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Introduction



Introduction
Curved lattices

I Flat, positive, and negative
curvature spaces.

deficit angle

δh = 2π − nh × θD

I δh measure the deviation
from flat.

I h a “hinge”

I h is D − 2 object

I nh number of D-dimensional
gons around h.

I θD is angle between D − 1
faces around h.



Introduction
Curved lattices

I Positively curved, closed
surface

I Equilateral triangles

I θ2 = π/3

I Hinge is a vertex (site)

I Three triangles around
vertex



Introduction
Curved lattices

I Flat, open surface

I Equilateral triangles

I θ2 = π/3

I Six triangles around vertex



Introduction
Hyperbolic lattices

I Negatively curved, open
surface

I Equilateral triangles

I θ2 = π/3

I Seven triangles around
vertex



Introduction
Hyperbolic lattices

I Poincaré disk

I Equilateral triangles

I Seven triangles
around vertex

I Schläfli notation
{p, q, r , . . .}
→ p sided convex

polygon, q of them
around a vertex, r
of these around
each edge etc. . .

I {p, q} → {3, 7}
lattice



Introduction
The boundary

Excess polygons =⇒ strange
boundary behavior

I Boundary grows
exponentially

I Boundary constant
fraction of total

I Boundary is never
“negligible”
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Including fields
Scalar fields

Free scalar field:

Scont =

∫
d2x
√
g

1

2
(∂µφ∂µφ + m2

0φ
2)→ Slat =

∑
x ,y

φxLxyφy

=⇒ 2-pt. propagator:

C (|x − y |) = L−1
xy

Interacting field theory:

Slat = −β
∑
〈xy〉

σxσy − h
∑
x

σx

=⇒ 2-pt. correlator:

C (|x − y |) = 〈σxσy 〉 − 〈σx〉〈σy 〉



Including fields
Bulk thermodynamics & propagators

I Critical temperatures: [Wu, 1996, Jiang et al., 2019]

- Existence of transition
- Multiple transitions

I Critical exponents: [Ueda et al., 2007, Krcmar et al., 2008,
Baek et al., 2011, Benedetti, 2015, Breuckmann et al., 2020]

- Mean-field exponents for Ising?
- Two and three dimensions

I General correlators and continuum limit [Brower et al., 2021]

- φ4 theory
- Thorough investigation of 2-pt. and 4-pt correlators.
- Large-small mass limits
- Refinement → continuum
- Talks Theoretical developments:

I July 27th, 21:15 (Richard Brower)
I July 27th, 21:30 (Evan Owen)
I July 29th, 22:15 (Cameron Cogburn)



Including fields
Boundary propagators

Boundary correlators and holography [Asaduzzaman et al., 2020]

- Two, and three dimensions

- Multiple tessellations of H2

- d = 1 and d = 2 boundary power-law correlators

- Klebanov-Witten behavior [Klebanov and Witten, 1999]

- Talk Theoretical developments:
I July 27th, 21:45 (Muhammad Asaduzzaman)



Expectations



Expectations
Klebanov-Witten

Free field, continuum, boundary 2-pt propagator,

C (r) ∝ r−2∆±

Power-law behavior known explicitly:

2∆± = d ±
√
d2 + 4L2m2

0

I d is the boundary dimension

I ∆± correspond to different boundary conditions

I L is radius of curvature



Expectations
Power-law boundary correlations

- High-temperature expansion of the Ising model

Z ∝
∑
{Γ}

tanhΓ(β)

Γ: closed, intersecting loops

- At leading order, the two-point correlator between boundary
points

C (R) ∝ tanhR(β) = e− log(coth β)R

R is bulk geodesic distance.

- The boundary distance, r : R ∼ log r ,

C (r) ∝ r− log(coth β)



Results



Results
Two dimensions

Free, massive scalar field theory:
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{3, 7} lattice.

∆ = A +
√
A2 + Bm2

0

A, and B match analytic formula well.



Results
Two dimensions

Ising model, boundary correlator

C (r) ∼ r log(tanh β)
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Results
Three dimensions

Free, massive scalar field theory:
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I {4, 3, 5} lattice → five cubes around an edge.

I A is close to 1.



Conclusions & Future work

Remarks:

I CFTs appear supported on the boundary.
I The “magic” of holography can be traced back to

- exponential growth of boundary relative to bulk.
- “R ∼ log r”

I Free scalar field recovers Klebanov-Witten

I Ising model may have mean-field exponents in a variety of
cases.

Future Work:

I More studies in two & three dimensions: d = 1 CFT, H3,
AdS3.

I Gauge theories and fermions

I Effective boundary action



Thank you!
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