▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recent work on tessellations of hyperbolic geometries

Muhammad Asaduzzaman ¹ Simon Catterall ¹ Jay Hubisz ¹ Roice Nelson Judah Unmuth-Yockey ²

 Department of Physics, Syracuse University, Syracuse NY
 Department of Theoretical Physics, Fermi National Accelerator Laboratory, Batavia, IL

July 27th, 2021

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Introduction

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Introduction

Curved lattices

 Flat, positive, and negative curvature spaces.

deficit angle

 $\delta_h = 2\pi - n_h \times \theta_D$

- δ_h measure the deviation from flat.
- ► h a "hinge"
- ▶ h is D 2 object
- *n_h* number of *D*-dimensional gons around *h*.
- θ_D is angle between D-1 faces around h.

Introduction Curved lattices

- Positively curved, closed surface
- Equilateral triangles
- ► $\theta_2 = \pi/3$
- Hinge is a vertex (site)
- Three triangles around vertex

Introduction Curved lattices

- Flat, open surface
- Equilateral triangles
- ► $\theta_2 = \pi/3$
- **Six** triangles around vertex

Introduction Hyperbolic lattices

- Negatively curved, open surface
- Equilateral triangles
- ► $\theta_2 = \pi/3$
- Seven triangles around vertex

Introduction Hyperbolic lattices

- Poincaré disk
- Equilateral triangles
- Seven triangles around vertex
- Schläfli notation {p, q, r, ...}
 - $\rightarrow p$ sided convex polygon, q of them around a vertex, rof these around each edge etc...

•
$$\{p,q\} \rightarrow \{3,7\}$$

lattice

 ${\sf Excess polygons \implies strange} \\ {\sf boundary behavior} \\$

- Boundary grows
 exponentially
- Boundary constant fraction of total
- Boundary is never "negligible"

Including fields

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Including fields Scalar fields

Free scalar field:

$$S_{
m cont} = \int d^2 x \sqrt{g} rac{1}{2} (\partial_\mu \phi \partial_\mu \phi + m_0^2 \phi^2) o S_{
m lat} = \sum_{x,y} \phi_x L_{xy} \phi_y$$

 \implies 2-pt. propagator:

$$C(|x-y|) = L_{xy}^{-1}$$

Interacting field theory:

$$\mathcal{S}_{\mathsf{lat}} = -eta \sum_{\langle xy
angle} \sigma_x \sigma_y - h \sum_x \sigma_x$$

 \implies 2-pt. correlator:

$$C(|x-y|) = \langle \sigma_x \sigma_y \rangle - \langle \sigma_x \rangle \langle \sigma_y \rangle$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Including fields

Bulk thermodynamics & propagators

- Critical temperatures: [Wu, 1996, Jiang et al., 2019]
 - Existence of transition
 - Multiple transitions
- Critical exponents: [Ueda et al., 2007, Krcmar et al., 2008, Baek et al., 2011, Benedetti, 2015, Breuckmann et al., 2020]
 - Mean-field exponents for Ising?
 - Two and three dimensions
- General correlators and continuum limit [Brower et al., 2021]

- ϕ^4 theory
- Thorough investigation of 2-pt. and 4-pt correlators.
- Large-small mass limits
- Refinement \rightarrow continuum
- Talks Theoretical developments:
 - ▶ July 27th, 21:15 (Richard Brower)
 - ▶ July 27th, 21:30 (Evan Owen)
 - ▶ July 29th, 22:15 (Cameron Cogburn)

Boundary correlators and holography [Asaduzzaman et al., 2020]

- Two, and three dimensions
- Multiple tessellations of \mathbb{H}_2
- d = 1 and d = 2 boundary power-law correlators
- Klebanov-Witten behavior [Klebanov and Witten, 1999]

- Talk Theoretical developments:
 - July 27th, 21:45 (Muhammad Asaduzzaman)

Expectations

(ロ)、(型)、(E)、(E)、 E) の(()

