

First Results From the Fermilab Muon *g*-2 Experiment

Eremey Valetov

Michigan State University On behalf of the Muon g-2 Collaboration

This document was prepared by Muon g-2 Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

Introduction

Interactions w/ quantum foam: g > 2 $a_{\mu} = \frac{g-2}{2}$

Contributions to a_{μ} **in the Standard Model**

F. Jegerlehner, arXiv:1804.07409 [hep-ph] (2018).

Recent Advances in the Theory

Improvements in $a_{\mu}^{\text{Had, LO VP}}$ (KNT18)

Direct energy scan: CMD-3, SND, KEDR Radiative return: BABAR, KLOE/KLOE-2, BESIII

 $a_{\mu}^{\text{Had,LO VP}}$ $= (693.26 \pm 2.46) \times 10^{-10}$

A. Keshavarzi, D. Nomura and T. Teubner, Phys. Rev. D 97, no. 11, 114025 (2018).

Calculation of $a_{\mu}^{\text{Had, VP}}$ and $a_{\mu}^{\text{Had, LbL}}$ using Lattice QCD

- From first principles
- Can be used to improve R-ratio results
- Several collaborations working on this
 - including RBC/UKQCD and Mainz
- Precision needs improvement; calculations ongoing

Jegerlehner 2017 Teubner et al 2018 Davier et al 2019 RBC/UKQCD 2018 RBC/UKQCD 2018 BMW 2017 CLS Mainz 2019 FermiLab/HPQCD/MILC 2019 ETMC 2019 PACS 2019

V. Gülpers, arXiv:2001.11898 [hep-lat] (2020).

Beyond–Standard Model Possibilities

In case of a Beyond-SM a_{μ} , some of the possible contributors to the respective discrepancy would be:

- Dark matter
- Supersymmetry (SUSY)
- Extra dimensions
- Additional Higgs Bosons
 [S. Iguro *et al.*, arXiv:1907.09845 [hep-ph]]

Muon g-2 window in the search for inelastic dark matter (iDM) :

(*a*_D: analogue of the fine structure constant for a new *U*(1) gauge symmetry *U*(1)_D. Δ: mass splitting $\Delta = \frac{(m_2 - m_1)}{m_1}$.)

NA62 Experiment at CERN is ongoing and may yield iDM results.

See Y.-D. Tsai et al., arXiv:1908.07525 [hep-ph] (2019).

The Muon g-2 Experiment at Fermilab (E989)

Improvements over the Muon *g*-2 Experiment at BNL (E821):

- More muons, delivered more often to the storage ring
- Improved muon storage function
- Better beam dynamics modeling
- Higher field uniformity and better field monitoring
- Reduced spin precession frequency systematics

From BNL to FNAL: the Great Move

The Muon g-2 Experiment at Fermilab (E989)

Technical design projection:

- ➤ ~20x more data
- ~3x reduction of systematic errors

The Muon g-2 Storage Ring

If g=2, the angle between the magnetic moment and the momentum does not change. If g>2, the angle between the magnetic moment and the momentum changes linearly.

Measurement of Muon Spin Precession

Straw trackers: reconstruct decay e^+ trajectories Calorimeters: detect decay e^+ energy and arrival times

The Wiggle Plot

 $\cos(\omega_a t + \phi) = \cos(\omega_a t + \phi_0 + \phi_1 t) =$

 $= \cos((\omega_a + \phi_1)t + \phi_0)$

 ω_a : muon anomalous precession frequency

13

Calculation of a_{μ} from Muon and Proton Spin Precession

Magnetic Field Shimming

- Passive shimming is performed by inserting tiny metal pieces to increase the field.
- ➤ Magnetic field was made 3× more uniform than at BNL.
- ➤ Active shimming is also used.

Fixed probes on vacuum chambers

Trolley with matrix of 17 NMR probes

Corrections and Uncertainties Before Unblinding

	Correction	Uncertainty	Design goal
ω_a^m (statistical)	_	434	100
ω_a^m (systematic)	—	56	
base clock	_	2	
C_e	489	53	
C _e C _p C _{ml}	180	13	
C _{ml}	-11	5	
C_{pa}	-158	75	
ω_a beam dynamics corrections $(C_e + C_p + C_{ml} + C_{pa})$	499	93	
ω_a total systematic	499	109	70
$\omega'_{p}(T)(x, y, \varphi)$	_	54	
$M(x, y, \varphi)$	_	17	
$\langle \omega_p'(T)(x,y,arphi) imes M(x,y,arphi) angle$	_	56	
B_q	-17	92	
B_k	-27	37	
$\widetilde{\omega}_p'(T)$ transient fields corrections $(B_q + B_k)$	-44	99	
$ ilde{\omega}_p'(\mathcal{T})$ total	44	114	70
$\omega_a/ ilde{\omega}_p'({\cal T})$ total systematic	544	157	100
external measurements	_	25	
total [correction is for $\omega_a/ ilde{\omega}_p'(\mathcal{T})$]	544	462	140

In the following eight or nine slides, I will talk about some of my recent personal contributions:

▶ end-to-end simulations

> application of simulation results to muon loss systematics

Beamlines of the Muon Campus

Need to understand potential sources of early-to-late beamrelated systematics.

