Fermilab Dus. Department of Science

SUSY at the LHC

Anadi Canepa (acanepa @ fnal.gov)

PPC2021: XIV International Workshop on Interconnections between Particle Physics and Cosmology 17-21 May 2021, Univ. of Oklahoma

Outline

- Introduction to SUSY
- ATLAS and CMS at Run 2
- Latest results from SUSY searches
- Outlook

A brief reminder of SUSY

- The introduction of a new space-time symmetry requires the existence of SUSY partners of the SM particles with predictable couplings
- The experiments at LHC (LEP, Tevatron!) have adopted well motivated guiding principles to cast a wide net to search for SUSY
 - R-parity conservation (pair production, stable lightest SUSY particle)
 - Naturalness (gluinos, stops, electro-weakinos at TeV scale)

"Classic" SUSY search

- Events with large ETmiss and energetic jets
- SRs based on observables proxies of the SUSY mass scale and topological properties
- Control and validation regions for background estimate
- Simultaneous fit in both CRs and SRs (up to hundreds!) to look for excess
- Interpretation of results in simplified models

Where is SUSY?

- No significant deviations from SM expectations
- SUSY likely hidden in challenging regions of parameter space
 - Higher mass scale
 - Identify very high pT objects
 - Compressed spectra
 - Identify very low pT objects
 - Long-lived
 - Paradigm shift in object reconstruction
 - R-parity violation / Stealth
 - Explore events with low ETmiss
 - Unexpected

Focus on novel techniques targeting challenging signatures

All results from ATLAS and CMS searches at:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

The LHC Run 2

Run 2: Unprecedented dataset for HEP

- Revolution in data reconstruction and analysis thanks to modern machine learning algorithms
 - Moving from MultiVariate to Deep Neural Networks
 - Ability to extract information from highly complex data sets
 - Leap forward in reconstructing very challenging signatures from boosted decays of top quarks and bosons using substructures, soft-drop mass, heavy flavor information, and more

Courtesy of C. McLean

Searches for Gluinos and Squarks

"Classic" searches for gluinos and LF-squarks

- Legacy search for strongly produced light-flavor squarks and gluinos in the final state with one lepton, jets, and ETmiss
- Large Run 2 data enables classification of events in several SRs, CRs and excellent control of systematic uncertainties on tails of background
 - e.g. jet energy scale ~ few %

Searches for Stops and Sbottoms

Searches for stops directly produced and in gluino decays

Events

10⁵

10⁴

10

 10^{2}

10

1.5

155

N_{obs}/N_{exp}

ĊMS

160

165

(1, 0, 0)

137.0 fb⁻¹ (13 TeV)

Lost lepton

QCD multijet

💥 Bkg. uncertainty

T1tttt(2000, 400)

180

Data

 $Z \rightarrow v \overline{v}$

Rare

---- T2tt(1000,100)

(0.0.1

170

175

- Search in events with multiple (b-)jets, no leptons, and large ETmiss
- Advanced classification of events in 183 SRs
- Novel techniques based on **Deep Neural Networks** to reconstruct highly boosted top quarks expected from high mass stop signals
- Soft b-tagging (pT < 20GeV) optimized for compressed spectra

Searches for stops in the final states with taus

- Search exploiting the excellent performance of hadronic tau reconstruction
 - Tracking information improving resolution at low pT by x2
 - Recurrent neural network algorithm to discriminate tau vs quarks and gluons, with efficiency of 75-60%
- Single-tau (new) and di-tau channels

Searches for sbottoms in the final states with b-jets

- Sensitivity of the "classic" search in the final state with two b-jets and ETmiss improved beyond luminosity scaling
 - SRA for large values of Δm , larger dataset is key
 - SRB targeting $\Delta m < 200$ GeV using BDT-based selection
 - SRC with one ISR-based selection for very compressed models (Novel b-tagger for low pT jets, 5-15 GeV)

