
Hans Wenzel
Krzysztof Genser
Soon Yung Jun
Alexei Strelchenko

Fermilab-SLIDES-21-106-SCD

Integration of Opticks1 and Geant4 (an advanced example: CaTS)

1developed by Simon Blyth
(Institute of High Energy Physics, Chinese Academy of Sciences)

This manuscript has been authored by Fermi Research
Alliance, LLC under Contract No. DE-AC02-07CH11359
with the U.S. Department of Energy, Office of Science,
Office of High Energy Physics.

2

Outline
l Motivation:

l Liquid Argon TPC’s,
l Scintillation/Ionization properties in liquid Argon,
l The computational challenge.

l Opticks/G4Opticks.
l CaTS.
l Timing and Validation.
l Summary and Outlook.
l Next Steps.

CaTS: Calorimetry and Tracking Simulation

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

Motivation

3

The image below shows a display of
the ionization signal: time + stereo
wires or pixels allows for 3D
reconstruction
dEdx for PID
track length for energy/momentum
….

See e.g.,: Dorota Stefan:
https://indico.cern.ch/event/575069/contributions/2326563/attachments/1363382/2064171/LArPrinicipals.pdf

Liquid Argon TPC’s are the technology of choice for many neutrino experiments: DUNE,
protoDUNE, µBoone, LArIAT, ICARUS, SBND… as well as dark matter searches: DarkSide,
ARGO, …

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

4

Scintillation/Ionization properties in liquid Argon1

• Liquid Argon is a very efficient scintillator with a very high light yield that depends on E-field and purity
(Scintillation and e--I+ pair production are competing effects.). For the simulation here we assume no
E-field (Scintillation only) and a yield of 50,000 photons/MeV. A minimum ionization particle deposits
2.105 MeV/cm.

• Liquid argon scintillation photons are emitted in a narrow band of 10 nm centered around 128 nm.
• To match the photon wavelength to the quantum efficiency of the photodetector wavelength shifters

(WLS) are used. A typical material is TPB with an emission spectrum peaked at 430 nm. WLS is “not”
yet included in the simulation presented here.

• The time profile consist of two components (slow 1500 ns and fast 6 ns) originated by the decay of
the lowest lying singlet, Σ1u+, and triplet states, Σ3u+, of the excimer Ar2* to the dissociative ground
state.

• Liquid Argon is highly transparent to its own scintillation light (absorption length in the 10s of meters).
• Rayleigh scattering length ~ 50-60cm.

1) Input to the simulation

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

The computational challenge: Simulating a single 2GeV
electron shower results in about 70 million VUV photons

5

Simple Geometry:
Liquid Argon: x y z: 1 x 1 x 2 m (blue)
5 photo detectors (red)
photon yield (no E-field): 50000 g/MeV
single 2GeV electron (shower not fully
contained)
(low Z=18, low r = 1.78 g/cm3).

Ø 70 000 000 scintillation photons are
produced.

Ø Using Geant4 to simulate photon
generation and propagation on the
CPU takes:
~41 minutes/event

(Compared to 0.056 sec/event when no
optical photon simulation)

Shown are only steps and particle tracks handled by Geant4,
no optical photons.

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

Opticks1

6

Opticks is an open source project. It translates Geant4 optical physics to NVIDIA® CUDA, OptiXTM.
Generation and tracing of optical photons is the ideal application to be ported to GPU’s:
• Only one particle involved (optical photon), but many of them (10s of millions)à allows for massive

parallelism (low latency, no big fluctuations in computing time.).
• Only a few simple physics processes need to be implemented on the GPU. The processes are :

• G4Cerenkov (generate),
• G4Scintillation (generate),
• G4OpAbsorption,
• G4OpRayleigh,
• G4OpBoundaryProcess (only a few surface types),
• G4OpWLS (not yet implemented),
• G4OpMieHG, Reemission (not needed).

• These processes don’t need a lot of input data (the so called Gensteps for the Cerenkov (C) and
Scintillation (S) processes).

• Only few photons reach the Photodetectors and produce a Hit. So very little data to transfer between
host and device. (Genstepsà Device, PhotonHitsà Host).

• Optical ray tracing is a well established field à benefit from available efficient algorithms (e.g., OptiXTM).
• use NVIDIA® hardware (some with RTX: raytracing hardware acceleration) and software (CUDA, OptiX).

1developed by Simon Blyth

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

G4Opticks (part of Opticks): interfaces
Geant4 user code with Opticks. It defines a
hybrid workflow where generation and
tracing of optical photons is offloaded to
Opticks (GPU/device) at stepping level when
a certain amount photons is reached.
Geant4 (CPU/host) handles all other
particles.
The Geant4 Cerenkov and Scintillation (C/S)
processes are only used to calculate the
number of optical photons to be generated at
a given step and to provide all necessary
quantities to generate the photons on the
GPU. The information collected is the so
called GenStep which is different for
Cerenkov and Scintillation (C/S).
Photon Hits are collected at the end of the
G4Opticks call and added to the event hits
collection.