Muon g-2 Target Station

Simulations Using High Performance Computing Systems

2×10^{13} protons on target

HPC systems:

- NERSC
 - Edison (2013–2019): 2.57 PFLOPS
 - Cori (2015–): 30 PFLOPS
- Open Science Grid
 - Up to 10000 cores at a time
- FermiGrid

Simulation tools:

- gm2ringsim (Geant4)
- COSY INFINITY
- BMAD
- MARS
- G4Beamline (Geant4)

Dependence of Initial Phase on Muon Creation Location

Simulation results, preliminary

InitZ: muon creation location. PhiX: muon spin phase at entrance into the ring. dp/p0: momentum deviation. All data within $\left|\frac{dp}{dp0}\right| < 0.5\%$, i.e. 3σ acceptance of the storage ring.

Dependence of Relative Initial Phase on Momentum

Experimental data: Hannah Binney.

A real momentum dependence of the initial phase develops because of magnetic dipoles in the Delivery Ring.

Experimental data: based on runs with muon storage with higher or lower momenta.

A -11(5) ppb correction due to muon losses. Far below the overall 70 ppb systematic error on the spin precession. **Meeting the TDR goal of 20 ppb**.

The Decision to Unblind: a Remote Meeting of the Collaboration

Run-1 Result of the Muon g-2 Experiment

The SM value is the Muon g-2 Theory Initiative recommended value. T. Aoyama *et al.*, Phys. Rep. **887**, 1 (2020).

Run-1 papers

- Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm <u>https://doi.org/10.1103/PhysRevLett.126.141801</u>
- Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g-2 Experiment <u>https://doi.org/10.1103/PhysRevD.103.072002</u>
- Magnetic-Field Measurement and Analysis for the Muon g-2 Experiment at Fermilab <u>https://doi.org/10.1103/PhysRevA.103.042208</u>
- Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab <u>https://doi.org/10.1103/PhysRevAccelBeams.24.044002</u>

Projection of Data Acquisition as a Multiple of BNL Data

Currently at ~12.43 × BNL data

Future EDM or μ^- anomalous MDM Possibilities

- Currently measuring μ^+ anomalous MDM
- Measure µ⁺ EDM using vertical phase asymmetry detection in calorimeters
- Measure µ⁻ by reconfiguring the beamlines and storage ring (switching electric field direction)
 - No other proposed experiment can do μ⁻ (JPARC μ⁺ only)

Conclusion

- The first *a_μ* result was released (Run-1), with precision 460 ppb
 The combined FNAL+BNL result has a 4.2σ tension with the SM prediction
- ➤ We already have ×10 more data compared to Run-1
- Run-2 and Run-3 results are expected to be ready for release in ~1 year
- The experiment continues physics runs to accumulate statistics for a total uncertainty of 140 ppb
 - ➤ Run-4 is complete, and Run-5 will begin soon

• This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-FG02-08ER41546 and Contract No. DE-SC0018636.

- This document was prepared by the Muon g-2 collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.
- This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.
- This research was done using resources provided by the Open Science Grid, which is supported by the National Science Foundation award 1148698, and the U.S. Department of Energy's Office of Science.

Muon g-2 Inflector

- 1.45 T bucking field to cancel main field
- Can't perturb main field by more than ~1 ppm
- Interface optics of storage ring and the M5 beamline

$$N = N_0 \Lambda N_{cbo} N_{2cbo} N_{vw} e^{-t/\tau} (1 - AA_{cbo} \cos(\omega_a t + \phi \phi_{cbo}))$$

$$\begin{split} N_{cbo} &= 1 - A_{1cbo} e^{-\frac{t}{\tau_{cbo}}} \cos(\omega_{cbo}t + \phi_{1cbo}) \\ N_{2cbo} &= 1 - A_{2cbo} e^{-\frac{2t}{\tau_{cbo}}} \cos(2\omega_{cbo}t + \phi_{2cbo}) \\ N_{vw} &= 1 - A_{vw} e^{-\frac{t}{\tau_{vw}}} \cos(\omega_{ww}t + \phi_{vw}) \\ A_{cbo} &= 1 - A_{Acbo} e^{-\frac{t}{\tau_{cbo}}} \cos(\omega_{cbo}t + \phi_{Acbo}) \\ \phi_{cbo} &= 1 - A_{\phi cbo} e^{-\frac{t}{\tau_{cbo}}} \cos(\omega_{cbo}t + \phi_{\phi cbo}) \\ \omega_{cbo} &= \omega_0 (1 + 2.875 e^{-\frac{t}{76}} / \omega_0 t + 5.47 e^{-\frac{t}{8.85}} / \omega_0 t) \\ \Lambda &= 1 - K_{loss} \int L(t') e^{t'/64.4} dt \end{split}$$

Straw Tracking Detectors

