminum is chosen as the thermal link material

Thermal link design for the 1.5-cell cavity

2 x cryocooler mounting pads

FEA verification of thermal link performance

Specifications for the 1.5-cell cavity

1.5-cell cavity expected heat load

Heat load at ~5 Kelvin	Value [W]
RF dissipation in cavity (with $Q_0 = 1e10$)	1.46
Gun static heat leak	0.08
Cathode radiation to cavity (temp = 1373 K)	0.22
Conduction through cavity supports	0.1
Conduction through outlet beam pipe	0.1
Thermal radiation to cavity from thermal shield	0.1
Thermal radiation to cavity through beam pipe window	0.24
Beam loss (1e-6 of 20 kW = 0.02 W)	0.02
Coupler static + dynamic at 20 kW cw	1.0
Total	3.5
	5 Fermilal

Estimated heat loads to ~50 K

Heat source	Heat load (W)
Radiation and residual gas conduction	5.6
Gun static heat leak	0.4
Conduction through cavity supports	3.0
Cold to warm transition bellows	6.2
Coupler static + dynamic at 20 kW CW	5.0
Total	20.2

200 kW, 7.5 MeV 1st Article

RF Design

Efficiency – the key to economical applications

Accelerator effciency versyus RF souce effciency

‡ Fermilab

Magnetron Power for Accelerators

🗳 🛱 Fermilab

Phase & Amplitude Control for Magnetron Driven Accelerators

🛟 🛱 Fermilab

Magnetron Performance Improvement Program

The program:

- 1. Use a modern 3D simulation code to understand in detail the beam dynamics of a magnetron.
- 2. Benchmark the code. This improved and benchmarked code will strengthen the RF industry allowing better designs of the magnetron for different applications scientific, industrial, civil, and military.
- 3. Finally, it would be possible to optimize the magnetron design to improve its longevity and efficiency and optimize various operation regimes. Different options could be explored, like 2D harmonic cavities, different types of cathodes including the newly developed Nanocomposite Scandate Tungsten cathodes [12].
- 4. The goal would be to achieve an efficiency of more than 85% with tube lifetime of ~50,000-80,000 hours.

Thank you

Work supported by the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.

