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Nothing is more boring than a presentation where someone reads the slides to you…

Except perhaps when you already know most of what is on each and every slide.

Alas, I couldn’t think of a better way to ensure a uniform understanding of the topics ahead, 
simplify translation for non-english speakers, and provide a way to use the slide deck as quick 
reference when people are under time pressure.

For the Ops people, this presentation may help you put the ‘Dev’ in ‘DevOps’

For the Dev people, this presentation may help you put the ‘Ops’ in ‘DevOps’

I’ve never worked at a place where folks complained about how thorough the communication is 
between Dev and Ops.  Good communication is hard, just like good coordination.

The Road Ahead in this Presentation
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In practice, the answer to this is a function of the RHEL ABI/API guarantee.

https://access.redhat.com/articles/rhel8-abi-compatibility

When using items on the RHEL approved list: if it runs on RHEL it should run on 
CentOS Stream without any modifications.  Any incompatibilities there are bugs that 
need to be addressed.  The “stable” ABI/API is about consistency or dependability.

This is a presentation about User Space.

Note: the RHEL Kernel is a whole separate discussion with a whole 
separate document outlining its ABI/API guarantees, a nice presentation yesterday  – 
also a blog post.
https://developers.redhat.com/blog/2018/03/28/analyzing-binary-interface-changes-linux-kernel/

Will my RHEL application run on CentOS Stream?
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There are four levels outlined in the document:

Level 1: These are dependable within the lifetime of a major release and they are 
also dependable across the next two major releases (glibc, libxml2, etc)

Level 2: These are scoped within the lifetime of a single major release, but consistent 
within it (this is the default)

Level 3: Each component will specify a lifetime during which the ABI/API will be 
supported (AppStream/Modularity)

Level 4: No compatibility is guaranteed (gnome-desktop, libcgroup, libdrm, etc)

For the definitive rules and list of what binaries are in each group, you’ll want to read 
the official documentation from Red Hat.

The RHEL8 ABI/API guarantee
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In practice, this too is a function of the RHEL ABI/API consistency guarantee, but the 
implementation is a bit different.

https://access.redhat.com/articles/rhel8-abi-compatibility

In order to answer this, we need to look at how binaries actually run on a Linux 
system and understand what that means in a RHEL context.

Will my CentOS Stream application run on RHEL?
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For right now, we can treat an ELF binary as a type of runtime package. This should help us stay 
focused.  After all, a binary RPM generally contains a collection of ELF binaries.  We will be 
ignoring other binary types and ignoring ELF support/behavior on non Linux platforms. 

The bits we care about at this time are the binary payload and the library linkage/symbols.

The binary payload contains the instructions to execute.  If the CPU doesn’t have the requested 
instructions, the binary will SEGFAULT once it hits an unknown instruction.  RPM is not looking 
for these types of incompatibilities – I think that is a good thing.  Microarchitectures (like x86_64-
v2) are interesting, but out of scope today.  Generally speaking, the ‘x86_64’ in the package arch 
is considered sufficient to confine it to CPUs it can use.  For this presentation that is good 
enough for what we plan to explore.

Library linkages and symbol exports are a bit more complex to summarize and will consume 
the bulk of this presentation.

Anatomy of an ELF binary as a package
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There are a number of ways to review the dynamic libraries a binary uses and what 
various libraries provide.

● ldd (-v)
● objdump (-p / -T)
● readelf (-r / -s)

NOTE: the ldd command will potentially execute elements of the object to achieve 
symbol linkage and is thus less safe on untrusted binaries than the alternatives.  The 
manpages on ldd have more information on this.  It is fascinating!  You should read it!

You can also use abipkgdiff (from libabigail) to look at changes between two 
RPMs or binary objects.

Anatomy of an ELF binary linkage
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xz is a Compatibility Level Two package.

https://access.redhat.com/articles/rhel8-abi-compatibility

“Compatibility level 2
    APIs and ABIs are stable within the lifetime of a single major release. Compatibility 
level 2 application interfaces will not change from minor release to minor release and 
can be relied upon by the application to be stable for the duration of the major release. 
Compatibility level 2 is the default for packages in Red Hat Enterprise Linux 8. 
Packages not identified as having another compatibility level may be considered 
compatibility level 2.”

