
Achieving Maintainable Cross-Platform Performance in the Particle-
in-Cell Accelerator Modeling Code Synergia using Kokkos

Qiming Lu, Eric G. Stern, Marc Paterno, James Amundson
SIAM CES21, March 5th, 2021

FERMILAB-SLIDES-21-008-SCD

• Beam dynamics simulation and modeling package for particle accelerators

– Beam optics from external fields
– Internal fields calculation (space charge with particle-in-cell)
– Beam-beam interactions, wakefield simulations, etc.

Synergia
Particle Accelerator

Modeling Framework

03/05/2021 Qiming Lu | SIAM CES212

• C++ library with Python wrappers
– Most simulations are written in Python and import modules to perform the heavy

calculation. Main processing loop is in C++.

• Uses MPI parallel processing to scale to large problems.

• Runs on desktop/laptop, small/medium clusters, supercomputers.
– Small problems can be run on small systems (number of particles, size of accelerator, etc.)
– Code scales well for large problems on large systems.

Synergia Modeling Framework

03/05/2021 Qiming Lu | SIAM CES213

Synergia computational ingredients

4

x p_x

6.336E-03 -5.766E-04

-1.624E-03 8.303E-05

1.401E-03 -3.008E-04

x p_x

6.336E-03 -5.766E-04

-1.624E-03 8.303E-05

1.401E-03 -3.008E-04

x p_x

6.336E-03 -5.766E-04

-1.624E-03 8.303E-05

1.401E-03 -3.008E-04

x p_x

6.336E-03 -5.766E-04

-1.624E-03 8.303E-05

1.401E-03 -3.008E-04

Particle array

Proc 0 Proc 1 Proc 2 Proc 3

parallel for

local ρ local ρlocal ρ local ρHistogram

Σparallel sum

apply E apply Eapply E apply E

Redundant field solve
parallel within each node to
avoid communication, uses
FFTs

parallel for

𝑓𝑓(𝑥𝑥,𝑝𝑝) 𝑓𝑓(𝑥𝑥,𝑝𝑝) 𝑓𝑓(𝑥𝑥,𝑝𝑝) 𝑓𝑓(𝑥𝑥,𝑝𝑝)

∇2𝑉𝑉 = 𝜌𝜌∇2𝑉𝑉 = 𝜌𝜌∇2𝑉𝑉 = 𝜌𝜌∇2𝑉𝑉 = 𝜌𝜌

03/05/2021 Qiming Lu | SIAM CES21

External
fields

Space
charge

calculation
with PIC

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

The bulk of computing power at the new large facilities is heavily shifting towards
accelerators such as GPU or other co-processors

– Summit at OLCF: Power9 + Nvidia V100 GPU
– Frontier at OLCF: AMD EPYC CPU + AMD Radeon GPU
– Aurora at ALCF: Intel Xeon CPU + Intel Xe GPU
– Perlmutter at NERSC: AMD EPYC CPU + NVidia A100 GPU

Along with emerging parallel programming models and tools, oftentimes locked-in to
specific hardware or platform

New Challenges in the Era of Exascale Computing

5 03/05/2021 Qiming Lu | SIAM CES21

CUDA ROCm

OpenMP / OpenMP Target OpenACC

Intel oneAPI

The application needs to adapt and make use of the accelerators
– Shifting the paradigm from CPU centric parallelization to a hybrid of CPU and accelerator

parallelization

… and be portable
– Keep broad accessibility across computing platforms.
– Use “standard” languages and programming techniques as much as possible.
– Avoid architecture lock-in for code maintainability and execute-everywhere capability.
– Minimize architecture specific code and algorithms.

• a previous CUDA specific Synergia version was unmaintainable and rotted into uselessness

… with high performance!
– Portability is not an excuse for poor performance

New Challenges in the Era of Exascale Computing

6 03/05/2021 Qiming Lu | SIAM CES21

• https://kokkos.org
• Part of the Exascale Computing Project
• C++ library maintained as an open-source repository on Github.

• Shared memory programming model that supports architecture specific backends,
e.g., OpenMP or CUDA.

• Hardware agnostic: supports NVIDIA (now), AMD and Intel GPUs (promised)

• Provides abstractions for both parallel execution of code and data management
• Allows significant expressibility, particularly on GPUs

7 03/05/2021 Qiming Lu | SIAM CES21

https://kokkos.org

• Kokkos::View<T> is a generic multi-dimensional data container
– Allows the user to control “where” (memory spaces) the data resides,
– and “how” (memory layout) the data are stored

• E.g., Kokkos::View<double**, CudaSpace, LayoutLeft> is a 2d double array stored in
the CUDA device memory with column major (left) layout.

