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Our understanding of strong gravity near supermassive compact objects has recently improved thanks to
the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer
constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we
show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton
black hole. Similarly, when considering black holes with two physical and independent charges, we are able to
exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes.

I. INTRODUCTION

General relativity (GR) was formulated to consistently ac-
count for the interaction of dynamical gravitational fields with
matter and energy, the central idea of which is that the former
manifests itself through modifications of spacetime geome-
try and is fully characterized by a metric tensor. While the
physical axioms that GR is founded on are contained in the
equivalence principle [1, 2], the Einstein-Hilbert action fur-
ther postulates that the associated equations of motion involve
no more than second-order derivatives of the metric tensor.

The strength of the gravitational field outside an object
of mass M and characteristic size R, in geometrized units
(G = c = 1), is related to its compactness C := M/R,
which is ∼ 10−6 for the Sun, and takes values ∼ 0.2 − 1 for
compact objects such as neutron stars and black holes. Pre-
dictions from GR have been tested and validated by various
solar-system experiments to very high precision [2, 3], set-
ting it on firm footing as the best-tested theory of classical
gravity in the weak-field regime. It is important, however, to
consider whether signatures of deviations from the Einstein-
Hilbert action, e.g., due to higher derivative terms [4], could
appear in measurements of phenomena occurring in strong-
field regimes where C is large. Similarly, tests are needed to
assess whether generic violations of the equivalence principle
occur in strong-fields due, e.g., to the presence of additional
dynamical fields, such as scalar [5] or vector fields [6], that
may fall off asymptotically. Agreement with the predictions
of GR coming from observations of binary pulsars [7], and of
the gravitational redshift [8] and geodetic orbit-precession [9]
of the star S2 near our galaxy’s central supermassive compact
object Sgr A? by the GRAVITY collaboration, all indicate the
success of GR in describing strong-field physics as well. In
addition, with the gravitational-wave detections of coalescing

binaries of compact objects by the LIGO/Virgo collaboration
[10] and the first images of black holes produced by EHT, it
is now possible to envision testing GR at the strongest field
strengths possible.

While the inferred size of the shadow from the recently ob-
tained horizon-scale images of the supermassive compact ob-
ject in M87 galaxy by the EHT collaboration [11] was found
to be consistent to within 17% for a 68% confidence interval
of the size predicted from GR for a Schwarzschild black hole
using the a priori known estimates for the mass and distance
of M87* based on stellar dynamics [12], this measurement ad-
mits other possibilities, as do various weak-field tests [2, 13].
Since the number of alternative theories to be tested using this
measurement is large, a systematic study of the constraints
set by a strong-field measurement is naturally more tractable
within a theory-agnostic framework, and various such systems
have recently been explored [14, 15]. This approach allows
for tests of a broad range of possibilities that may not be cap-
tured in the limited set of known solutions. This was exploited
in Ref. [13], where constraints on two deformed metrics were
obtained when determining how different M87* could be from
a Kerr black hole while remaining consistent with the EHT
measurements.

However, because such parametric tests cannot be con-
nected directly to an underlying property of the alternative
theory, here we use instead the EHT measurements to set
bounds on the physical parameters, i.e., angular momentum,
electric charge, scalar charge, etc., – and which we will gener-
ically refer to as “charges” (or hairs) – that various well-
known black-hole solutions depend upon. Such analyses can
be very instructive [16–18] since they can shed light on which
underlying theories are promising candidates and which must
be discarded or modified. At the same time, they may provide
insight into the types of additional dynamical fields that may
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be necessary for a complete theoretical description of physical
phenomena, and whether associated violations of the equiva-
lence principle occur.

More specifically, since the bending of light in the presence
of curvature – either in static or in stationary spacetimes –
is assured in any metric theory of gravity, and the presence of
large amounts of mass in very small volumes can allow for the
existence of a region where null geodesics move on spherical
orbits, an examination of the characteristics of such photon
regions, when they exist, is a useful first step. The projected
asymptotic collection of the photons trajectories that are cap-
tured by the black hole – namely, all of the photon trajectories
falling within the value of the impact parameter at the unsta-
ble circular orbit in the case of nonrotating black holes – will
appear as a dark area to a distant observer and thus represents
the “shadow” of the capturing compact object. This shadow
– which can obviously be associated with black holes [19–
24], but also more exotic compact objects such as gravastars
[25, 26] or naked singularities [27, 28] – is determined entirely
by the underlying spacetime metric. Therefore, the properties
of the shadow – and at lowest order its size – represent valu-
able observables common to all metric theories of gravity, and
can be used to test them for their agreement with EHT mea-
surements.