Anatomy of an ELF linkage: an example with xz
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As part of its inventory/dependency system, RPM utilizes objdump to review the 
linkage of each binary.
$ objdump -p /usr/bin/xz  # from EL8
/usr/bin/xz:     file format elf64-x86-64
[snip]
Version References:
  required from libpthread.so.0:
    0x09691a75 0x00 05 GLIBC_2.2.5
  required from libc.so.6:
    0x0d696917 0x00 07 GLIBC_2.7
    0x06969197 0x00 06 GLIBC_2.17
    0x09691974 0x00 04 GLIBC_2.3.4
    0x09691a75 0x00 03 GLIBC_2.2.5
    0x096a2561 0x00 09 GLIBC_2.32
  required from liblzma.so.5:
    0x05e02812 0x00 08 XZ_5.2
    0x05e02810 0x00 02 XZ_5.0

Anatomy of an ELF linkage: an example with xz
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often switch back and forth between 
objdump and readelf style reporting.

I find a detailed investigation into the 
symbols is easier with readelf.  Most 
system tools use objdump.  You should 
use a tool you like and make sure to 
understand its limitations/risks.



With readelf we can easily see exactly which foreign functions (library calls) are listed 
and specific information about them.

$ readelf -r --wide /usr/bin/xz | awk '{print $5}' | sort -u | grep XZ_

[snip]

lzma_stream_encoder_mt_memusage@XZ_5.2

lzma_stream_flags_compare@XZ_5.0

lzma_stream_footer_decode@XZ_5.0

lzma_stream_header_decode@XZ_5.0

lzma_version_number@XZ_5.0

lzma_version_string@XZ_5.0

Anatomy of an ELF linkage: an example with xz
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Putting together what we’ve uncovered about the xz binary on my test EL8 system:
● liblzma.so.5 is used to resolve a number of symbols
● Some of those symbols are marked XZ_5.0 and some as XZ_5.2

● lzma_stream_encoder@XZ_5.0

● lzma_stream_encoder_mt@XZ_5.2

Thankfully, liblzma follows the standard convention where the .5 in .so.5 
corresponds to library version 5.

Any system that provides the required ABI symbols can run this binary.

Reminder: liblzma is a “Compatibility Level 2” library in RHEL 8.

Anatomy of an ELF linkage: an example with xz
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EL7.0 xz on an EL8.0 host:
$ ./xz

./xz: /lib64/liblzma.so.5: version `XZ_5.1.2alpha' not found

Specifically: lzma_stream_encoder_mt@XZ_5.1.2alpha 
EL8.0 xz on an EL7.0 host:
$ ./xz

./xz: /lib64/libc.so.6: version `GLIBC_2.32' not found

./xz: /lib64/liblzma.so.5: version `XZ_5.2' not found

Specifically: lzma_stream_encoder_mt@XZ_5.2

There is nothing necessarily unexpected here.  Between major releases the liblzma 
symbols are permitted to change.  Furthermore, the addition of new symbols to glibc 
in EL8 is expected and generally a good thing.  These are new features!

Compatibility Level 2 in practice with liblzma
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glibc and libpthread are Level 1 libraries, so it is worth a brief detour to see what happened.

Opening up the xz binary linkage :
In EL8 we see the addition of pthread_sigmask@GLIBC_2.32
In EL7 the binary has pthread_sigmask@GLIBC_2.2.5 instead

A look at the glibc changelog for libpthread shows:
* On Linux, the functions pthread_attr_setsigmask_np and
  pthread_attr_getsigmask_np have been added.  They allow applications
  to specify the signal mask of a thread created with pthread_create.

Which in turn cascades down to pthread_sigmask causing the symbol addition.
The older symbol remains in the EL8 glibc (via libpthread), thus Level 1 rules are satisfied.

A short detour into Level 1 (backwards compatible)
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Looking at lzma_stream_encoder_mt 

In this instance the solution is fairly trivial.  As I understand the liblzma changelog, the symbol 
introduced in xz-5.1.2alpha was stabilized in xz-5.2 and saw no changes to the arguments or return 
structure.

In the end, the ABI of a binary is basically: the arguments, the return structure, the symbol name, and 
the namespace.  In this instance three are the same - the namespace is what is different.

The code using this symbol name can be recompiled and relinked as is and should work exactly as 
expected.

