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Course outline and objectives



SUPERCONDUCTING QUANTUM
MATERIALS & SYSTEMS CENTER

Physics of Helium and Helium Mixtures
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• Helium-4 obeys Bose statistics
Helium-3 obeys Fermi statistics

•
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Helium mixtures
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Phase diagram and solubility

FORBIDDEN REGION

Finite solubility – on the 4He-rich 
side, the concentration does not 
go to zero at T=0

Diluting 3He into 4He depresses the superfluid transition 
temperature

Superfluid transition disappears completely for x > 67.5%

As a mixture with x > 6.6% is cooled, it will 
separate in to 2 phases.

One phase (the “concentrated phase”) will 
approach x=100%, the other (the “dilute phase”) 
will approach x = 6.6%.

This finite solubility and phase separation is key 
to the dilution refrigerator process
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Phase separation at low temperature

FORBIDDEN REGION

3He-rich phase
(essentially pure 3He)

Lower density, floats 
on top of the 4He-rich 
phase

4He-rich phase

Higher density
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•

•

zero heat capacity

•

3He-4He mixtures as Fermi liquids
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•

larger binding energy

• 3He atoms in pure 3He

• 3He atoms in 4He

–

Finite solubility (1)
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•
–

Binding energy of the 
3He atoms will increase with increasing x3

–
Binding energy of the 3He atoms will decrease with 

increasing x3

•

•

Finite solubility (2)



SUPERCONDUCTING QUANTUM
MATERIALS & SYSTEMS CENTER

•

heat of mixing
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Cooling power of the dilution refrigerator

This result is 
correct to with a 
few % for T<40 mK
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• liquid in the mixing chamber

•
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Cooling power – things to note
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•

•

difference 
in the osmotic pressure and driving 
the flow of 3He

Osmotic pressure
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Building a Refrigerator
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• Simplest model for the refrigerator 
is a U-tube

•
concentrated phase floats

on top of the dilute phase

•

General layout of a dilution refrigerator
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General refrigerator layout
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Heat exchanger design above 50 mK
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Heat exchanger design below 50 mK

•
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Practical configuration example

Table from Bradley et al. (1982). Fridge designed to operate at 3 mK

•

•
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Mixing chamber

Mixing chamber construction 
example from Uhlig (2015)
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• Important that pumps are sealed for helium use and do not
contaminate the process line

Room temperature components - Pumps
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Room temperature components – Filtering and sealing



SUPERCONDUCTING QUANTUM
MATERIALS & SYSTEMS CENTER

History and Development of the Dilution Refrigerator
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•

•
• 220 mK

• 80 mK

• 25 mK

•

Early development
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•

Early commercialization

(Left) Early commercial 
refrigerator insert

(Right) Commercial 
refrigerator with 
copper heat 
exchangers, c.1975
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•

• Joule-Thomson Heat 
Exchanger

•

counterflow exchanger 
expansion valve

–

Eliminating the liquid helium
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Eliminating the liquid helium (2)
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Eliminating the liquid helium (3)
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Eliminating the liquid helium (4)
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“Dry” vs “Wet” Refrigerators

Cooled by Pulse Tube to ~50 K

Cooled by Pulse Tube to ~4 K

Cooled and partially liquified by JT

Cooled and liquified by Still

Mixing Chamber

Cooled by Liquid Helium to ~4 K

Cooled and liquified by 1-K Pot

Cooled by Still

Mixing Chamber

“Dry” Process “Wet” Process
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Early commercial dry fridges
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Improvements to the precooler design

Additional heat exchanger 
(Uhlig, personal communication)
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Modern Dilution Refrigerator Design and Operation
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Modern refrigerator layout

Image: Oxford Instruments

2 stage pulse 
tube cooler

Additional heat 
exchanger
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Modern refrigerator layout – temperature stages and dilution unit

Images: Oxford Instruments

50 K (First stage pulse tube)

4 K (Second stage pulse tube)

1 K (Still)

0.1 K (Intermediate cold plate)

0.01 K (Mixing chamber)

Still

ICP

Mixing
Chamber
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Commercial fridge examples (1)

Small fridges
Mixing chamber diameter ~150mm

Minimum temperature ~25 mK

Image: Oxford Instruments
Image: Oxford Instruments

Standard fridges
Mixing chamber diameter ~300mm

Minimum temperature ~10 mK



SUPERCONDUCTING QUANTUM
MATERIALS & SYSTEMS CENTER

Commercial fridge examples (2)

Large frame fridges
Mixing chamber diameter ~500mm

Minimum temperature ~10 mK

Image: BlueFors
Image: Leiden Cryogenics

“XXL” fridges
Mixing chamber diameter ~1000mm

Minimum temperature ~10 mK
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Operational Considerations (1)
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Operational Considerations (2)
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Operational Considerations (3)
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Future Developments
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Larger and more powerful fridges
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Summary, Concluding Remarks, References
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Summary
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Final Remarks
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Useful References
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Commercial Manufacturers of Dilution Refrigerators 
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