
In partnership with: Albert L. Rossi (for the dCache collaboration)
Fermi National Accelerator Laboratory
May 18, 2021

dCache: From Resilience to QoS

FERMILAB-SLIDES-21-025-SCD
This manuscript has been authored by Fermi Research
Alliance, LLC under Contract No. DE-AC02-07CH11359
with the U.S. Department of Energy, Office of Science,
Office of High Energy Physics.

dCache Mission Statement

7/8/2021 Rossi | From Resilience to QoS –– CHEP 20212

“... to provide a system for storing and retrieving huge amounts of
data, distributed among a large number of heterogeneous server
nodes, under a single virtual filesystem tree with a variety of
standard access methods.”

https://www.dcache.org/about

https://www.dcache.org/about

7/8/20213

dCache Usage Worldwide

 76 installations
 accounts for more than 50% of disk

space available for LHC
 also used by other sciences, including:

o astrophysics
o neutrino physics
o photon science
o genomic research

Rossi | From Resilience to QoS –– CHEP 2021

This broad spectrum of users means accommodating different workflows, access,
capacity and data preservation requirements, resources and budgets.

"Quality of Service" and dCache

7/8/2021 Rossi | From Resilience to QoS –– CHEP 20214

There can be a considerable difference in the scientists’ desires and expectations about
how this data is stored and made available for analysis:

– durability (likelihood of data loss);
– total bandwidth (aggregated over all clients);
– bandwidth available to a single client;
– access latency;
– some combination of these factors.

Can be based on:

– intrinsic properties of the data;
– types of activity using the data.

"Quality of Service" and dCache

7/8/2021 Rossi | From Resilience to QoS –– CHEP 20215

• Not practical or necessary to expose all combinations of options.

• Need to organize these into a common set of agreed-upon QoS classes.
• By allowing scientists to choose and modify with which QoS class they

would like their data stored, a storage system gives scientists the ability
to achieve the optimal storage strategy within the available storage
capacity.

The following is part of an ongoing effort to enhance dCache's capacity
to respond to the QoS needs of the communities which deploy it.

7/8/20216

dCache in one slide

Rossi | From Resilience to QoS –– CHEP 2021

Pools
(Data Server)

Pools
(Data Server)Door

Message passing layer

JVM JVM JVM

Door Pools

DBMS

ftphttp
nfs

Namespace
Pool

Manager

dcap xroot

7/8/20217

dCache Usage: Two Common Scenarios

Rossi | From Resilience to QoS –– CHEP 2021

cached
replica

permanent
copy

Disk cache in
front of HSM

(archival
storage)

persistent
replica

persistent
replica

persistent
replica

Disk only,
with

replication

dCache currently provides ability to:

7/8/2021 Rossi | From Resilience to QoS –– CHEP 20218

1. store data to tape and cache a copy on disk;
2. replicate cached (i.e., temporary) copies of the data if it is being accessed

heavily;
3. "pin" data on disk for a determinate period on behalf of user(s);
4. restore data from tape to disk;
5. generate multiple persistent replicas of data on disk;
6. create new persistent replicas of data if a pool containing a replica goes offline

(and remove them when that pool comes back online); this can also involve
staging back the data if all such replicas are unavailable and the data is also on
tape.

We refer to (5) and (6) as "data resilience".

dCache "Resilience"

7/8/2021 Rossi | From Resilience to QoS –– CHEP 20219

• dCache subsystem that achieves data durability by maintaining
permanent disk replicas independently of the presence of a back-end
or tertiary storage system;

• relies on a partitioning system into resilient and non-resilient pool
groups, with file replication managed only within the former;

• seen from the QoS perspective, this looks like the (static) handling of a
subset of QoS classes (in other words, keeping files in certain storage
groups on disk for faster access).

Resilience to QoS

7/8/2021 Rossi | From Resilience to QoS –– CHEP 202110

The design of Resilience is potentially extensible to other QoS
transitions, but the current implementation creates obstacles to this.

Objectives
1. Transform Resilience into a set of QoS components, retaining all

previous Resilience functionality, but no longer requiring the
segregation of "resilient" from "non-resilient" data.