But this isn’t a conversation about porting software from EL7 to EL8.
This is a conversation about ABI consistency.  To keep matters simple, lets stick with liblzma and look 
at EL7 where we have a lot of history to examine.

Compatibility Level 2 in practice with liblzma
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In 2016 liblzma was rebased from 5.1.2-12alpha to version 5.2.2 in EL7.

The upstream source code has the symbols tagged as XZ_5.2.  However, the EL7 
source is patching the code to instead keep those symbols (lzma_stream_encoder_mt 
and lzma_stream_encoder_mt_memusage) marked with the XZ_5.1.2alpha namespace.

This rebase also adds some new symbols which it is tagging as a part of the XZ_5.2.2 
namespace (which matches the version of liblzma where they were introduced into 
EL7).

Compatibility Level 2 in practice with liblzma on EL7
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xz-5.2.2-compat-libs.patch 
this patch is a concise (and near perfect) example
of Level 2 compatibility (author Pavel Raiskup?)

liblzma/api/lzma/container.h in 5.1.2alpha
lists the lzma_stream_encoder_mt and
lzma_stream_encoder_mt_memusage as a
part of their ‘UNSTABLE’ symbol namespace.

What does that mean?  For liblzma upstream,
These symbols are part of the 5.2 namespace.
For EL7, they have to stay in 5.1.2alpha for 
Level 2 compatibility to be honored.

This slide is the centerpiece of this presentation

Compatibility Level 2 in practice with liblzma on EL7
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The RPM dependencies for the xz rpm are similarly interesting.

rpm -qp --requires xz-5.1.2-8alpha.el7.x86_64.rpm |grep liblzma

liblzma.so.5()(64bit)

liblzma.so.5(XZ_5.0)(64bit)

liblzma.so.5(XZ_5.1.2alpha)(64bit)

rpm -qp --requires xz-5.2.2-1.el7.x86_64.rpm |grep liblzma

liblzma.so.5()(64bit)

liblzma.so.5(XZ_5.0)(64bit)

liblzma.so.5(XZ_5.1.2alpha)(64bit)

liblzma.so.5(XZ_5.2.2)(64bit)

The new RPM correctly determines it needs the new symbols without the need to set an 
explicit version of liblzma under Require.

Compatibility Level 2 in practice with liblzma on EL7
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We’ve seen the source get rebased and have symbols added.  The liblzma 
maintainer was required to honor the previous symbol names/namespaces and 
patched the old names back in.

We’ve seen that RPM correctly identifies the new symbols when used by new 
binaries.

We’ve also seen new binaries get the stable symbol names when built against the 
new libraries.

And we’ve seen that Level 2 libraries can in fact break between major releases.

The ABI/API guarantee is part of RHEL, and it worked as expected.

Compatibility Level 2 with liblzma in conclusion
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I think of CentOS Stream as the continuous delivery repository for RHEL.  RHEL updates are 
published in bundles/batches/point releases on scheduled intervals.  Stream is published now.

The packages in CentOS Stream are headed into RHEL.  To my mind this means they must be 
suitable for running on RHEL.

Packages in CentOS Stream that violate the RHEL ABI/API guarantee are not suitable for 
running on RHEL.

Therefore, breakage of the RHEL ABI/API shouldn’t happen in Stream.

If a CentOS Stream package violates the RHEL ABI/API guarantee the maintainer must fix it.  
This is not an optional step or something to be considered as an afterthought.  If it doesn’t get 
fixed, it changes in RHEL and if it changes in RHEL it violates RHEL contracts.

Packages in CentOS Stream that break the RHEL ABI/API are serious bugs.

The ABI/API guarantee in CentOS Stream
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Maintenance of the existing ABI/API guarantees is well understood.

New symbols/features/ABI/API/etc are where things get complex.

Symbols not on the RHEL guarantee list are not guaranteed, but this doesn’t mean 
they will change before going into RHEL – just that they can change.  But how?

Changes to the arguments or return types don’t feel like something you’d change from 
upstream.  Similarly, the names of the symbols are selected by the upstream project.  
The namespace seems to be our only option for change here.
Use of new symbols presents a risk, but there are several mitigation strategies.

For developers they all boil down to “know what you are using”.
For operations it is a question of how to provide extra libraries in a clean manner.