• Managing the bulk of particle data with Kokkos::View<>
– Resides in the device memory during its lifetime for fast accessing from computing kernels
– has a host mirror and gets synced manually when necessary

• For OpenMP threads backend, syncing between host and "device" has virtually no costs
– Uses column major for both CPU and GPU backends, optimal for

• CPU vectorization
• GPU memory coalescing

Kokkos Data Storage

03/05/2021 Qiming Lu | SIAM CES218

An example with drift propagation in Synergia with Kokkos

Kokkos Parallel Dispatch

03/05/2021 Qiming Lu | SIAM CES219

// simplified for demonstration ...
KOKKOS_INLINE_FUNCTION
double drift_unit(double px, double t)
{ return px * t; }

const size_t N = ...;
View<double*[6]> p("particles", N);
double t = ...;

// fill p with some numbers ...

parallel_for(N, [=](int i) {
p(i,0) += drift_unit(p(i,1), t);
p(i,2) += drift_unit(p(i,3), t);

});

• The same code can be compiled
and run on both CPU (OpenMP)
and GPU (CUDA, or other
backends supported by Kokkos)

• 3 types of parallel dispatchers
serve as the building blocks for
more complicated algorithms
– parallel_for()
– parallel_reduce()
– parallel_scan()

• Very limited vectorization support from Kokkos
– Auto-vectorization with compiler directives, available with only Intel compilers in the

OpenMP backend

• Yet being able to use vectorization on CPU is crucial to the performance

• Synergia has implemented a portable SIMD primitive with explicit vector types to
work with Kokkos kernels
– C++ templated class for a range of SIMD vector types
– Uses Agner Fog’s vectorclass (https://github.com/vectorclass) for x86/64 SSE/AVX/AVX512

intrinsic/types
– Supports Quad Processing eXtension(QPX) for IBM Power CPUs
– Compatible with GPU kernels (by falling back to single width data types)

SIMD Vectorization with Kokkos

03/05/2021 Qiming Lu | SIAM CES2110

https://github.com/vectorclass

SIMD Vectorization with Kokkos

03/05/2021 Qiming Lu | SIAM CES2111

• The template class Vec<T> can be
instantiated with vector types that has basic
operators (+-*/, etc) overloaded
– SSE: Vec<Vec2d>
– AVX: Vec<Vec4d>
– AVX512: Vec<Vec8d>
– On GPU it is just Vec<double>

• VecExpr<E, T> is an expression template where
expressions are evaluated only as needed. It …
– avoids the need for creating temporaries
– avoids the need for multiple loops in evaluating vectors

template<class T>
struct Vec : public VecExpr<Vec<T>, T>
{

T data;

KOKKOS_INLINE_FUNCTION
static constexpr int size();

KOKKOS_INLINE_FUNCTION
Vec(const double *p);

KOKKOS_INLINE_FUNCTION
void store(double *p);

KOKKOS_INLINE_FUNCTION
T & cal() { return data; }

KOKKOS_INLINE_FUNCTION
T cal() const { return data; }

template <typename E>
KOKKOS_INLINE_FUNCTION
Vec(VecExpr<E, T> const& vec)
: data(static_cast<E const&>(vec).cal()) { }

};

SIMD Vectorization with Kokkos

03/05/2021 Qiming Lu | SIAM CES2112

template<class T>
KOKKOS_INLINE_FUNCTION
T drift_unit(T px, double t)
{ return px * t; }

// Vec4d is the avx type from vector class
using gsv = Vec<Vec4d>;

parallel_for(N, [=](int i) {
int idx = i * gsv::size();

gsv p0(&p(idx,0));
gsv p1(&p(idx,1));

p0 += drift_unit(p1, t);

p0.store(&p(idx,0));
});

• The same drift method written in SIMD
primitive

• drift_unit() is now a function template to
work with various vector types

• Particle data is still a double array (as
opposed to a vector typed array)
– Extra load() and store() to construct and

writeback the vectors around the calculation
– Allows flexible control over whether to use

vector calculation (not all algorithms are
suitable for vectorization)

Performance Comparison of Unified Computing Kernels

13 03/05/2021 Qiming Lu | SIAM CES21

• Intel Xeon 6248
– 20 cores / 40 threads @ 3.90GHz turbo
– SSE4.2 / AVX / AVX2 / AVX512
– Max throughput @ 81.6 MP/s
– 81.8 MP/s for pure OpenMP implementation
– 2x and 3.5x for SSE and AVX vectorization

• Nvidia Volta V100 GPU
– 84 SM / 5120 CUDA cores
– Max throughput @ 2084.5 MP/s
– Using expression templates has nearly

doubled the throughputs on GPUs!