- mbb, transverse and cotransverse masses, ETmiss significance, scalar sums of jet pT and ETmiss,
- Topological observables

arXiv:2101.12527

Searches for sbottoms in the final states with taus

- Complementary search for sbottoms decaying via heavy wino-like neutralinos in final states with bs and tau lepton pairs in the Higgs mass range
 - Search optimized for low mass region
- Tau leptons identified with Recurrent Neural Network
- Signal extracted from background using kinematic observables and Θ_{min}, 3D angle between taus or b-jets pairs

Searches for Charginos and Neutralinos

Search for Charginos and Neutralinos: WH decays

- Depending in the nature of the EWK-inos, the heavy neutrinos may decay into the LSP by emitting a Higgs bosons
- Signal in the tails of the Etmiss, co-transverse mass, and transverse mass
 - Fine binning allowed by large Run 2 dataset
- New SR with highly boosted Higgs bosons decaying into a large-cone jet containing the 2 b-quarks

- Sensitivity increased by ~350 GeV
 - half gain from new search strategy
 - half gain from
 increased dataset

🛠 Fermilab

Search for Charginos and Neutralinos: Multilepton Analysis

W

 $\tilde{\chi}_1^{\pm}$

 $ilde{\chi}_2^{\mathsf{v}}$

p

- Classic search in "clean" leptonic final states pushed to the extreme! p
 - Events with 2, 3, ≥4 (including hadronic taus), targeting 13 decay modes
 - BDT to discriminate real and fake leptons
 - Parametric Neural Network using DeltaM as input for 3L channel

Search for Charginos and Neutralinos: Higgsinos

 Higgsino-like EWK-inos in the final state with one jet, moderate ETmiss and 2/3 soft leptons

- Muon (electron) pT > 3.5 (5) GeV
- Dilepton invariant mass down to 1 GeV
- Events classified based on ETmiss

Search for long-lived charginos

- Charginos decaying as $\tilde{\chi}^{\pm} \rightarrow \pi^{\pm} \chi^0$ expected in models with very compressed spectra
- Striking signature with a 'disappearing track'
 - Pixel tracklets with no hits in the outermost silicon trackers and no calorimeter activity (newly introduced requirement)

• ETmiss and number of jets for S to B discrimination

Other Searches for Long Lived SUSY

Long-lived particles decaying to jets with displaced vertices

- (Model independent) search for long-lived particles decaying into multiple jets
- Unique signature with 2 multi-track vertices displaced from the interaction point but within the beam pipe
 - Custom vertex reconstruction
- Fit to vertices separation in events with large hadronic scalar energy

Long-lived particles decaying to jets with displaced vertices

- (Model independent) search for long-lived particles decaying into multiple jets
- Unique signature with 2 multi-track vertices displaced from the interaction point but within the beam pipe
 - Custom vertex reconstruction
- Fit to vertices separation in events with large hadronic scalar energy

Search for the decays of stopped long-lived particles

- Long-lived particles can sit in the detector before decaying in jets leading to a unique signatures with out of time energy deposits in calorimeter
 - Events with ETmiss and jets collected during the "empty" bunch crossings (total dataset of ~600 hours!)
 - Challenging estimate of unusual backgrounds from cosmic rays, beam induced background, cavern background, calorimeter noise

arXiv: 2104.03050

Searches for RPV and Stealth SUSY

RPV SUSY in events with multiple leptons

$$W_{\rm RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_j Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c$$

• Inclusive searches for gluinos, sleptons, charginos in final states with small ETmiss

Searches for Stealth SUSY in the stop sector

- New hidden "stealth" sector of light particles with small or absent couplings to the SUSY breaking sector and finite couplings to the visible sector
 - SUSY approximately conserved, stealth particles remaining nearly mass-degenerate with their superpartners
- Challenging final states with one lepton, no ETmiss, ≥ 8jets
 - Neural Network with gradient reversal to discriminate S vs. B
 - 2D fit to NN score and Njet to extract signal