The ABI/API guarantee in CentOS Stream: New symbols
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What should developers do and think about?

Mitigation: Developers
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Step 1 is know what you are using.

This is already true for RHEL8 AppStream/Modularity.

If your application links against MariaDB/PostgreSQL you already must keep track of 
your version usage.

Similarly with gcc, llvm, python, perl, rust, swig, and more and more…..

Big questions:
Are the library features you selected “new” (ie not yet in RHEL)?
If they are, do you need them?  They answer can be ‘yes’, but know why.

Mitigation: Developers
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Consider using abipkgdiff (from libabigail) to track your package ABI changes 
over time.  The output is even more detailed with the debuginfo installed!
$ abidiff 5.1.2-alpha/usr/lib64/liblzma.so.5  5.2.2/usr/lib64/liblzma.so.5

Functions changes summary: 0 Removed, 0 Changed, 0 Added function

Variables changes summary: 0 Removed, 0 Changed, 0 Added variable

Function symbols changes summary: 0 Removed, 3 Added function symbols not referenced by debug info

Variable symbols changes summary: 0 Removed, 0 Added variable symbol not referenced by debug info

 3 Added function symbols not referenced by debug info:

  [A] lzma_block_uncomp_encode@@XZ_5.2.2

  [A] lzma_cputhreads@@XZ_5.2.2

  [A] lzma_get_progress@@XZ_5.2.2

Additionally, libabigail provides the abicompat command for further review of a 
library’s dependencies. The reports can be super helpful for determining 
compatibility and tracking changes over time.

Mitigation: Developers : libabigail
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How do you tell if a feature is “new”?

Look at the documentation for your library
● Is the feature you’re using listed as coming with a newer version of the library than you’ve got 

installed?  If so, this feature was backported to the EL source.  When though?
● Was the library rebased “recently” in Stream?  What does “recently” mean here?

Easy way : test your binary with RHEL UBI

The RHEL Universal Base Image (ebook link) is real RHEL.  UBI is free to download
and redistribute. “No subscription, login, or even registration is required for the UBI images.”

If you picked a set of software behaviors for your application,
know why you picked them.

Mitigation: Developers : symbols you choose
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Let RPM decide your binary dependencies.

Look at our xz rpms again,
 rpm -qp --requires xz-5.2.2-1.el7.x86_64.rpm |grep liblzma

 liblzma.so.5()(64bit)

 liblzma.so.5(XZ_5.0)(64bit)

 liblzma.so.5(XZ_5.1.2alpha)(64bit)

 liblzma.so.5(XZ_5.2.2)(64bit)

RPM knows what we need.  Setting a specific version of a binary package to required for a 
binary RPM is counterproductive.  If you recompile the Source RPM it should generate the 
dependencies it needs.  If you hard code a specific version of a binary you need, you are 
reducing the functionality.  Do you need liblzma-5.2.2 or the symbols it provides?

Mitigation: Developers : RPM symbols
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Looking back at our xz binary and the pthread_sigmask symbol selection.  The 
liblzma library didn’t specifically choose the new or old symbol.  It just used the 
pthread headers on the system.

How do you force a specific symbol when multiple versions exist?

In GCC you can use this:
__asm__(".symver pthread_sigmask,pthread_sigmask@GLIBC_2.2.5");

to select a specific version rather than let the compiler/linker/library choose.

https://developers.redhat.com/blog/2019/08/01/how-the-gnu-c-library-handles-backward-compatibility/

Mitigation: Developers “surprise symbols”
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The glibc library is probably the most likely to be a source of ‘surprise symbols’.
We can gather some useful stats from EL7 (in year 7 now) and security errata only 
maintenance.  New features in EL7 at this point would be a surprise.

The /lib64/libc.so.6 library from glibc-2.17-323.el7_9.x86_64 contains 2125 
symbols which are scoped to multiple namespaces.  Some of them are ‘unscoped’ 
versions of the ‘scoped’ version.

The original /lib64/libc.so.6 published with EL7.0 (glibc-2.17-55.el7.x86_64) 
contains 2100.

Testing Methodology (better methodology:  abidiff --no-default-suppression):
readelf -s --wide ./lib64/libc.so.6 | awk '{print $8}' | sort -u | cut -d '@' -f1

Mitigation: Developers “surprise symbols”
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You “cannot” directly extract a specific symbol from a binary library.  A binary library is a blob of 
instructions, not a file system directory of symbols or tar archive.  This is something I know but 
often forget.