2. Effect a clear separation of layers enabling an API capable of extension
without alteration of underlying infrastructure.

3. Prepare the way for a full-fledged "QoS Engine" in which files can be
transitioned between states based on a set of time-bound rules.

7/8/202111

Resilience Architecture

Rossi | From Resilience to QoS –– CHEP 2021

Resilience Message Handler

File Update, Operation
Internal State Maps Pool Operation

• Responsible for maintaining the required number of replicas on disk, even when pools go
offline or come back online.

• Tight integration dictated by this limited purpose, by maximization of efficiency.
• Later discovered issues requiring us to break this tight integration.
• Those modifications now permit complete separation into independent components.

QoS Equivalents

7/8/2021 Rossi | From Resilience to QoS –– CHEP 202112

1. Receiver: receives messages
concerning new files and file QoS
changes.

2. Provider: queried by file and
returns the file's requirements.

3. Verifier: checks the current
status of a file and recommends
actions, if any.

4. Adjuster: receives an actionable
request for a single
operation/transformation (STAGE,
FLUSH, COPY, CACHE).

5. Scanner: receives messages
concerning pool status changes
and schedules periodic scanning
of pools.

QoS Component Interactions

7/8/2021 Rossi | From Resilience to QoS –– CHEP 202113

• Receiver and Scanner
directly converted;
other components
required pulling apart
tightly coupled
interactions.

• Can be run as separate
services or as single
standalone service.

• Verifier is the heart as
in Resilience; Engine is
the entry point.

Separation into Components

7/8/2021 Rossi | From Resilience to QoS –– CHEP 202114

Allows easier redefinition of the QoS Engine "peripherals":

1. Adjuster: simple tasks which rely on other parts of dCache to do the
heavy lifting; clear separation of concerns will be crucial when
optimized restore scheduling is in place.

2. Provider: a major motivation for this refactoring; allows for integration
with a separate "rule engine".

Rule Engine Prototype

7/8/2021 Rossi | From Resilience to QoS –– CHEP 202115

Uses the current combination of namespace attributes (Access Latency
and Retention Policy) plus membership in a storage group, which
expresses the number and distribution of replicas, to define QoS classes.

Prototype Mapping of dCache Attributes to QoS Classes

7/8/2021 Rossi | From Resilience to QoS –– CHEP 202116

ACCESS
LATENCY

RETENTION
POLICY

storage unit
-required

storage unit
-onlyOneCopyPer

QOS Description

NEARLINE REPLICA N/A N/A volatile could be removed at
any time

NEARLINE CUSTODIAL N/A N/A tape on tape; disk copy
could be removed at
any time

ONLINE REPLICA undefined, 1 N/A disk persistent on disk but
not written to tape

ONLINE REPLICA k > 1 partitioned by tags disk k replicas persistent
on disk but not
written to tape

ONLINE CUSTODIAL undefined, 1 N/A disk+tape persistent on disk
and one copy on tape

ONLINE CUSTODIAL k > 1 partitioned by tags disk+tape k replicas persistent
on disk and one copy
on tape

Rule Engine Prototype

7/8/2021 Rossi | From Resilience to QoS –– CHEP 202117

On this basis, the following transitions are made available.

Currently can be achieved for single files and for bulk operations, through
RESTful API.

Prototype QoS Transitions and How They are Implemented

7/8/2021 Rossi | From Resilience to QoS –– CHEP 202118

QOS TRANSITION CHANGE IN NAMESPACE WHAT HAPPENS

volatile => disk NEARLINE REPLICA => ONLINE REPLICA k replicas are copied or made “sticky”

volatile => tape NEARLINE REPLICA => NEARLINE CUSTODIAL file is migrated to tape-backed pool, if necessary, and
then flushed

volatile=>disk+tape NEARLINE REPLICA => ONLINE CUSTODIAL file is migrated to tape-backed pool, if necessary, and
then flushed; k replicas are copied or made “sticky”

disk => tape ONLINE REPLICA => NEARLINE CUSTODIAL file is migrated to tape-backed pool, if necessary, and
then flushed; all replicas are cached

