First Results From the Fermilab Muon $g-2$ Experiment

Eremey Valetov

Michigan State University

On behalf of the Muon $g-2$ Collaboration
Muon Anomalous Magnetic Dipole Moment \((a_\mu)\)

Magnetic moment \(\mu = g \frac{e}{2m}s\)

Classical: \(g = 1\)

Dirac equation: \(g = 2\)

\[i \left(\partial_\mu - ieA_\mu(x) \right) \gamma^\mu \psi(x) = m\psi(x)\]

Interactions with quantum foam: \(g > 2\)

\[a_\mu = \frac{g-2}{2}\]
Contributions to a_μ in the Standard Model

QED incl. 4-loops + 5-loops

\[a_\mu = 116\,584\,718.86 \times 10^{-11} \]
\[\delta a_\mu = 0.03 \times 10^{-11} \]

Weak to 2-loops

\[a_\mu = 153.6 \times 10^{-11} \]
\[\delta a_\mu = 1.1 \times 10^{-11} \]

Hadronic LO VP

\[a_\mu = 6\,894.6 \times 10^{-11} \]
\[\delta a_\mu = 32.5 \times 10^{-11} \]

Hadronic LbL

\[a_\mu = 103.4 \times 10^{-11} \]
\[\delta a_\mu = 28.8 \times 10^{-11} \]

Theory: \((11\,659\,1783 \pm 43) \times 10^{-11}\)

Experiment (2021): \((11\,659\,2061 \pm 41) \times 10^{-11}\)

Recent Advances in the Theory

Improvements in $a_{\mu}^{\text{Had, LO VP}}$ (KNT18)

Direct energy scan: CMD-3, SND, KEDR
Radiative return: BABAR, KLOE/KLOE-2, BESIII

$\alpha_{\mu}^{\text{had, LO VP}} = (693.26 \pm 2.46) \times 10^{-10}$

Calculation of $a_{\mu}^{\text{Had, VP}}$ and $a_{\mu}^{\text{Had, LbL}}$
using Lattice QCD

- From first principles
- Can be used to improve R-ratio results
- Several collaborations working on this
 - including RBC/UKQCD and Mainz
- Precision needs improvement; calculations ongoing

In case of a Beyond-SM a_μ, some of the possible contributors to the respective discrepancy would be:

- Dark matter
- Supersymmetry (SUSY)
- Extra dimensions
- Additional Higgs Bosons

[S. Iguro et al., arXiv:1907.09845 [hep-ph]]

Muon g-2 window in the search for inelastic dark matter (iDM):

NA62 Experiment at CERN is ongoing and may yield iDM results.

Improvements over the Muon g-2 Experiment at BNL (E821):
- More muons, delivered more often to the storage ring
- Improved muon storage function
- Better beam dynamics modeling
- Higher field uniformity and better field monitoring
- Reduced spin precession frequency systematics
From BNL to FNAL: the Great Move

2013

Tennessee-Tombigbee Waterway / Mississippi, Illinois and Des Plaines rivers
Technical design projection:
- ~20x more data
- ~3x reduction of systematic errors
The Muon g-2 Storage Ring

- Storage ring: 7 m radius toroidal C-magnet with 1.45 T magnetic field
- Inflector: cancels the 1.45 T main magnetic field for muons at injection
- Kickers deflect the injected muons onto the centerline orbit
- Electrostatic quadrupoles provide vertical beam focusing
If $g = 2$, the angle between the magnetic moment and the momentum does not change. If $g > 2$, the angle between the magnetic moment and the momentum changes linearly.

\[
\omega_a = 0 \\
\omega_a = -a_\mu \frac{qB}{m}
\]
Straw trackers: reconstruct decay e^+ trajectories
Calorimeters: detect decay e^+ energy and arrival times
The Wiggle Plot

Muon spin and momentum are aligned.

\[f(t) = N_0 e^{-\lambda t} [1 + A \cos(\omega_a t + \phi)] \]

- \(\lambda \): exponential decay constant
- \(\omega_a \): muon anomalous precession frequency

Muon spin and momentum are anti-aligned.

