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• Beam dynamics simulation and modeling package for particle accelerators

– Beam optics from external fields
– Internal fields calculation (space charge with particle-in-cell)
– Beam-beam interactions, wakefield simulations, etc.

Synergia 
Particle Accelerator 

Modeling Framework
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• C++ library with Python wrappers
– Most simulations are written in Python and import modules to perform the heavy 

calculation. Main processing loop is in C++.

• Uses MPI parallel processing to scale to large problems.

• Runs on desktop/laptop, small/medium clusters, supercomputers.
– Small problems can be run on small systems (number of particles, size of accelerator, etc.)
– Code scales well for large problems on large systems.

Synergia Modeling Framework
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Synergia computational ingredients
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Particle array

Proc 0 Proc 1 Proc 2 Proc 3

parallel for

local ρ local ρlocal ρ local ρHistogram

Σparallel sum

apply E apply Eapply E apply E

Redundant field solve 
parallel within each node to 
avoid communication, uses 
FFTs

parallel for
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External 
fields

Space 
charge 

calculation 
with PIC
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The bulk of computing power at the new large facilities is heavily shifting towards 
accelerators such as GPU or other co-processors

– Summit at OLCF: Power9 + Nvidia V100 GPU
– Frontier at OLCF: AMD EPYC CPU + AMD Radeon GPU
– Aurora at ALCF: Intel Xeon CPU + Intel Xe GPU
– Perlmutter at NERSC: AMD EPYC CPU + NVidia A100 GPU

Along with emerging parallel programming models and tools, oftentimes locked-in to 
specific hardware or platform

New Challenges in the Era of Exascale Computing
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CUDA ROCm

OpenMP / OpenMP Target OpenACC

Intel oneAPI



The application needs to adapt and make use of the accelerators
– Shifting the paradigm from CPU centric parallelization to a hybrid of CPU and accelerator 

parallelization

… and be portable
– Keep broad accessibility across computing platforms.
– Use “standard” languages and programming techniques as much as possible.
– Avoid architecture lock-in for code maintainability and execute-everywhere capability.
– Minimize architecture specific code and algorithms.

• a previous CUDA specific Synergia version was unmaintainable and rotted into uselessness

… with high performance!
– Portability is not an excuse for poor performance

New Challenges in the Era of Exascale Computing
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• https://kokkos.org
• Part of the Exascale Computing Project
• C++ library maintained as an open-source repository on Github.

• Shared memory programming model that supports architecture specific backends, 
e.g., OpenMP or CUDA.

• Hardware agnostic: supports NVIDIA (now), AMD and Intel GPUs (promised)

• Provides abstractions for both parallel execution of code and data management
• Allows significant expressibility, particularly on GPUs
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https://kokkos.org


• Kokkos::View<T> is a generic multi-dimensional data container
– Allows the user to control “where” (memory spaces) the data resides,
– and “how” (memory layout) the data are stored

• E.g., Kokkos::View<double**, CudaSpace, LayoutLeft> is a 2d double array stored in 
the CUDA device memory with column major (left) layout.

• Managing the bulk of particle data with Kokkos::View<>
– Resides in the device memory during its lifetime for fast accessing from computing kernels
– has a host mirror and gets synced manually when necessary

• For OpenMP threads backend, syncing between host and "device" has virtually no costs
– Uses column major for both CPU and GPU backends, optimal for

• CPU vectorization
• GPU memory coalescing

Kokkos Data Storage
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An example with drift propagation in Synergia with Kokkos

Kokkos Parallel Dispatch
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// simplified for demonstration ...
KOKKOS_INLINE_FUNCTION
double drift_unit(double px, double t)
{ return px * t; }

const size_t N = ...;
View<double*[6]> p("particles", N);
double t = ...;

// fill p with some numbers ...

parallel_for(N, [=](int i) {
p(i,0) += drift_unit(p(i,1), t);
p(i,2) += drift_unit(p(i,3), t);

});

• The same code can be compiled 
and run on both CPU (OpenMP) 
and GPU (CUDA, or other 
backends supported by Kokkos)

• 3 types of parallel dispatchers 
serve as the building blocks for 
more complicated algorithms
– parallel_for()
– parallel_reduce()
– parallel_scan()



• Very limited vectorization support from Kokkos
– Auto-vectorization with compiler directives, available with only Intel compilers in the 

OpenMP backend

• Yet being able to use vectorization on CPU is crucial to the performance

• Synergia has implemented a portable SIMD primitive with explicit vector types to 
work with Kokkos kernels
– C++ templated class for a range of SIMD vector types
– Uses Agner Fog’s vectorclass (https://github.com/vectorclass) for x86/64 SSE/AVX/AVX512 

intrinsic/types
– Supports Quad Processing eXtension(QPX) for IBM Power CPUs
– Compatible with GPU kernels (by falling back to single width data types)

SIMD Vectorization with Kokkos
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https://github.com/vectorclass