The binary has been optimized and the related jumps are relative to the location within the blob.  
If you disassemble it, it may be possible to reassemble a stub library with just a subset.

But if you’ve gotten this far down the chain a better question is, “Is this feature worth it?” or “Can 
I just ship the new library?”  If you need a new feature, shipping the whole library makes a lot 

more sense since upstream probably tested it that way.

If you want to build a new binary that just contains the symbol you want, you can always edit the 
source and compile what you desire.  And that is probably a lot less work than using a 
disassembler on an existing binary.

Mitigation: Developers things you “can’t” do - extraction
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ELF objects support an rpath value that you can use to tweak the symbol resolution.  If you 
need this, read up on DT_RPATH vs DT_RUNPATH.

In RHEL, RPM will not let you package binaries with encoded rpath values!  This is a good thing! 
 Packages should either ship the libraries they need and put them in a rational place, or depend 
on the libraries already in a rational place.

If you are using rpath, you claim to know better than the system linker.
  Are you sure that is true? Spack does this because it knows where the libs go.

You can use patchelf to mess about with rpath settings on existing binaries.

Never ever do this on a file owned by a package manager.
Updates to the package will lose the change.

The installation is no longer repeatable by the package manager.

Mitigation: Developers - DANGEROUS THINGS
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What should operations do and think about?

Mitigation: Operations
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Use technologies that are linkage aware: ie package managers – not make install.

RPM uses objdump to evaluate what you need.  It is tracking at “namespace/version” level, not 
each individual binary symbol.  A badly behaving library may add symbols to an existing 
namespace.  An older/existing copy might have that namespace, but not the new symbols.  
Adding a feature and not changing the version is a bad practice.  File bugs on this if it happens!

The fastest way to diagnose this is probably via ldd (see note on safety in manpage)
$ ldd -r xz  # el7 binary on el8

[snip]

undefined symbol: lzma_get_progress, version XZ_5.2.2

undefined symbol: lzma_stream_encoder_mt, version XZ_5.1.2alpha

undefined symbol: lzma_stream_encoder_mt_memusage, version XZ_5.1.2alpha

undefined symbol: lzma_cputhreads, version XZ_5.2.2

Mitigation: Operations
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If you find yourself needing these workarounds, you’ve hit a bug that should be filed with the package 
owner or person who gave you the binaries.

For applications run as non-root but a “non-daemon” user, the ~/.local/lib directory is a place users 
can drop their own libraries and add to LD_LIBRARY_PATH.  See also ~/.local/bin and the 
XDG Base Directory Spec documentation.

For daemons running out of systemd, you can add another directory to the service’s defined 
LD_LIBRARY_PATH as a drop-in.

If the application doesn’t fit under these or within a container, I’d consider generating a flatpak to 
ensure any extra libraries are walled off from the rest of the system and that it can be trivially moved to 
a new box down the line.  A “one time install” is never one time in my experience.

It is tempting to drop a config into /etc/ld.so.conf.d, but this pollutes the global linker space.
It is tempting to use rpath to just fix things, but this is invisible and will get forgotten.

Mitigation: Operations workarounds
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What have we learned and how can we apply it?

Concluding Thoughts
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Existing self tests are pretty good, but with your help they could be great!  See 
%check in your favorite package!  Or ask about next steps on centos-devel.  Functional 
testing workloads are also welcome!  This is how we help assure the quality of the 
released packages.

A Koji plugin to run abidiff against the artifacts from the last build would produce an 
amazing record of changes!

Different output formats for libabigail would be wonderful!  Annotated sources?  
JSON? Something else?  Make this data more digestible and more usable!

Areas of Improvement
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In practice the answer to this is a function of the RHEL ABI/API guarantee that we’ve 
been talking about and the mindset of the code developer.

Something built on CentOS Stream should run on RHEL if it was built with 
compatibility in mind.

If a binary has special requirements, there are a number of ways to work around the 
linker until the symbols are considered part of the consistency guarantee.

So, will my CentOS Stream application run on RHEL?  I believe the answer is clearly 
“yes, this shouldn’t be a problem”.

So, Will my CentOS Stream application run on RHEL?
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Questions?
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