Early-to-late phase change:
If, \(\phi = \phi(t) = \phi_0 + \phi_1 t \), then
\[
\cos(\omega_a t + \phi) = \cos(\omega_a t + \phi_0 + \phi_1 t) = \\
= \cos((\omega_a + \phi_1) t + \phi_0)
\]
Calculation of a_μ from Muon and Proton Spin Precession

\[
\alpha_\mu = \frac{\frac{g_e}{2}}{\frac{m_\mu}{m_e}} \frac{\omega_a}{\left\langle \omega_p \right\rangle}
\]

(140 ppb)

From CODATA [1]:
\[
\begin{align*}
g_e &= -2.002\ 319\ 304\ 361\ 82(52) \ (0.00026 \text{ ppb}) \\
m_\mu/m_e &= 206.768\ 2826(46) \ (22 \text{ ppb}) \\
\mu_e/\mu_p &= -658.210\ 6866(20) \ (3.0 \text{ ppb})
\end{align*}
\]

Passive shimming is performed by inserting tiny metal pieces to increase the field.

Magnetic field was made 3× more uniform than at BNL.

Active shimming is also used.
Fixed and Trolley-Mounted NMR Probes

Fixed probes on vacuum chambers

Trolley with matrix of 17 NMR probes

Electronics, Microcontroller, Communication

Position of NMR probes
<table>
<thead>
<tr>
<th></th>
<th>Correction</th>
<th>Uncertainty</th>
<th>Design goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega^m_a) (statistical)</td>
<td>–</td>
<td>434</td>
<td>100</td>
</tr>
<tr>
<td>(\omega^m_a) (systematic)</td>
<td>–</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>base clock</td>
<td>–</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(C_e)</td>
<td>489</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>(C_p)</td>
<td>180</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>(C_{ml})</td>
<td>-11</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>(C_{pa})</td>
<td>-158</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>(\omega_a) beam dynamics corrections ((C_e + C_p + C_{ml} + C_{pa}))</td>
<td>499</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>(\omega_a) total systematic</td>
<td>499</td>
<td>109</td>
<td>70</td>
</tr>
<tr>
<td>(\omega'_p(T)(x, y, \varphi))</td>
<td>–</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>(M(x, y, \varphi))</td>
<td>–</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>(\langle \omega'_p(T)(x, y, \varphi) \times M(x, y, \varphi) \rangle)</td>
<td>–</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>(B_q)</td>
<td>-17</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>(B_k)</td>
<td>-27</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>(\omega'_p(T)) transient fields corrections ((B_q + B_k))</td>
<td>-44</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>(\omega'_p(T)) total</td>
<td>44</td>
<td>114</td>
<td>70</td>
</tr>
<tr>
<td>(\omega_a/\omega'_p(T)) total systematic</td>
<td>544</td>
<td>157</td>
<td>100</td>
</tr>
<tr>
<td>external measurements</td>
<td>–</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>total [correction is for (\omega_a/\omega'_p(T))]</td>
<td>544</td>
<td>462</td>
<td>140</td>
</tr>
</tbody>
</table>
In the following eight or nine slides, I will talk about some of my recent personal contributions:

- end-to-end simulations
- application of simulation results to muon loss systematics
Need to understand potential sources of early-to-late beam-related systematics.
Muon g-2 Target Station

Inconel target

Copper collimator

Lithium lens

Pulsed magnet (PMAG)

Lithium Lens

Target
Simulations Using High Performance Computing Systems

2×10^{13} protons on target

HPC systems:
- NERSC
 - Cori (2015–): 30 PFLOPS
- Open Science Grid
 - Up to 10000 cores at a time
- FermiGrid

Simulation tools:
- gm2ringsim (Geant4)
- COSY INFINITY
- BMAD
- MARS
- G4Beamline (Geant4)
InitZ: muon creation location. PhiX: muon spin phase at entrance into the ring. dp/p0: momentum deviation. All data within $|\frac{dp}{dp0}| < 0.5\%$, i.e. 3σ acceptance of the storage ring.
Dependence of Relative Initial Phase on Momentum

Experimental data: Hannah Binney.

A real momentum dependence of the initial phase develops because of magnetic dipoles in the Delivery Ring.

