Fermilab **BENERGY** Office of Science

High Power 650 MHz Magnetron RF Power Source

Thomas Kroc, Ram Dhuley, Jayakar Thangaraj - Fermilab NSARD2021 21 April, 2021

Technical approach: SRF tech and Fermilab

- Fermilab is a world leader in SRF technology for discovery science as demonstrated by delivering SRF cryomodules for LCLS-II and building PIP-II.
- SRF is a mature technology, however, to be useful in non-scientific applications, parameters such as compactness and simplicity need to be considered.
- The elimination of liquid cryogens makes SRF technology accessible for industrial applications. This can be accomplished through Conduction Cooling which has been demonstrated by Fermilab.
- The first year of this effort (FY20) investigated RF sources for SRF applications.
- Now we are integrating conduction cooling and related technologies for the first time into a prototype accelerator as part of *alternative* technology for Co-60 replacement for medical device sterilization.

Capability Improvement

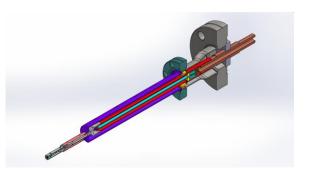
Efficient, high-power X-ray source for medical device sterilization

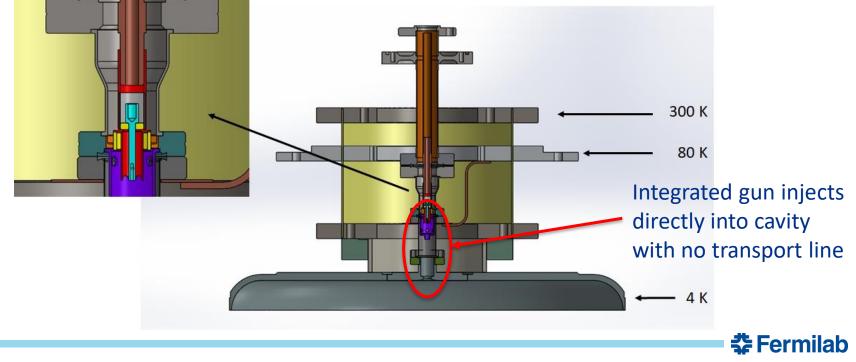
- 1 Mci of Co-60 produces ~ 15 kW of power
- X-rays are essentially a direct replacement for Co-60 irradiation
- Due to Bremsstrahlung inefficiency, need ~ 120 kW of electron beam power to equal 1 Mci of Co-60
- Medical device production is growing by ~7% per year. To provide comparable treatment capacity, additional accelerator designs are needed. Enter SRF.
- Achieving this as compactly, simply, and efficiently as possible will improve the attractiveness of alternative technologies to help move the industry away from Co-60.
- Validation of this design is the final step before a first article of 7.5 MeV, 150 – 200 kW.

Project Overview, Goals, Deliverables

Goal: Fabricate and assemble a prototype 1.6 MeV compact SRF system to validate the integration of:

- Integrated electron gun
- Conduction cooling & Cryocoolers
- Nb₃Sn coating
- Low-heat loss RF coupler

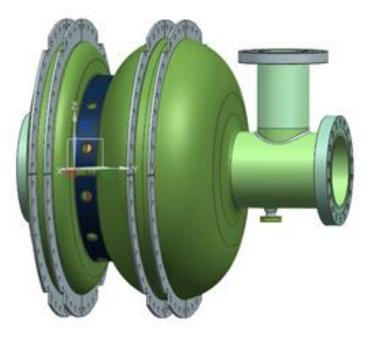

- Deliverables
 - FY21 RF Coupler
 - FY22 Cavity & Cryostat
 - FY23 coated & tested cavity, commissioned system



Progress to Date

We are in the process of finalizing design work of major components

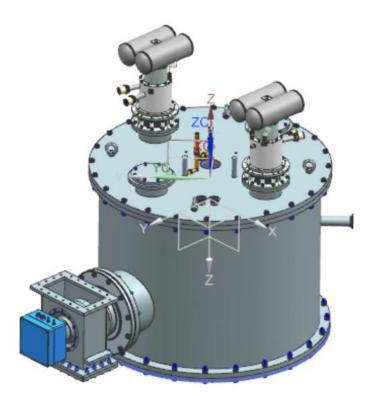
 Gun design
 Lengthening to improve thermal distribution
 Impacts Cryostat design

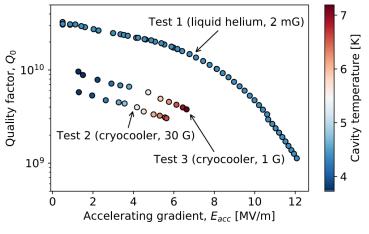


Progress to Date

Finalizing design work of major components

- 2. Cavity Design
 - Completed
 - RF and beam transport simulations
 - Structural design
 - Niobium material procurement
 - In progress
 - Production drawings
 - Fabrication bid package





Progress to Date

Finalizing design work of major components

- 3. Cryostat Design
 - Completed 3D modeling of all components
 - Vacuum jacket
 - Thermal and magnetic shields
 - Cavity support, coupler interface
 - In progress
 - FEA analyses of the above components
 - Next
 - Fabrication drawing and bid package
 - Cryomech PT425 now available (2.5 W @ 4.2 K)

Nonproliferation

Presently, X-ray sterilization represents about 1% of the medical device sterilization market whereas Co-60 services 40-50%.

- However, 7 new X-ray facilities have been announced and will become operational in the next two years.
- Capacity issues in the medical device sterilization market are driving new interest in alternative technologies.
- A forecast presented at the 2019 Midwest Medical Device Sterilization Workshop projected the need for 200 – 400 new accelerator systems in the next 10 years.*

* https://indico.fnal.gov/event/21411/attachments/38999/47262/C._Malice_E._Craven_-_E-beam_and_X-ray_What_Why_How.pdf

Technical Challenges

- Coating of single-ended cavity
 - Double ended cavities have been coated very reliably by Fermilab with excellent performance.
 - The coating process continues to be aggressively developed
 - Our coating needs are still 18 months away.
- Determination of dynamic losses (under RF and with beam)
 - This will be a fundamental validation of the heat budget that enables the compact SRF concept.
- Economical RF power
 - Not part of this effort, but cost of RF power will become the major single expense of an accelerator system.

Future Work

FY21:

- The majority of work in this year is procurement of long-lead items.
- Other items are preparation of the test cave and acquiring diagnostics

FY22

- Testing of RF supplies & bare cavity. Begin Nb₃Sn coating.
 FY 23
- Final integration and commissioning