While the EHT measurement contains far more information
related to the flow of magnetised plasma near M87*, we will
consider only the measurement of the size of the bright ring.
Here we consider various spherically symmetric black-hole
solutions, from GR that are either singular (see, e.g., [29]) or
non-singular [30–32], and string theory [33–37]. Addition-
ally, we also consider the Reissner-Nordström (RN) and the
Janis-Newman-Winicour (JNW) [38] naked singularity solu-
tions, the latter being a solution of the Einstein-Klein-Gordon
system. Many of these solutions have been recently sum-
marised in Ref. [15], where they were cast in a generalised ex-
pansion of static and spherically symmetric metrics. Since an-
gular momentum plays a key role in astrophysical scenarios,
we also consider various rotating black-hole solutions [39–
42] which can be expressed in the Newman-Janis form [43] to
facilitate straightforward analytical computations. It is to be
noted that this study is meant to be a proof of principle and
that while the constraints we can set here are limited, the ana-
lytical procedure outlined below for this large class of metrics
is general, so that as future observations become available, we
expect the constraints that can be imposed following the ap-
proach proposed here to be much stronger.

II. SPHERICAL NULL GEODESICS AND SHADOWS

For all the static, spherically symmetric spacetimes we con-
sider here, the definition of the shadow can be cast in rather
general terms. In particular, for all the solutions considered,
the line element expressed in areal-radial polar coordinates

(t, r̃, θ, φ) has the form1

ds2 = gµνdx
µdxν = −f(r̃)dt2 +

g(r̃)

f(r̃)
dr̃2 + r̃2dΩ2

2 , (1)

and the photon region, which degenerates into a photon
sphere, is located at r̃ =: r̃ps, which can be obtained by solv-
ing [13]

r̃ − 2f(r̃)

∂r̃f(r̃)
= 0 . (2)

The boundary of this photon sphere when observed from the
frame of an asymptotic observer, due to gravitational lensing,
appears to be a circle of size [13]

r̃sh =
r̃ps√
f(r̃ps)

. (3)

On the other hand, the class of Newman-Janis stationary,
axisymmetric spacetimes we consider here [43], which are
geodesically integrable (see, e.g., [22, 44, 45]), can be ex-
pressed in Boyer-Lindquist coordinates (t, r, θ, φ) as

ds2 = − f dt2 − 2a sin2 θ(1− f) dtdφ (4)

+
[
Σ + a2 sin2 θ (2− f)

]
sin2 θ dφ2 +

Σ

∆
dr2 + Σ dθ2 ,

where f = f(r, θ) and Σ(r, θ) := r2 +a2 cos2 θ and ∆(r) :=
Σ(r, θ)f(r, θ) + a2 sin2 θ. In particular, these are the sta-
tionary generalisations obtained by employing the Newman-
Janis algorithm [43]) for “seed” metrics of the form (1) with
g(r̃) = 12.

The Lagrangian L for geodesic motion in the spacetime (4)
is given as 2L := gµν ẋ

µẋν , where an overdot represents a
derivative with respect to the affine parameter, and 2L = −1
for timelike geodesics and 2L = 0 for null geodesics. The
two Killing vectors ∂t and ∂φ yield two constants of motion

−E = − f ṫ− a sin2 θ(1− f)φ̇, (5)

L = − a sin2 θ(1− f)ṫ+
[
Σ + a2 sin2 θ (2− f)

]
sin2 θ φ̇ ,

in terms of which the geodesic equation for photons can be
separated into

Σ2ṙ2 = (r2 + a2 − aξ)2 −∆I =: R(r) , (6)

Σ2θ̇2 = I − (a sin θ − ξ csc θ)2 =: Θ(θ) , (7)

where we have introduced first ξ := L/E, and then I :=
η + (a − ξ)2. Also, η is the Carter constant, and the exis-
tence of this fourth constant of motion is typically associated

1 We use the tilde on the radial coordinate of static spacetimes to distinguish
it from the corresponding radial coordinate of axisymmetric spacetimes.

2 Note that while the Sen solution can be obtained via the Newman-Janis
algorithm [46], the starting point is the static EMd-1 metric written in a
non-areal-radial coordinate ρ such that gttgρρ = −1.
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with the existence of an additional Killing-Yano tensor (see
for example [23, 47]).

In particular, we are interested here in spherical null
geodesics (SNGs), which satisfy ṙ = 0 and r̈ = 0 and are
not necessarily planar; equivalently, SNGs can exist at loca-
tions where R(r) = 0 and dR(r)/dr = 0. Since these are
only two equations in three variables (r, ξ, η), it is convenient,
for reasons that will become evident below, to obtain the asso-
ciated conserved quantities along such SNGs in terms of their
radii r as (see also [48]),

ξSNG(r) =
r2 + a2

a
− 4r∆

a∂r∆
, (8)

ηSNG(r) =
r2

a2(∂r∆)2

[
16a2∆− (r∂r∆− 4∆)

2
]
.

The condition that Θ(θ) ≥ 0, which must necessarily hold as
can be seen from Eq. (7), restricts the radial range for which
SNGs exist, and it is evident that this range depends on θ.
This region, which is filled by such SNGs, is called the photon
region (see, e.g., Fig. 3.3 of [19]).