Experimental data: based on runs with muon storage with higher or lower momenta.
A $-11(5)$ ppb correction due to muon losses.
Far below the overall 70 ppb systematic error on the spin precession.
Meeting the TDR goal of 20 ppb.
The Decision to Unblind: a Remote Meeting of the Collaboration
Run-1 Result of the Muon g-2 Experiment

The SM value is the Muon g-2 Theory Initiative recommended value.
Publications of the Muon g-2 Experiment

Run-1 papers

- Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm
 https://doi.org/10.1103/PhysRevLett.126.141801

- Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g-2 Experiment
 https://doi.org/10.1103/PhysRevD.103.072002

- Magnetic-Field Measurement and Analysis for the Muon g-2 Experiment at Fermilab
 https://doi.org/10.1103/PhysRevA.103.042208

- Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab
 https://doi.org/10.1103/PhysRevAccelBeams.24.044002
Projection of Data Acquisition as a Multiple of BNL Data

Currently at \(~12.43 \times \) BNL data
Future EDM or μ^- anomalous MDM Possibilities

- Currently measuring μ^+ anomalous MDM
- Measure μ^+ EDM using vertical phase asymmetry detection in calorimeters
- Measure μ^- by reconfiguring the beamlines and storage ring (switching electric field direction)
 - No other proposed experiment can do μ^- (JPARC μ^+ only)
The first a_μ result was released (Run-1), with precision 460 ppb
- The combined FNAL+BNL result has a 4.2σ tension with the SM prediction
- We already have $\times 10$ more data compared to Run-1
- Run-2 and Run-3 results are expected to be ready for release in ~1 year
- The experiment continues physics runs to accumulate statistics for a total uncertainty of 140 ppb
 - Run-4 is complete, and Run-5 will begin soon
This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-FG02-08ER41546 and Contract No. DE-SC0018636.

This document was prepared by the Muon g-2 collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

This research was done using resources provided by the Open Science Grid, which is supported by the National Science Foundation award 1148698, and the U.S. Department of Energy's Office of Science.
• 1.45 T bucking field to cancel main field
• Can’t perturb main field by more than ~1 ppm
• Interface optics of storage ring and the M5 beamline
Fitting Function Example: 20 Point

\[N = N_0 \Lambda N_{\text{cbo}} N_{2\text{cbo}} N_{\text{vw}} e^{-t/\tau} (1 - A A_{\text{cbo}} \cos(\omega_{\text{cbo}} t + \phi_{\text{cbo}})) \]

\[
N_{\text{cbo}} = 1 - A_{1\text{cbo}} e^{-t/\tau_{\text{cbo}}} \cos(\omega_{\text{cbo}} t + \phi_{1\text{cbo}})
\]

\[
N_{2\text{cbo}} = 1 - A_{2\text{cbo}} e^{-t/\tau_{\text{cbo}}} \cos(2 \omega_{\text{cbo}} t + \phi_{2\text{cbo}})
\]

\[
N_{\text{vw}} = 1 - A_{\text{vw}} e^{-t/\tau_{\text{vw}}} \cos(\omega_{\text{vw}} t + \phi_{\text{vw}})
\]

\[
A_{\text{cbo}} = 1 - A_{A\text{cbo}} e^{-t/\tau_{\text{cbo}}} \cos(\omega_{\text{cbo}} t + \phi_{A\text{cbo}})
\]

\[
\phi_{\text{cbo}} = 1 - A_{\phi\text{cbo}} e^{-t/\tau_{\text{cbo}}} \cos(\omega_{\text{cbo}} t + \phi_{\phi\text{cbo}})
\]

\[
\omega_{\text{cbo}} = \omega_0 (1 + 2.875 e^{-t/7.6} / \omega_0 t + 5.47 e^{-t/8.85} / \omega_0 t)
\]

\[
\Lambda = 1 - K_{\text{loss}} \int L(t') e^{t' / 64.4} dt
\]

\[
\chi^2 = \sum_{i=1}^{n_{\text{df}}} \left[\frac{N_{\text{bin}} - N_{\text{fit}}}{\sigma(N_{\text{bin}})} \right]^2
\]
Straw Tracking Detectors