First LHC search of this kind

Outlook

- At the LHC, SUSY can manifest itself in a variety of (very challenging) signatures
 - High and low ETmiss, high and low momentum objects, prompt and displaced objects, low and high object multiplicity, in time and out of time signals,
- The ATLAS and CMS experiments have developed a broad and sophisticated search in Run 2 data adopting breakthrough experimental techniques
 - Pushing the sensitivity for gluinos, stops, and EWK-inos as high as ~ 2, 1, 0.8 TeV scales for models with R-parity conservation
 - Shifting paradigm to probe for unconventional signatures expected in Long Lived, R-parity violation, Stealth, ... SUSY
- Special datasets collected with novel triggers remain to be explored
- Run 3 is around the corner, with great potential for discovery thanks to new capabilities of the upgraded ATLAS and CMS detectors

The search continues!

Additional material

ATLAS and CMS at Run 2

- Run-2 represents an unprecedented dataset for HEP
 - Outstanding understanding of detector performance and simulation at fundamental levels
 - Breakthrough triggers pushing the reach of the experiments
 - Reading out L1 triggered events, x10 more events (scouting, trigger level analysis)
 - "Parking" unbiased set of B-decays events (10B events in Run2)

Looking in challenging corners of the MSSM parameter space

- Enhancing sensitivity to various decays of stops and sbottoms in very compressed scenarios
 - SM quarks too soft to be reconstructed ٠
 - Request one initial state radiation jet to boost the system and look for deviations in jet pT tail

[700 [9] 650 [100] 650

700

600

550

500

450

400

350

700

m_ř [GeV]

- **Control of systematic uncertainties is key**
 - up to 4% on background in SR

 $\tilde{t}, \tilde{t}, production, \tilde{t}, \rightarrow c \tilde{\chi}^0$

√s=13 TeV. 139 fb⁻¹

All limits at 95% CL

Expected limit

Expected limit ±2 σ_{exp}

Expected limit ±1 σ_{evo}

Observed limit (±1 σ.

400

ATLAS vs=13 TeV, 36.1 fb

500

600

ATLAS

700

600

550

500

450

400

350

300 ⊾ 300

Searches for stops directly produced and in gluino decays

Search for Charginos and Neutralinos: pMSSM

 Higgsino-like EWK-inos in the final state with one jet, moderate ETmiss and 2/3 soft leptons

- Muon (electron) pT > 3.5 (5) GeV
- Dilepton invariant mass down to 1 GeV
- Events classified based on ETmiss

Search for long-lived charginos

- Charginos decaying as $\tilde{\chi}^{\pm} \rightarrow \pi^{\pm} \chi^0$ expected in models with very compressed spectra
- Striking signature with a 'disappearing track'
 - Pixel tracklets with no hits in the outermost silicon trackers and no calorimeter activity (newly introduced requirement)

• ETmiss and number of jets for S to B discrimination

RPV SUSY in events with multiple (b-)jets

- If λ'' dominant (as predicted under the minimal flavour violation hypothesis), decays into multi (b-) jets states
- Search in events with one or two SS leptons, at least 8-15 (b-)jets sensitive to the production of gluinos, stops, electroweakinos
- Novel b-tagging algorithm, based on likelihood ratio of low-level tagger outputs, with adding RNNIP
- Multivariate discriminants for EWK signal extraction

First LHC search

of this kind

 λ_{323}''

 $ilde{\chi}_1^0$

New trigger opportunities at Run 3

- At CMS
 - global Level-1 triggers, for e.g. VBF signals
 - low mass dimuon triggers using invariant mass
 - triggers on single LLP leg
 - increased data storage (data parking, data scouting)
 - overall improved performances thanks to adoption of GPUs for tracking at high level trigger (allows to run particle flow)
 - new triggers for long lived using upgraded calorimeter (better segmentation)

- ...

New trigger opportunities at Run 3

- At ATLAS
 - global Level-1 triggers, for e.g. VBF signals
 - Increased granularity of calorimeter information used in Level-1 triggers for electrons and photons
 - More sophisticated Level-1 triggers for Taus, ETmiss (e.g. capability to trigger on large cone jets) and event-level quantities
 - ML in tracking at High Level Trigger
 - Increased data storage (data scouting, data parking)

• ...

