

R&D needs for "cold" electronics for superconducting magnets -Fermilab perspective

Steve Krave and <u>Stoyan Stoynev (FNAL)</u> CEC/ICMC 2021 19 July 2021

Thanks to Roger Rabehl, Tony Vouris, Tom Cummings (FNAL)

Outline

- Superconducting magnet R&D goals in the context of data taking
- Data communication lines at a superconducting (accelerator) magnet test faculty
- Data taken, needs and limitations
- Sensor arrays are here to stay more channels
- Data characteristics request : based on 21-st century architecture
- "Cold" (cryo) electronics wish list
- Past and contemporary support by FNAL magnet systems
- What are we missing?

R&D goals (accelerator magnets)

https://science.osti.gov/-/media/hep/pdf/Reports/2020/USMDP-2020-Plan-Update-web.pdf

Office of

7/21/2021

Program goals

Explore the performance limits of Nb₃Sn accelerator magnets, with a sharpened focus on minimizing the required operating margin and significantly reducing or eliminating training **Develop and demonstrate an HTS accelerator magnet with a self-field of 5 T or greater**, compatible with operation in a hybrid HTS/LTS magnet for fields beyond 16 T **Investigate fundamental aspects** of magnet design and technology that can lead to substantial performance improvements and magnet cost reduction **Pursue Nb₃Sn and HTS conductor R&D** with clear targets to increase performance, understand present performance limits, and reduce the cost of accelerator magnets

We need to understand complex phenomena and that requires a multi-physics approach, with attention to finer spatial and temporal resolution than before. Simulation tools are of great help, and given their improving quality they need too to be validated much more precisely than in past. More data More data sources Better precision Good synchronization

Superconducting magnet performance questions

ENERGY Office of Science 7/21/2021

A. V. Zlobin et al., "Reassembly and Test of High-Field Nb3Sn Dipole Demonstrator MDPCT1," in IEEE Transactions on Applied Superconductivity, vol. 31, no. 5, pp. 1-6, Aug. 2021, Art 4000506, doi: 10.1109/TASC.2021.2057571

How does a typical "cold" testing facility get data

VMTF at FNAL

Instrumentation Tree

Side C

Side A: temperature and liquid level sensors, auxiliary CVT channels

Side B: Quench characterization (CVT) channels (including quench antenna)

VMTF Facility limits

128 pins for quench characterization

~32 pins for magnet protection

64 + 8 strain gauge channels (including powering)

Side C: Quench detection/ magnet protection and heater power/readout connectors

Side D: Strain gauge connectors

(various gauges/connectors; all are graded to sustain 1+ kV - pin-to-pin or to ground) *16 (4-wire) channels for protection heaters*

~ 32 pins for cryo-support sensors

~16 auxiliary pins

~ 500 pins ("wires")

How does a typical "cold" testing facility get data (2)

Cable ends (connectors) go to the Instrumentation tree

The whole electronics in the rack on the left is replaceable by the ~ 10"x10" device below.

Magnet wired connectors are connected to the other side of the tree (below ground level)

Sometimes a stand-alone DAQ is used, still utilizing the Instrumentation tree

Below ground level

"Lambda plate" (allows for < 2.1 K operation in LHe, typically < 1.9 K)

- Much more feed-throughs for wires risk to tilt the heat balance, there are practical limitations
- We will also run out of space with too many wires and connectors (nevermind the complexity and risk of dealing with multiple wire bunches and connections)

But the world ran "just fine" for tens of years that way, do we really need more data from magnets, how much more?

For production magnets (like LHC ones) we don't need more data. R&D test facilities are a whole different story...

"Cold" data

NOW										
Channel							-	We may want to increase DAQ rate to ~ 10 kHz,		
	•	Bit	Frequency	Bandwidth	Bandwidth	Wires per	Total			at least for part of the channels
Channel	Count	Depth	(kHz)	(kbps)	(kbps)	channel	Wires			Ma definitely went to increase both
.									_	we <u>definitely</u> want to increase both
Strain, temp.	/0	22	0.0003	3 0.007	0.5	2	1	280		number of channels (100s) and DAQ rate (~ 100 kHz)
- · · ·										We want to take data at 100 kHz
Quench Ant	15	16		/ 112	1680	4	2	30		
vtap	100	16	5 7	7 112	11200	1	1	100		We can work with 100 1000 kHz rate
Acoustic	5	16	5 1000	16000	80000	2	2	10		we call work with 100-1000 kHz late,
										we may want to increase the number of channels
Total										
Bandwidth					93000				Otheringt	www.encentetion.twee.enctontially.with
In Mbps					93				Other inst	
with									multi-cha	nnels:
overhead					200				Hall-prob	es, fiber-optics, temperature sensors,
Total Wires								~450	Arrays cou	Ild provide fine resolution multi-physics data

Mid-range high-speed internet

It is easy to see that we take as much data as we can at the bandwidth we can afford.

