A deep-learning based waveform region-of-interest finder for the liquid argon time projection chamber

Wanwei Wu1, Lorenzo Uboldi2, Michael Wang1, Tingjun Yang1
(On behalf of the ArgoNeuT Collaboration) 1Fermilab, 2CERN

\textit{XIX International Workshop on Neutrino Telescopes}

February 24, 2021
Introduction

- LArTPC offers excellent spatial and energy resolution for low energy physics.
- Understanding and optimizing the signal and noise discrimination capabilities of LArTPCs is especially critical for low-energy physics, such as supernova/solar neutrino interactions and some new physics scenarios [2002.02967, 1810.7513, 1911.07996]

waveform in LArTPC:

Is there a signal? Where is the signal?

- An application of a 1D-CNN to the task of finding the region-of-interest (ROI) in LArTPC raw waveforms is considered and tested on the ArgoNeuT experiment.

- **ArgoNeuT LArTPC**
 - First LArTPC in a neutrino beam (NuMI) in the US
 - Located between MINOS near detector (ND) and MINERvA, using MINOS ND as muon spectrometer
 - $40 \times 47 \times 90 \text{ cm}^3$ [vertical, drift, horizontal (beam)]
 - Two readout wire planes (60° to each other)
 - 240 induction wires and 240 collection wires
 - 2048 samples with 198 ns sampling time.
 - Data taking in $\nu/\bar{\nu}$ mode in 2009-2010.
Signal and Noise

• In LArTPC detectors, the shape of the raw signal waveform is determined by how the charge signal is formed.
• The negative tail and coherent noise components can cause problems for charge reconstruction and need to be removed before further signal and noise discrimination.

Raw waveforms

Data-driven noise model

ArgoNeuT Preliminary

Noise frequency (error bar: RMS)

ArgoNeuT Preliminary

Noise fluctuation at each frequency bin

Fermilab

ArgoNeuT

Tails

Coherent noise

Wanwei Wu, et al. | A deep-learning based waveform ROI finder for LArTPC
Waveform Region-of-Interest (ROI) Finder

- Waveform ROIs: regions that contain charge/energy deposition
- Traditionally, waveform ROI finder is based on an **over-threshold algorithm**, i.e.,

\[\text{Signal} \]
\[\text{Noise} \]

- **1D- Convolutional Neutral Network (1D-CNN) waveform ROI finder**

\[\text{Inputs: 200-tick waveforms} \]

\[\text{output: probability that 200-tick waveform contains a signal} \]
Results for ArgoNeuT

Schematic of applying ROI finder:

150 ticks window 2
window 3
window 1
200 ticks

Maximum number of electron at a time tick in a ROI is used to represent the signal size of that ROI.

\[
\text{ROI efficiency} = \frac{\text{number of signals in ROI}}{\text{number of signals}}
\]
Results for ArgoNeuT

- Maximum ADC at a time tick in a ROI is used to represent the signal size of that ROI.
- Data vs MC: charged-current muon neutrino events are selected (with electron lifetime and gain corrections)

Disagreement between data and MC at low-energy region is understood:
- Photons from de-excitation of argon nucleus are not simulated.

1D-CNN ROI finder shows great capability for small signals on both data and MC.
Conclusions

- Encouraging results in the application of 1D-CNN to the task of finding ROI in LArTPC waveforms using ArgoNeuT data are shown. The efficiency of it is roughly twice that of a traditional ADC over-threshold algorithm in the very low energy region (~0.03-0.1 MeV).
- The 1D-CNN shows a promising ability to extract small signals and offers great potential for low-energy physics. It can be applied to other LArTPCs for achieving their specific physics goals, such as the solar and supernova neutrinos in DUNE.
- A publication on this is in preparation.