• Nvidia Ampere A100 GPU
– Max throughputs @ 2876.8 MP/s
– ~40% increases vs V100

23.0
MP/s

45.2
MP/s

81.6
MP/s

1080.7
MP/s

2084.5
MP/s

Space Charge

03/05/2021 Qiming Lu | SIAM CES2114

x p_x

6.336E-03 -5.766E-04

-1.624E-03 8.303E-05

1.401E-03 -3.008E-04

x p_x

6.336E-03 -5.766E-04

-1.624E-03 8.303E-05

1.401E-03 -3.008E-04

x p_x

6.336E-03 -5.766E-04

-1.624E-03 8.303E-05

1.401E-03 -3.008E-04

x p_x

6.336E-03 -5.766E-04

-1.624E-03 8.303E-05

1.401E-03 -3.008E-04

Particle array

local ρ local ρlocal ρ local ρHistogram

Σparallel sum

apply E apply Eapply E apply E

Redundant field solve
parallel within each node to
avoid communication, uses
FFTs

parallel for

∇2𝑉𝑉 = 𝜌𝜌∇2𝑉𝑉 = 𝜌𝜌∇2𝑉𝑉 = 𝜌𝜌∇2𝑉𝑉 = 𝜌𝜌

Charge
deposit

Field
solver

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

• Two approaches:
– Data duplication is often faster on the host, but too memory expensive on GPUs
– Atomics are faster on GPUs, but slow on the host

Parallel Charge Deposit in Shared-memory

03/05/2021 Qiming Lu | SIAM CES2115

View<double**, LayoutLeft> p;
View<double***> grid;
ScatterView<double***> sv(grid);

parallel_for(N, [=](int i) {
auto access = sv.access();

auto [ix, iy, iz] = get_indices(
p(i,0), p(i,2), p(i,4));

access(ix, iy, iz) += charge;
access(ix+1, iy, iz) += charge;
...

});

contribute(grid, sv);

• Kokkos::ScatterView<> does duplication
on the host backend, and atomics on
GPUs

• As of the latest Kokkos version (3.3.1),
ScatterView still has some performance
issues on OpenMP backend

• Synergia has manually implemented the
data duplication histogram on the
OpenMP code path

• The 2D and 3D open boundary conditions space charge solver in Synergia uses
the convolution method to solve the field

• Needs a portable FFT method for the solver to be truly portable
– Provides unified FFT interfaces for 2d/3d R2C/C2R DFTs, 3d DST/DCT, etc.
– Handles device/host data movement, memory padding, and data alignments automatically
– Calls FFTW on host
– Calls CUFFT on CUDA backend
– Needs to be extended for AMD GPUs and Intel GPUs

Field Solver

03/05/2021 Qiming Lu | SIAM CES2116

• Overall performance comparison
– Real world particle accelerator

simulations
– 4M particles, 3D space charge @

64x64x128 grid size

• 1 or 8 AMD 32 core Opteron nodes

• Power9 + Nvidia V100 GPUs
– 1 - 4 GPUs per node
– Similar to Summit nodes

Benchmark accelerator simulation results

17 03/05/2021 Qiming Lu | SIAM CES21

• It is possible to achieve portable performance with a unified codebase
– Shifts the burden of hardware specific implementations/optimizations to the third-party libraries and

people with expertise, so we can focus on the algorithms of our specific problems
– A portable and unified codebase is much more maintainable than multiple hardware specific code

branches

• Caveats
– Took a year of work to migrate the code from mostly OpenMP parallelization to Kokkos
– Even though the code can be hardware agnostic, doesn’t mean the developers should also ignore the

differences in underlying hardware – some algorithms and data structures are not suitable for GPUs
and the memory model, therefore needs to be redesigned

– Still some device-specific code was necessary

Conclusion

03/05/2021 Qiming Lu | SIAM CES2118

Synergia development was developed through the SciDAC-4 ComPASS
project funded by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research and Office of High
Energy Physics, Scientific Discovery through Advanced Computing
(SciDAC) program.

Work supported by the Fermi National Accelerator Laboratory, managed
and operated by Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the U.S. Department of Energy.

Acknowledgment

3/12/2021 Qiming Lu | SIAM CES2119

	Slide Number 1
	Synergia �Particle Accelerator Modeling Framework
	Synergia Modeling Framework
	Synergia computational ingredients
	New Challenges in the Era of Exascale Computing
	New Challenges in the Era of Exascale Computing
	Slide Number 7
	Kokkos Data Storage
	Kokkos Parallel Dispatch
	SIMD Vectorization with Kokkos
	SIMD Vectorization with Kokkos
	SIMD Vectorization with Kokkos
	Performance Comparison of Unified Computing Kernels
	Space Charge
	Parallel Charge Deposit in Shared-memory
	Field Solver
	Benchmark accelerator simulation results
	Conclusion
	Acknowledgment

