

Simulating phi-4 scalar field on quantum computers

Andy C. Y. Li (FNAL) APS March Meeting 2021 V34.00015 18 March 2021

Alexandru Macridin (FNAL)

Stephen Mrenna (FNAL)

Panagiotis Spentzouris (FNAL)

Scalar field theory with ϕ^4 interaction

- Lagrangian density $\mathcal{L} = \frac{1}{2} \left(\partial_0 \phi\right)^2 \frac{1}{2} \left(\nabla \phi\right)^2 \frac{1}{2} m_0^2 \phi^2 \frac{\lambda}{4!} \phi^4$
- Discretized model in (d + 1)-dimension with lattice spacing a

$$H = \sum_{j} \left[\frac{1}{2} \Pi_{j}^{2} + \frac{1}{2} \left(m_{0r}^{2} + 2d \right) \Phi_{j}^{2} - \sum_{e=1}^{d} \Phi_{j} \Phi_{j+e} + \frac{g_{0}}{4!} \Phi_{j}^{4} \right] \quad m_{0r}^{2} \equiv m_{0}^{2} a^{2} \text{ and } g_{0} \equiv \lambda a^{3-d}$$

- Continuous model with Lorentz invariance recovers in the limit $a \rightarrow 0$
- Outline:
 - Binary encoding in position basis
 - State preparation: vacuum state

Quantum Algorithms for Quantum Field Theories

Stephen P. Jordan^{1,*}, Keith S. M. Lee², John Preskill³ + See all authors and affiliations

Science 01 Jun 2012: Vol. 336, Issue 6085, pp. 1130-1133 DOI: 10.1126/science.1217069

Electron-Phonon Systems on a Universal Quantum Computer

Alexandru Macridin, Panagiotis Spentzouris, James Amundson, and Roni Harnik Fermilab, P.O. Box 500, Batavia, Illinois 60510, USA

(Received 25 May 2018; published 12 September 2018)

Fermilab

$\varphi_m = \Delta \left(m - \frac{2^{n_q} - 1}{2} \right)$ $\sum^{n_q-1} [m]_{(n)} 2^{n_q-1-n}$ m =n=0Discretization spacing Δ 0 1007 1017 1107 (100, 100), 100, 100, 1000, Φ

wavefunction

Binary encoding in position basis

Field operators in binary encoding

Discretization and binary representation

$$\varphi_m = \Delta\left(m - \frac{2^{n_q} - 1}{2}\right) \qquad m = \sum_{n=0}^{n_q - 1} [m]_{(n)} 2^{n_q - 1 - n}$$

Field operator square $\Phi^{2} = \Delta^{2} \left[\sum_{m < n} \frac{-\sigma_{m}^{z} + 1}{2} \frac{-\sigma_{n}^{z} + 1}{2} 2^{2n_{q}-1-m-n} + \sum_{n=0}^{n_{q}-1} \frac{-\sigma_{n}^{z}}{2} 2^{n_{q}-1-n} \left(2^{n_{q}-1-n} - 2^{n_{q}} + 1\right) \right] + \phi_{2}$ Control-phase gatesZ-rotation gates Z-rotation gates $Q_{j,0}$ \vdots $Q_{k,n-1}$

Field operators: gate counts

$$H = \sum_{j} \left[\frac{1}{2} \Pi_{j}^{2} + \frac{1}{2} \left(m_{0r}^{2} + 2d \right) \Phi_{j}^{2} - \sum_{e=1}^{d} \Phi_{j} \Phi_{j+e} + \frac{g_{0}}{4!} \Phi_{j}^{4} + f \Phi_{j} \right]$$

Time evolution in binary encoding

$$f(\Pi_j) = \mathrm{FT}^{-1} f(\Phi_j) \mathrm{FT} \qquad \qquad H = \sum_j \left[\frac{1}{2} \Pi_j^2 + \frac{1}{2} \left(m_{0r}^2 + 2d \right) \Phi_j^2 - \sum_{e=1}^d \Phi_j \Phi_{j+e} + \frac{g_0}{4!} \Phi_j^4 + f \Phi_j \right]$$

• FT =
$$\prod_{p} R_Z(\pi \frac{n-1}{2n}p)$$
 QFT $\prod_{p} R_Z(\pi \frac{n-1}{2n}p)$

6

• Cost of QFT =
$$\frac{n(n-1)}{2}$$
 CPHASE gates

	CPHASE	CNOT
$e^{-i\Phi\theta}$	0	0
$e^{-i\Phi^2\theta}$	n(n-1)/2	0
$e^{-i\Phi^4\theta}$	n(n-1)/2	$n(n^3 - 6n^2 + 11n - 6)/4$
$e^{-i\Phi_j\Phi_k\theta}$	n^2	0
$e^{-i\Pi^2\theta}$	3n(n-1)/2	0

Vacuum state preparation: local variational + adiabatic transfer

$$H = \sum_{j} \left[\frac{1}{2} \Pi_{j}^{2} + \frac{1}{2} \left(m_{0r}^{2} + 2d \right) \Phi_{j}^{2} + \frac{g_{0}}{4!} \Phi_{j}^{4} - \sum_{e=1}^{d} \Phi_{j} \Phi_{j+e} \right]$$

$$Local Hamiltonian H_{0} \qquad Coupling between sites H_{1}$$

$$Variational preparation of ground state \qquad H_{0} \quad \left| g \right\rangle \xrightarrow{Adiabatically switch on H_{1}} \left| 0 \right\rangle \quad H_{0} + H_{1}$$

$$R_{0} = R_{0} - R_{$$

Prepare the vacuum state for any λ_0 and m_0^2 (including $m_0^2 < 0$)

2nd layer

3rd layer

R_(

1st layer

High fidelity local state preparation by hardware efficient ansatz

‡Fermilab

Adiabatic state transfer in the broken-symmetry phase

$$H = \sum_{j} \left[\frac{1}{2} \Pi_{j}^{2} + \frac{1}{2} \left(m_{0r}^{2} + 2d \right) \Phi_{j}^{2} + \frac{g_{0}}{4!} \Phi_{j}^{4} - \sum_{e=1}^{d} \Phi_{j} \Phi_{j+e} \right]$$

- Renormalization large $\lambda \rightarrow m_{0r}^2 < 0$
- Broken symmetry phase $\langle \Phi_j \rangle \neq 0$ double-well potential degenerate ground states

Variational state preparation

Adiabatically switch on

Existence of a second-order phase transition in a two-dimensional ϕ^4 field theory*

Shau-Jin Chang[†] Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (Received 9 February 1976)

🗲 Fermilab

18-Mar-21

Adiabatic time required to prepare broken-symmetry states

• Continuous limit: $a \to 0$, $g_0 = \lambda a^{3-d} \to 0$ for 1D and 2D systems

- State preparation becomes more difficult due to stronger effective site-site coupling

🛠 Fermilab

- System size dependence: require further study
 - Appears to be less sensitive with a sufficiently large f

Summary

- Quantum simulation of ϕ^4 scaler field theory using binary encoding in the position basis
- Variational hardware-efficient ansatz: flexible tool to prepare the local ground state with very high fidelity
 - Flexibility: design local Hamiltonian to further optimize the algorithm
- Adiabatic state transfer: connect the engineered local Hamiltonian to the full Hamiltonian
- Gate count: require better QPU to be implemented