7

G4Opticks

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

Opticks Resources:

8

https://simoncblyth.bitbucket.io/env/presentation/opticks_may2020_hsf.html

EPJ Web of Conferences 214, 02027 (2019), https://doi.org/10.1051/epjconf/20192140202
Simon Blyth:
“Opticks : GPU Optical Photon Simulation for Particle Physics using NVIDIA® OptiXTM “

Detector geometry in Opticks: https://indico.cern.ch/event/975008/
Documentation: https://simoncblyth.bitbucket.io/opticks/index.html

Code repositories:

https://bitbucket.org/simoncblyth/opticks/ : main development repository

https://github.com/simoncblyth/opticks : used for snapshots and tagged releases.
The most recent tag is https://github.com/simoncblyth/opticks/releases/tag/v0.1.2

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

https://simoncblyth.bitbucket.io/env/presentation/opticks_may2020_hsf.html
https://doi.org/10.1051/epjconf/201921402027
https://bitbucket.org/simoncblyth/opticks/
https://simoncblyth.bitbucket.io/opticks/index.html
https://bitbucket.org/simoncblyth/opticks/
https://github.com/simoncblyth/opticks
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_simoncblyth_opticks_releases_tag_v0.1.1&d=DwMFaQ&c=gRgGjJ3BkIsb5y6s49QqsA&r=bIL908M-35QimpL2FpB7Bw&m=HyWiYOI6iy0MSpnSrUdiSl5c6nNO3Miqh-5Qk83YuFk&s=4YRWbl3NHwOO46Va69OMZvDYmayNYl6MwjQazDdPX60&e=

CaTS: Calorimeter and Tracker Simulation

9

Geant4 Application that allows to simulate Detector setups ranging from a single Detector (e.g. single crystal) to complex setups (e.g. test
beam experiment consisting of many detector elements). It is used to demonstrate the G4Opticks hybrid workflow, works with Geant4 >
10.7.01. Main Code repository: https://github.com/hanswenzel/CaTS
Its features are:
• No changes to Geant4! Only make use of provided interfaces: UserActions, Sensitive Detectors...
• G4Opticks is a runtime/build time option.
• Uses gdml with extensions for flexible Detector construction and to provide optical properties at runtime. The gdml extensions include:

• Assigning sensitive detectors to logical Volumes. Available:
• RadiatorSD, lArTPCSD, TrackerSD, PhotondetectorSD, MscSD, CalorimeterSD, DRCalorimeterSD,….

• Assigning step-limits to logical Volume.
• Assigning visualization attributes.

• Uses G4PhysListFactoryAlt to define and configure physics at runtime via command line option:

time ./CaTS -g simpleLArTPC.gdml -pl 'FTFP_BERT+OPTICAL+STEPLIMIT' -m time.mac

time ./CaTS -g simpleLArTPC.gdml -pl 'FTFP_BERT+OPTICAL+STEPLIMIT' -m time_G4.mac

• Uses Root IO to provide persistency for Hits.
• G4opticks:

• Uses Geant4 to collect Scintillation and Cerenkov Gensteps. The harvesting is done in sensitive Detectors(SD)
(RadiatorSD/lArTPCSD).

• PhotonHits are collected in PhotonSD.

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

https://github.com/hanswenzel/G4OpticksTest

CaTS workflow

10

TTree:
Event 1: lArTPCHits. PhotonHits. ……

Root file

Geant4 (Host) G4Opticks(Device)

Generate and propagate
Cerenkov and Scintillation
photons

lArTPCSD ProcessHits:
collect electrons à lArTPCHits
collect gensteps (C/S),

Gensteps

Photon Hits

event loop:

Step:

End of event:

Begin of event:

lArTPCHits

Gensteps (C/S)
PhotonHits

gdml

.mac

input
output

Generate and propagate
Cerenkov and Scintillation
photons

Gensteps

Photon Hits
Gensteps (C/S)
PhotonHits

No. Photons>NMAX:

Event 2: lArTPCHits. PhotonHits. ……
Event 3: lArTPCHits. PhotonHits. ……

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

• Main git repository: https://github.com/hanswenzel/CaTS/: used for development.
• Instructions how to build and run CaTS:

https://github.com/hanswenzel/CaTS/blob/master/README.md
• Instructions how to build Opticks and how to install all necessary software:

https://github.com/hanswenzel/CaTS/blob/master/Instructions.md
• CaTS examples (examples consist of: gdml file, Geant4 macro and an application

that makes histograms from the hits collections):
https://github.com/hanswenzel/CaTS/blob/master/Examples.md

• CaTS is also available in fork of the Geant4 GitLab repository (as advanced
example), used for snapshots and tagged releases.

https://gitlab.cern.ch/wenzel/geant4-dev/-/tree/CaTSv1_0/examples/advanced/CaTS

CaTS resources

11 Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

https://github.com/hanswenzel/CaTS/
https://github.com/hanswenzel/CaTS/blob/master/README.md
https://github.com/hanswenzel/CaTS/blob/master/Instructions.md
https://github.com/hanswenzel/CaTS/blob/master/Examples.md
https://gitlab.cern.ch/wenzel/geant4-dev/-/tree/CaTSv1_0/examples/advanced/CaTS

Performance:

12

Hardware:

CPU Intel(R) Core i7-9700K 3.6GHz
32 GB memory.

