Domain Adaptation for Cross-Domain Studies in Astronomy:

Merging Galaxies Identification

Aleksandra Ćiprijanović
Research Associate
Scientific Computing Division
aleksand@fnal.gov

Where the Earth Meets the Sky
27-28 May 2021
Cosmic Dawn Center at DTU
1. Astro example and what I work on
2. What is domain discrepancy?
3. Domain adaptation - two methods
4. How does domain adaptation help?
Merging galaxies

WHY
To understand the evolution of our Universe (galaxy mergers lead to hierarchical formation of structures).

HOW
Leverage a large sample of merging galaxies to study.

PROBLEMS
Standard methods require knowledge about the morphology (we need for precise observations). Visual classification is very time consuming and prone to errors.

SOLUTION
Large simulations (we know the ground truth) + machine learning
Where are differences coming from?

Simulations are not perfect
- physics missing, computational resources

Dataset shift in astronomy

Making mock images is hard - adding noise, PSF, telescope imperfections

Use data from multiple telescopes with different specs

Simulation (source) LABELED!

Real (target) UNLABELED!
Two experiments

Simulation ⟷ Simulation + Noise

Simulation ⟷ Observations
Two experiments

- Illustris simulation
 - source (sim. + Hubble PSF)
 - target (sim. + PSF + random sky shot noise)
- Distant mergers at $z=2$
- 2233 individual galaxies
- $\sim 15,000$ images

Vogelsberger et al. (2014)

Čiprianović et al. (2020)
Total Loss = **Task Loss + Transfer Loss**

Task loss - very often categorical cross-entropy loss

$$L_{\text{cross-entropy}}(\hat{y}, y) = - \sum_i y_i \log(\hat{y}_i)$$

Transfer loss - domain alignment

Maximum Mean Discrepancy

Non-parametric distance between two probability distributions (distance of the mean embeddings of the samples in the kernel space).

Adversarial training on domain labels

Using Domain Adversarial Neural Network (DANN) to force domain-invariant feature extraction.
Maximum Mean Discrepancy - MMD

Are P and Q different?

Observe $X = \{x_1, \ldots, x_n\} \sim P$

Observe $Y = \{y_1, \ldots, y_n\} \sim Q$

$\hat{\mu}_P(v) := \frac{1}{m} \sum_{i=1}^{m} k(x_i, v)$

$\hat{\mu}_Q(v)$: mean embedding of Q

$\text{witness}(v) = \hat{\mu}_P(v) - \hat{\mu}_Q(v)$

$\text{MMD}^2 = ||\text{witness}(v)||_F^2$

$$= \frac{1}{n(n-1)} \sum_{i \neq j} k(x_i, x_j) + \frac{1}{n(n-1)} \sum_{i \neq j} k(y_i, y_j)$$

$$- \frac{2}{n^2} \sum_{i,j} k(x_i, y_j)$$

Minimize MMD loss by maximizing cross-similarities \Rightarrow we find domain invariant features!

From Arthur Gretton (NIPS 2016 Workshop on Adversarial Learning, Barcelona Spain)
Domain Adversarial Neural Networks - DANNs

DANN - feature extractor + label predictor + domain classifier

- **Gradient reversal layer** - multiplies the gradient by a negative constant during the backpropagation.
- Results in the extraction of **domain-invariant features**.
- Only source domain images are labeled during training.

Ganin et al. (2016)
Results

DeepMerge II: Building Robust Deep Learning Algorithms for Merging Galaxy Identification Across Domains

arxiv:2103.01373

Grad-CAM (merger class)

What is the network focusing on?

<table>
<thead>
<tr>
<th>Source Domain</th>
<th>Target Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>noDA</td>
<td>85% 58%</td>
</tr>
<tr>
<td>MMD</td>
<td>87% 77%</td>
</tr>
<tr>
<td>DANN</td>
<td>87% 79%</td>
</tr>
</tbody>
</table>
Results

DeepMerge II: Building Robust Deep Learning Algorithms for Merging Galaxy Identification Across Domains
arxiv:2103.01373

Grad-CAM (merger class)

What is the network focusing on?

<table>
<thead>
<tr>
<th></th>
<th>Source Domain</th>
<th>Target Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>noDA</td>
<td>85%</td>
<td>58%</td>
</tr>
<tr>
<td>MMD</td>
<td>87%</td>
<td>77%</td>
</tr>
<tr>
<td>DANN</td>
<td>87%</td>
<td>79%</td>
</tr>
</tbody>
</table>
Two experiments

Simulation → Simulation + Noise

Simulation → Observations
Two experiments

- **Source**: Illustris nearby galaxies
 - $z=0$
 - small dataset (44 mergers)!

- **Target**: Real galaxies - SDSS:
 - small dataset (310 mergers)!
 - $z<0.1$
 - very different, only simple examples!
 - labeled by humans!

- ~ 6000 images

Vogelsberger et al. (2014)
Darg et al. (2010)
Lintott et al. (2008)
Results

DeepMerge II: Building Robust Deep Learning Algorithms for Merging Galaxy Identification Across Domains

arxiv:2103.01373

Accuracy ~ 50%

<table>
<thead>
<tr>
<th>Source Domain</th>
<th>Target Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>noDA</td>
<td>91%</td>
</tr>
<tr>
<td>MMD</td>
<td>94%</td>
</tr>
<tr>
<td>MMD+T</td>
<td>83%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Domain</th>
<th>Target Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>noDA</td>
<td>50%</td>
</tr>
<tr>
<td>MMD</td>
<td>53%</td>
</tr>
<tr>
<td>MMD+T</td>
<td>69%</td>
</tr>
</tbody>
</table>
Results

MMD with TL form previous model - works!

Accuracy ~ 70%

<table>
<thead>
<tr>
<th>Source Domain</th>
<th>Target Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>noDA</td>
<td>91%</td>
</tr>
<tr>
<td>MMD</td>
<td>94%</td>
</tr>
<tr>
<td>MMD+T</td>
<td>83%</td>
</tr>
</tbody>
</table>
Summary

- **Merging galaxies** are important for the study of galaxy morphology, but also evolution of structure in the Universe.
- **Domain adaptation (DA) is crucial** for successful bridging between different data sets and full utilisation of ML in science.

What’s next?

- Harder problems will need more sophisticated methods that try to align classes (MMD aligns the entire distribution).
- Discrepant domains can lead to negative transfer and impact the performance.
- Can DA help us make more robust algorithms, understand decision boundaries and uncertainties of our ML algorithms?
Thank you!

aleksand@fnal.gov