Free field, continuum, boundary 2-pt propagator,

$$C(r) \propto r^{-2\Delta_{\pm}}$$

Power-law behavior known explicitly:

$$2\Delta_{\pm}=d\pm\sqrt{d^2+4L^2m_0^2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- d is the boundary dimension
- Δ_{\pm} correspond to different boundary conditions
- L is radius of curvature

Expectations

Power-law boundary correlations

- High-temperature expansion of the Ising model

$$Z\propto \sum_{\{\Gamma\}} {\sf tanh}^{\Gamma}(eta)$$

- $\Gamma :$ closed, intersecting loops
- At leading order, the two-point correlator between boundary points

$$C(R) \propto anh^R(eta) = e^{-\log(\cotheta)R}$$

R is **bulk** geodesic distance.

- The **boundary** distance, $r: R \sim \log r$,

$$C(r) \propto r^{-\log(\coth\beta)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Results

Results

Two dimensions

(日) (四) (日) (日) (日)

A, and B match analytic formula well.

Results

Two dimensions

Ising model, boundary correlator

 $C(r) \sim r^{\log(\tanh\beta)}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Results Three dimensions

Free, massive scalar field theory:

• $\{4,3,5\}$ lattice \rightarrow **five** cubes around an edge.

A is close to 1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Conclusions & Future work

Remarks:

- CFTs appear supported on the boundary.
- The "magic" of holography can be traced back to
 - exponential growth of boundary relative to bulk.
 - " $R \sim \log r$ "
- Free scalar field recovers Klebanov-Witten
- Ising model may have mean-field exponents in a variety of cases.

Future Work:

• More studies in *two & three dimensions*: d = 1 CFT, \mathbb{H}_3 , AdS₃.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Gauge theories and fermions
- Effective boundary action

Thank you!

(ロ)、(型)、(E)、(E)、 E) の(()

References I

 Asaduzzaman, M., Catterall, S., Hubisz, J., Nelson, R., and Unmuth-Yockey, J. (2020).
 Holography on tessellations of hyperbolic space.
 Phys. Rev. D, 102:034511.

 Baek, S. K., Mäkelä, H., Minnhagen, P., and Kim, B. J. (2011).
 Ising model on a hyperbolic plane with a boundary. *Phys. Rev. E*, 84:032103.

Benedetti, D. (2015).

Critical behavior in spherical and hyperbolic spaces. Journal of Statistical Mechanics: Theory and Experiment, 2015(1):P01002.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

References II

- Breuckmann, N. P., Placke, B., and Roy, A. (2020).
 Critical properties of the ising model in hyperbolic space.
 Phys. Rev. E, 101:022124.
- Brower, R. C., Cogburn, C. V., Fitzpatrick, A. L., Howarth, D., and Tan, C.-I. (2021).
 Lattice setup for quantum field theory in ads₂.
 Phys. Rev. D, 103:094507.

Jiang, Y., Dumer, I., Kovalev, A. A., and Pryadko, L. P. (2019).

Duality and free energy analyticity bounds for few-body ising models with extensive homology rank.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Journal of Mathematical Physics, 60(8):083302.

References III

Klebanov, I. R. and Witten, E. (1999).
 Ads/cft correspondence and symmetry breaking.
 Nuclear Physics B, 556(1):89–114.

Krcmar, R., Gendiar, A., Ueda, K., and Nishino, T. (2008).
 Ising model on a hyperbolic lattice studied by the corner transfer matrix renormalization group method.
 Journal of Physics A: Mathematical and Theoretical, 41(12):125001.

Ueda, K., Krcmar, R., Gendiar, A., and Nishino, T. (2007). Corner transfer matrix renormalization group method applied to the ising model on the hyperbolic plane. *Journal of the Physical Society of Japan*, 76(8):084004.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Wu, C. C. (1996).

Ising models on hyperbolic graphs.

Journal of Statistical Physics, 85:251–259.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