disk => disk+tape ONLINE REPLICA => ONLINE CUSTODIAL file is migrated to tape-backed pool, if necessary, and
then flushed

tape => disk NEARLINE CUSTODIAL => ONLINE REPLICA NOT SUPPORTED

tape => disk+tape NEARLINE CUSTODIAL => ONLINE CUSTODIAL LOCALITY = ONLINE_NEARLINE (file is on disk): k
replicas are made sticky or copied if not enough cached
replicas already exist

tape => disk+tape NEARLINE CUSTODIAL => ONLINE CUSTODIAL LOCALITY = NEARLINE (file not currently on disk): file is
staged from tape; k replicas are copied

disk+tape => tape ONLINE CUSTODIAL => NEARLINE CUSTODIAL all replicas are cached

disk+tape => disk ONLINE CUSTODIAL => ONLINE REPLICA NOT SUPPORTED

Rule Engine Prototype Limitations

7/8/2021 Rossi | From Resilience to QoS –– CHEP 202119

1. Only the namespace attributes can be changed dynamically for single
files (via a query); the number of copies is statically defined by storage
unit.

2. No provision for indicating the number or distribution of copies that
should reside on tertiary storage.

3. No component which could be given time-based rules concerning how
and when an individual file’s QoS should be changed.

Overcoming the coarseness of these semantics will be a major goal
for future dCache QoS development.

Acknowledgments

7/8/2021 Rossi | From Resilience to QoS –– CHEP 202120

This work is supported by the Fermi National Accelerator
Laboratory, managed and operated by Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359 with the U.S.
Department of Energy. The U.S. Government retains and the
publisher, by accepting the article for publication, acknowledges
that the U.S. Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for U.S.
Government purposes.

Thank you for listening. Questions?

7/8/2021 Rossi | From Resilience to QoS –– CHEP 202121

7/8/202122

Resilience Component Responsibilities

Rossi | From Resilience to QoS –– CHEP 2021

1. how many replicas are
required?

2. how many replicas are
currently accessible?

3. make the necessary
adjustments

4. react to a change in
pool state or periodically
verify for consistency

(1)
(1)

(2) + Pools

(2)

(3) + Pools

(3)

(4)

(4)

(4)(1)

store data about state

intercept pool status
changes

schedule periodic scans
process incoming updates

from namespace

QoS Request Handling (Messaging)

7/8/2021 Rossi | From Resilience to QoS –– CHEP 202123

A - the current rule engine uses the namespace and Pool
Selection Unit. B - The pool selection is done by the verifier and
sent as part of the message to the adjuster; verifier keeps track of
maximum running slots and only sends ready tasks to the
adjuster. C - The adjuster queues the requests, maps them to
adjuster types and executes; the types call out to either the pools
or the PinManager.

1. Receive message (cache update or QoS modification).
2. Check the file requirements.
3. Request verification.
4. Verify the status of the file (how many replicas, on tape, etc.) on the

pools (and recontact provider on iteration).
5. Determine action and possibly request adjustment.
6. Process the task; if it fails, possibly retry.
7. Notify verifier of success/failure; verifier reevaluates for further action

(retry, continue to new action, quit).
8. Remove operation and send verification/action completed message.
9. Notify QoS transition completed (topic).

	Slide Number 1
	dCache Mission Statement
	dCache Usage Worldwide
	"Quality of Service" and dCache
	"Quality of Service" and dCache
	dCache in one slide
	dCache Usage: Two Common Scenarios
	dCache currently provides ability to:
	dCache "Resilience"
	Resilience to QoS
	Resilience Architecture
	QoS Equivalents
	QoS Component Interactions
	Separation into Components
	Rule Engine Prototype
	Prototype Mapping of dCache Attributes to QoS Classes
	Rule Engine Prototype
	Prototype QoS Transitions and How They are Implemented
	Rule Engine Prototype Limitations
	Acknowledgments
	Thank you for listening. Questions?
	Resilience Component Responsibilities
	QoS Request Handling (Messaging)