GPU GeForce RTX 2070
CUDA Driver Version /11.3
CUDA Capability: 7.5
VRAM: 7981 Mbytes
Cores: 2304

Timing results (Geant4 10.7.p01):

Geant4 optical physics 2438 sec/event

G4Opticks, RNGmax1 10 6.45 sec/event

G4Opticks RTX enabled, RNGmax1 10 2.72 sec/event

G4Opticks, RNGmax1 100 6.86 sec/event

G4Opticks RTX enabled, RNGmax1 100 2.87 sec/event

1) Memory pre allocated for pre-initialized (at
installation) curandState files to load.

Geant4/(Geant4 + Opticks) comparison:
2438/6.45 = 378 (x 2.4 ~ 900 with RTX) x speed up
RTX Ray tracing hardware acceleration is usually
not available on HPC platforms

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

unsigned id{0}; // id of Photo Detector
unsigned pid{0}; // Process ID
G4double wavelength{0};
G4double time{0};
G4ThreeVector position{0};
G4ThreeVector direction{0};
G4ThreeVector polarization{0};

Validation: Comparison of Geant4 and Opticks

13 Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

PhotonHit:
register property of every photon that hits
a Photo detector surface:

Point like light source,
Photons at sensors-> still need
To compare Geant4/Opticks
scintillation implementation in
detail

Summary and Outlook:

14

• The work was performed as part of the Geant4 R&D Activity.
• We integrated Opticks with Geant4 (>10.7.p01). Small changes to Geant4 interfaces were

introduced when needed.
• Provided timing/memory usage results. For our test case we observe an overall speedup by a factor

of 390/900 (without/with RTX) compared to running Geant4 optical simulation on the CPU.
• The example CaTS:

• Provides ROOT persistency for Hit collections.
• Provides Sensitive detector plugins for different detector types.
• Provides various detector geometries and configurations as gdml.
• Gensteps chunks are collected in-situ during the stepping loop, once a predetermined chunk

size, that can be set via a Geant4 messenger class, is reached the optical photon propagation
is offloaded to the GPU (device). The rest of simulation and Gensteps collection is done on
the CPU (host). The remaining Photons are processed at the end of Event.

• GPU Hardware is developing fast (accelerating). All results here are based on GeForce RTX 20 Series
Turing platforms with first generation RTX.

• Expect performance boost from moving to OptiXTM 7 (Simon Blyth is working on it).

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

1. Make it an advanced Geant4 example. Available in GitLab for review, create pull
request once ready.

2. Make use of modern C++ (11, 17) features.
3. Allocate resources at CERN where Opticks and CaTS can be installed and added

to automated testing (Ben Morgan).
4. Create singularity container to run on HPC resources.
5. Identify the best workflow depending on application to best utilize modern

hardware (GPU and CPU) making use of event-based multithreading as well as
G4Tasking.

6. Implement wavelength shifting (WLS) process on GPU and update Opticks optical
processes so that they correspond to the current Geant4 optical processes and
uses the same material properties.

7. Evaluate treatment of random numbers on GPU.
8. Keep up with Opticks (e.g., move to Optix 7) development.

Next Steps

15 Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

16

Backup slides

Profiling using NVIDIA’s nvprof

17

Besides at the beginning
there is very little data
transfer between device
and host.
(Gensteps-> Device,
PhotonHits -> Host)

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

18

https://wccftech.com/nvidia-pascal-gpu-analysis/
Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

19 Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

20

Gensteps

A Genstep collects all
information necessary to
generate Scintillation and
Cerenkov photons on the
GPU.

OpticksGenstep_G4Cerenkov_1042, // (int)gentype (0)
aTrack->GetTrackID(), // (int)ParenttId
aMaterial->GetIndex(), // (int)MaterialIndex
numPhotons, // (int)NumPhotons

x0.x(), // x0.x (1)
x0.y(), // x0.y
x0.z(), // x0.z
t0, // t0

deltaPosition.x(), // DeltaPosition.x (2)
deltaPosition.y(), // DeltaPosition.y
deltaPosition.z(), // DeltaPosition.z
aStep->GetStepLength(), // step_length

aParticle->GetDefinition()->GetPDGEncoding(), // (int)code (3)
aParticle->GetDefinition()->GetPDGCharge(), // charge
aTrack->GetWeight(), // weight
preVelocity, // preVelocity

betaInverse, // (4)
wl_minmax ? wmin_nm : pmin,
wl_minmax ? wmax_nm : pmax,
maxCos,

maxSin2, // (5)
meanNumberOfPhotons1,
meanNumberOfPhotons2,
postVelocity

Cerenkov Genstep:

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

