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Introduction

Motivation

@ LHC requires large number of
Monte Carlo events

@ Due to CPU costs, MC statistics
will become significant uncertainty

J. Isaacson MEs on GPUs
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[S. Hoche, S. Prestel, H. Schulz, 1905.05120]

@ Time to generate an event dominated by hard process not shower

@ Large computational cost for unweighting at high multiplicity
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Introduction

ML Works to Reduce Cost

Phase Space Generation from Random

Phase Space Generation from Samples Numbers
@ Requires a large sample before training o Generates events as needed
@ GAN and VAE based [1707.0028, 1901.00875, ) Normalizing flow based [2001.05478, 2001.05486,

1901.05282, 1903.02433, 1907.03764, 1909.01359, 1909.04451, 2001.10028, 2104.04543]

1912.08824, 2008.06545, 2008.08558, etc.] @ See talk from Timo JanBen from
yesterday for more details
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Introduction

ML Works to Reduce Cost

Phase Space Generation from Random

Phase Space Generation from Samples Numbers
@ Requires a large sample before training o Generates events as needed
@ GAN and VAE based [1707.0028, 1901.00875, ) Normalizing flow based [2001.05478, 2001.05486,

1901.05282, 1903.02433, 1907.03764, 1909.01359, 1909.04451, 2001.10028, 2104.04543]

1912.08824, 2008.06545, 2008.08558, etc.] @ See talk from Timo JanBen from
yesterday for more details

Both approaches will benefit from improved event generation time
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Introduction
Recursive Matrix Element Generation

Brends-Giele Recursion

@ Reuse parts of calculation S
@ Most efficient for high
multiplicity
@ Reduces amplitude
computations from O (n!) to
O (3™) for color-dressed and
O (n?) for color-ordered.
o A(1,...,n) =
Ju(n)p? , JJH(1, ... n—1)

[Nucl. Phys. B306(1988), 759]
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Recursive Matrix Element Generation

Brends-Giele Recursion

@ Reuse parts of calculation S
@ Most efficient for high

multiplicity
@ Reduces amplitude
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Recursive Matrix Element Generation

Brends-Giele Recursion

@ Reuse parts of calculation S

@ Most efficient for high
multiplicity
@ Reduces amplitude

computations from O (n!) to
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Introduction

Recursive Matrix Element Generation

Brends-Giele Recursion
@ Reuse parts of calculation S
@ Most efficient for high

multiplicity @
@ Reduces amplitude
computations from O (n!) to
O (3™) for color-dressed and
O (n?) for color-ordered. @

o A(1,...,n)

Ju(n)p? , JJH(1, ... n—1)
[Nucl. Phys. B306(1988), 759] Etc. < >
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Introduction

Color-Ordered vs. Color-Dressed

Color-Ordered (CO):

@ Requires (n — 2)!2 color coefficients given by:
—— Permutation Sum C&&’ =

. . . a._r/
Amplitude Evaluation ( a [ Ayl a *
03}k A o2 n 1) ( 2 n 1)
10 E 1eGn F L F aian F . F

a1an

@ Need to sum over all permutations to obtain full
amplitude

] Color-Dressed (CD):

100} 1 @ Color summed at each vertex. No need to sum over
permutations

2 3 1 5 6 7 8
Nout

@ Can sample color to Monte-Carlo the color sum

Scaling for Color-Ordered calculations

@ Need to store color information of the gluons at
each vertex
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Why a GPU Implementation?

Next-Gen Supercomputer Aurora: @ Event generation is trivially

parallelizable
@ Aurora Compute Nodes:

o 2 Intel Xeon processors
e 6 Xeon arch-based GPUs

e oY o Unified Memory

@ =

@ Take advantage of modern
supercomputer setups

e ML is already on GPUs, only missing
[https://alcf.anl.gov/auroral piece Is event generation
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Memory Requirements

Heap memory [MB]
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MEs on GPUs
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Results

GPU Memory

Global memory shared by all events
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Results
Timings

10 — Gl”l,1 best I I ‘ I
103}l X Bloskten-cOx A
: 22:;??257}]3)(3[;MP1 ® )////l o CPU:
S 7 - Intel® Xeon®
§ sk ] E5-2650 v2 8-core
5 (2.60 GHz, 20 MB cache).
g 0p : e GPU: NVIDIA V100
- 107/ ] o CPUs are run with MPI with
16 threads to supply realistic
0+ ] chip-to-chip comparison
> 3 i 3 6 7 8 9
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Results

Future Steps

10% E

ol ] @ Implement quarks and massive vector
Bosons

100 S

@ Develop hybrid calculation approach

101 F S—

@ GPU Phase Space generator

07 E o Generate PS with cuts on CPU

] o Calculate PS weight and ME on GPU
» o Need to ensure memory transfer is

2 3 0 5 o 7 not the bottleneck

Ratio to BlockGen-COxy;

1072

10-1
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Results

Conclusions

Cost of Event Generation:
too- ATEASPreminary T
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Conclusions

Cost of Event Generation:
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Brends-Giele:
@ Optimal generation

@ Event generation
trivially parallelizable
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Results

Conclusions

_ Results:
Cost of Event Generation: Brends-Giele:
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@ Speedup 01“’”
approximately a factor
of 10

@ BlockGen-COs: is best
for ngy < 7

@ Matrix elements most
expensive
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