Those limits are often impeding development of advanced diagnostics.

The biggest problem currently is the number of available channels ("wires").

Multi-channel push

AUP quench antenna array for in-bore reading (warm)

> Flexible PCB quench antennas (flex-QA) are a good **example** of array based high-rate instrumentation that puts much stronger demands on test stand support.

R&D quench antenna array "on coil" (cold)

J. DiMarco et al., "A Full-Length Quench Antenna Array for MQXFA Production Series Quadrupole Magnet Testing," in IEEE Transactions on Applied Superconductivity, vol. 31, no. 5, pp. 1-5, Aug. 2021, Art no. 9500705, doi: 10.1109/TASC.2021.3068933.

7/21/2021

Office of

Science

Spatial resolution relates to the size of individual channels. Experiments show that even small flex-QA are also very sensitive; those QA likely can only read close-by coils. To cover all coil surfaces with good resolution a lot of channels are needed, ideally a proper signal processing can happen on-board.

Multi-channel push (2)

7/21/2021 Transactions on Applied Superconductivity, vol. 31, no. 5, pp. 1-5, Aug. 2021. Art no. 9500705. doi: 10.1109/TASC.2021.3068933

Science

Superconductivity, vol. 27, no. 4, pp. 1-5, June 2017, Art no. 4004105, <u>1</u> doi: 10.1109/TASC.2016.2642169.

Extended-data limits

Voltage taps: <u>100 channels x 16 bits x 100 kHz</u> For quench characterization with no amplifiers: ± 1 V range (we need negative readings for inductive response) and (no amplifiers necessary but channels need to 16 bits gives ~30 μ V resolution, ±5 V range is acceptable too be isolated due to risk of high voltages) (can we regulate range without amplifiers?). depth 12 bits and less at ± 5 V range is detrimental for R&D purposes bits (will benefit from dynamic range options or amplifiers) 65,536 16 160 Mbps total (we need to read all channels) 16,384 14 12 4,096 Strain gauges: 70 channels x 24 bits x 10 kHz The dynamic range can be squeezed a lot (bridge configurations) and it is not clear how useful sensors can be at high rate. Provisionally we can work with just 10 channels x 16 bits and 10 kHz but this may get expanded.

1.6 Mbps total (limited number of channels of interest)

Extended-data limits (2)

Quen no ai	ch antenn mplifiers n	as : <u>200 channels x 16 bits x 100 kHz</u> necessary)	±5 V range and 16 bits gives ~0.15 mV resolution, May be able to work with 14 bits but not 12 bits without changing the range.				
bits	depth	320 Mbps total (could	Ild get extended by a factor of two at least, easily) ible to multiplex (read "interesting" data only), data processing at "cold": it is not given this works for us in all cases				
16	65,536	It may be possib requires more da					
14	16,384						
12	4,096						
Acoustic sensors: <u>5 channels x 16 bits x 500 kHz</u> (no new electronics necessary but may use different means of transmission)			±5 V range and 16 bits gives ~0.15 mV resolution, 12 bits will still be acceptable. Developments requiring a large array of channels is a possibility (reducing data rate and bits per channel)				

40 Mbps total (some possibility to extend by a factor of 10)

Temperature/Hall sensors: 100 channels x 16 bits x 1/100 kHz (those are potential developments, other may arise)

U.S. DEPARTMENT OF

ENERGY Science

Office of

7/21/2021

Limits driven by Hall probes. Those are similar to and can be considered in OR with the Quench antenna.

Extended-data limits (3)

The **total data rate** comes to 530 Mbps and including possible extensions and provisional channels for future development **<u>can be set at 1 Gbps</u>**.

Ethernet or fiber-optics cables are applicable though their stable performance at cryo-temperatures should be assessed

	Category	tegory Max. Data Rate B		Max. Distance	e	Usage				
	Category 1	egory 1 1 Mbps				Telephone and modem lines				
	Category 2 4 Mbps		4 MHz			LocalTalk & Telephone				
	Category 3 10 Mbps		16 MHz	100 m (328 ft.)		10BaseT Ethernet				
	Category 4 16 Mbps		20 MHz	100 m (328 ft.)		Token Ring				
	Category 5	100 Mbps	100 MHz	100 m (328 ft.))	100BaseT Ethernet				
	Category 5e	1 Gbps	100 MHz	100 m (328 ft.)		100BaseT Ethernet, residential homes				
	Category 6	6 1 Gbps 250 M		100 m (328 ft.) 10Gb at 37 m (121 ft.)		Gigabit Ethernet, commercial buildings				
	Category 6a	10 Gbps	500 MHz	100 m (328 ft.)		Gigabit Ethernet in data centers and commercial buildings				
	Category 7	tegory 7 10 Gbps 600		100 m (328 ft.)		10 Gbps Core Infrastructure				
	Category 7a	10 Gbps	100 m (328 ft.) 40Gb at 50 m (164 ft.)		10 Gbps Core Infrastructure					
	Catagory 8	25 Chos (Cat 8 1)	2000 MHz	30 m (98 ft.)	Cable Typ	e	Typical Gauge	Diameter (incl	hes)	
	Category 6	40 Gbps (Cat8.2)			Cat8		22 AWG	0.0253		
Ľ						3	23 AWG	0.0226		
					Cat5e		24 AWG	0.0201	0.0201	
					Slim Cat6		28 AWG	0.0126		
						Cat6	32 AWG	0.0080		