SIMD Vectorization with Kokkos
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• The template class Vec<T> can be 
instantiated with vector types that has basic 
operators (+-*/, etc) overloaded
– SSE: Vec<Vec2d>
– AVX: Vec<Vec4d>
– AVX512: Vec<Vec8d>
– On GPU it is just Vec<double>

• VecExpr<E, T> is an expression template where 
expressions are evaluated only as needed. It …
– avoids the need for creating temporaries
– avoids the need for multiple loops in evaluating vectors

template<class T>
struct Vec : public VecExpr<Vec<T>, T>
{

T data;

KOKKOS_INLINE_FUNCTION
static constexpr int size();

KOKKOS_INLINE_FUNCTION
Vec(const double *p);

KOKKOS_INLINE_FUNCTION
void store(double *p);

KOKKOS_INLINE_FUNCTION
T & cal() { return data; }

KOKKOS_INLINE_FUNCTION
T   cal() const { return data; }

template <typename E>
KOKKOS_INLINE_FUNCTION
Vec(VecExpr<E, T> const& vec)
: data(static_cast<E const&>(vec).cal()) { }

};



SIMD Vectorization with Kokkos
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template<class T>
KOKKOS_INLINE_FUNCTION
T drift_unit(T px, double t)
{ return px * t; }

// Vec4d is the avx type from vector class
using gsv = Vec<Vec4d>;

parallel_for(N, [=](int i) {
int idx = i * gsv::size();

gsv p0(&p(idx,0));
gsv p1(&p(idx,1));

p0 += drift_unit(p1, t);

p0.store(&p(idx,0));
});

• The same drift method written in SIMD 
primitive

• drift_unit() is now a function template to 
work with various vector types

• Particle data is still a double array (as 
opposed to a vector typed array)
– Extra load() and store() to construct and 

writeback the vectors around the calculation
– Allows flexible control over whether to use 

vector calculation (not all algorithms are 
suitable for vectorization)



Performance Comparison of Unified Computing Kernels
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• Intel Xeon 6248
– 20 cores / 40 threads @ 3.90GHz turbo
– SSE4.2 / AVX / AVX2 / AVX512
– Max throughput @ 81.6 MP/s
– 81.8 MP/s for pure OpenMP implementation
– 2x and 3.5x for SSE and AVX vectorization

• Nvidia Volta V100 GPU
– 84 SM / 5120 CUDA cores
– Max throughput @ 2084.5 MP/s
– Using expression templates has nearly 

doubled the throughputs on GPUs!

• Nvidia Ampere A100 GPU
– Max throughputs @ 2876.8 MP/s
– ~40% increases vs V100

23.0 
MP/s

45.2 
MP/s

81.6 
MP/s

1080.7 
MP/s

2084.5 
MP/s



Space Charge
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• Two approaches:
– Data duplication is often faster on the host, but too memory expensive on GPUs
– Atomics are faster on GPUs, but slow on the host

Parallel Charge Deposit in Shared-memory
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View<double**, LayoutLeft> p;
View<double***> grid;
ScatterView<double***> sv(grid);

parallel_for(N, [=](int i) {
auto access = sv.access();

auto [ix, iy, iz] = get_indices(
p(i,0), p(i,2), p(i,4));

access(ix, iy, iz) += charge;
access(ix+1, iy, iz) += charge;
...

});

contribute(grid, sv);

• Kokkos::ScatterView<> does duplication 
on the host backend, and atomics on 
GPUs

• As of the latest Kokkos version (3.3.1), 
ScatterView still has some performance 
issues on OpenMP backend

• Synergia has manually implemented the 
data duplication histogram on the 
OpenMP code path



• The 2D and 3D open boundary conditions space charge solver in Synergia uses 
the convolution method to solve the field

• Needs a portable FFT method for the solver to be truly portable
– Provides unified FFT interfaces for 2d/3d R2C/C2R DFTs, 3d DST/DCT, etc.
– Handles device/host data movement, memory padding, and data alignments automatically
– Calls FFTW on host
– Calls CUFFT on CUDA backend
– Needs to be extended for AMD GPUs and Intel GPUs

Field Solver
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• Overall performance comparison
– Real world particle accelerator 

simulations
– 4M particles, 3D space charge @ 

64x64x128 grid size

• 1  or 8 AMD 32 core Opteron nodes

• Power9 + Nvidia V100 GPUs 
– 1 - 4 GPUs per node
– Similar to Summit nodes

Benchmark accelerator simulation results

17 03/05/2021 Qiming Lu | SIAM CES21



• It is possible to achieve portable performance with a unified codebase
– Shifts the burden of hardware specific implementations/optimizations to the third-party libraries and 

people with expertise, so we can focus on the algorithms of our specific problems
– A portable and unified codebase is much more maintainable than multiple hardware specific code 

branches

• Caveats
– Took a year of work to migrate the code from mostly OpenMP parallelization to Kokkos
– Even though the code can be hardware agnostic, doesn’t mean the developers should also ignore the 

differences in underlying hardware – some algorithms and data structures are not suitable for GPUs 
and the memory model, therefore needs to be redesigned

– Still some device-specific code was necessary

Conclusion
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