Ethernet Cables

Heat load limitations

- According to our engineers an unmodified Lambda-plate can handle 30 W of additional power below it (1.9 K operation)
- Operation without the warm bore tube (sealed) gives an additional margin of 6 W
- Existing cable feed-throughs
 do not contribute substantially to the heat load

Heat load is dominated by bus work, warm bore tube and direct leaks between the two plate sides.

7/21/2021

Office of

Thus, the upper limit for "cold" electronics is ~ 30-40 W. We don't expect much higher limits in other test facilities of this type, may be lower.

We could work with higher power dissipation (factor of two?) at 4.5 K but liquid usage efficiency suffers, and we have limited liquid flow anyway.

"Cold" electronics wish list

- At least 1 Gbps data rate
 At least 250 channels
 fully differential input(s)
 250 kHz sampling per channel
 At least 16 bits in (-5 V, 5 V) signal range; preferably configurable
 another option is the use of "cold" amplifiers with at least gain of 10
 separately development of isolation amplifiers for use at the above conditions

 differential input protection of 500 V in working conditions
 2 kV channel-to-channel, and channel-to-ground isolation in working conditions
- the system should be able to start and operate in liquid helium

Office of

7/21/2021

300 channels at 30 W (to start with)

Contacts and early support

- Working with Marcos T. (LBNL) and Ryan R. (FNAL, Computing Divisions) who are main developers
- A Summer student (Kevin Riley) was helping a couple of years ago

7/21/2021

- GEL Board was tested in liquid nitrogen
- Did not work with the crystal (clocking device)
- It worked without it and a CAPTAN board attached for testing of the board as an operating ethernet link

For this test, the voltage regulators were also removed, and leads were reattached to the output pads of the regulators

The goal of the test was to clarify which components of the GEL board could operate in cryo-environment

Continuing support

- Continuing cooperation with Marcos T. (LBNL) and Ryan R. (FNAL, Computing Divisions)
- Divya S. (FNAL, Computing division) is performing the latest round of testing

Office of

Science

7/21/2021

A 3-channel power supply,

(1.9 K and 4.5 K) **but**

- 1.5 V, 2.5 V, 4.7 V voltages are used for cryo-captan (including miniADC).
- Ryan's talk covers the relevant details
- Testing in liquid nitrogen only for now

helium (no resources for development)

Once those prove to be working, we'll test in liquid helium

there is no plan of action in case they do not work in liquid

SBIR/STTRs?

- While there is some collaboration with industry, so far, we did not provide to DOE
 a proper description/request for development among the DOE annual SBIR/STTR topics (for acc. magnets)
- We are working on proposal to DOE to include a sub-topic for accelerator magnets

Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Program We are very much inclined in supporting industry development of "cold" electronics.

SUPERCONDUCTOR TECHNOLOGIES FOR PARTICLE ACCELERATORS

Draft-proposal for a dedicated sub-topic (may change before sending):

Grant applications are sought to develop electronics working at liquid helium temperatures (a.k.a. "cold" electronics). The main issue to resolve is optimizing the space required for feed-through channels being brought from liquid helium to room temperature by digitizing the signals and transmitting them through large bandwidth connections. The main target parameters are 1 Gbps data rate, at least 14 (better 16) bits per channel and sampling rates above 200 kHz. Use of amplifiers is recommended. The power consumption should be less than 100 mW per channel and the system should be able to start and operate in super-fluid liquid helium.

Summary

- Significant superconducting magnet R&D is needed to make good progress on performance
- Up to date research questions and techniques require much larger data and channel footprint than available
- We are still relying on direct signal transfer from "cold" to "warm" environment
- Our immediate needs could be met by the ability to transfer additional few hundreds of channels with total data rate of 1 Gbps but those could easily be exceeded
- "Cold" electronics with "modest" requirements can serve this purpose and there is no practical alternative
- While FNAL is assisting in this research we could not afford to invest in it significantly
- We are open to partnerships and supporting industry and are trying to promote the importance of this field of development

7/21/2021