The equality Θ(θ) = 0 determines the boundaries of the
photon region, and the (disconnected) piece which lies in the
exterior of the outermost horizon is of primary interest since
its image, as seen by an asymptotic observer, is the shadow.
We denote the inner and outer surfaces of this photon region
by rp−(θ) and rp+(θ) respectively, with the former (smaller)
SNG corresponding to the location of a prograde photon orbit
(i.e., ξSNG(rp−) > 0), and the latter to a retrograde orbit.

It can be shown that all of the SNGs that are admitted in
the photon region, for both the spherically symmetric and ax-
isymmetric solutions considered here, are unstable to radial
perturbations. In particular, for the stationary solutions, the
stability of SNGs at a radius r = rSNG with respect to radial
perturbations is determined by the sign of ∂2rR, and when
∂2rR(rSNG) > 0, SNGs at that radius are unstable. The ex-
pression for ∂2rR reads

∂2rR =
8r

(∂r∆)2
[
r(∂r∆)2 − 2r∆∂2r∆ + 2∆∂r∆

]
. (9)

To determine the appearance of the photon region and the as-
sociated shadow, as seen by asymptotic observers, we can in-
troduce the usual notion of celestial coordinates (α, β), which
for any photon with constants of the motion (ξ, η) can be ob-
tained, for an asymptotic observer present at an inclination
angle i with respect to the spin-axis of the compact object as
in [49]. For photons on an SNG, we can set the conserved
quantities (ξ, η) to the values given in Eq. 8 above to obtain
[47, 48]

αsh = − ξSNG csc i , (10)

βsh = ±
(
ηSNG + a2 cos2 i− ξ2

SNG
cot2 i

)1/2
. (11)

Recognizing that β = ±
√

Θ(i), it becomes clear that only the
SNGs with Θ(i) ≥ 0 determine the apparent shadow shape.
Since the photon region is not spherically symmetric in ro-
tating spacetimes, the associated shadow is also not circular

in general. It can be shown that the band of radii for which
SNGs can exist narrows as we move away from the equatorial
plane, and reduces to a single value at the pole, i.e. in the limit
θ → π/2, we have rp+ = rp− (see e.g., Fig. 3.3 of [19]). As
a result, the parametric curve of the shadow boundary as seen
by an asymptotic observer lying along the pole is perfectly
circular, α2

sh + β2
sh = ηSNG(rp±,π/2) + ξ2

SNG
(rp±,π/2).

We can now define the characteristic areal-radius of the
shadow curve as [50]

rsh,A :=

(
2

π

∫ rp+

rp−

dr βsh(r)∂rαsh(r)

)1/2

. (12)

III. SHADOW SIZE CONSTRAINTS FROM THE 2017 EHT
OBSERVATIONS OF M87*

Measurements of stellar dynamics near M87* were previ-
ously used to produce a posterior distribution function of the
angular gravitational radius θg := M/D, whereM is the mass
of and D the distance to M87*. The 2017 EHT observations
of M87* can be similarly used to determine such a posterior
[11]. These observations were used to determine the angu-
lar diameter d̂ of the bright emission ring that surrounds the
shadow [11]. In Sec. 5.3 there, using synthetic images from
general-relativistic magnetohydrodynamics (GRMHD) simu-
lations of accreting Kerr black holes for a wide range of phys-
ical scenarios, the scaling factor α = d̂/θg was calibrated. For
emission from the outermost boundary of the photon region of
a Kerr black hole, α should lie in the range ' 9.6− 10.4.

The EHT measurement picks out a class of best-fit images
(“top-set”) from the image library, with a mean value for α
of 11.55 (for the “xs-ring” model) and 11.50 (for the “xs-
ringauss” model), when using two different geometric cres-
cent models for the images, implying that the geometric mod-
els were accounting for emission in the top-set GRMHD im-
ages that preferentially fell outside of the photon ring. Us-
ing the distribution of α for these top-set images then enabled
the determination of the posterior in the angular gravitational
radius Pobs(θg) for the EHT data. It is to be noted that this
posterior was also determined using direct GRMHD fitting,
and image domain feature extraction procedures, as described
in Sec. 9.2 there, and a high level of consistency was found
across all measurement methods. Finally, in Sec. 9.5 of [11],
the fractional deviation in the angular gravitational radius δ
was introduced as

δ :=
θg

θdyn
− 1 , (13)

where θg and θdyn were used to denote the EHT and the stellar-
dynamics inferences of the angular gravitational radius, re-
spectively. The posterior on δ – as defined in Eq. (32) of [11]
– was then obtained (see Fig. 21 there), and its width was
found to be δ = −0.01 ± 0.17, for a 68% credible interval.
This agreement of the 2017 EHT measurement of the angu-
lar gravitational radius for M87* with a previously existing
estimate for the same, at much larger distances, constitutes a
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validation of the null hypothesis of the EHT, and in particular
that M87* can be described by the Kerr black-hole solution.

Since the stellar dynamics measurements [12] are sen-
sitive only to the monopole of the metric (i.e., the mass)
due to negligible spin-dependent effects at the distances in-
volved in that analysis, modeling M87* conservatively using
the Schwarzschild solution is reasonable with their obtained
posterior. Then, using the angular gravitational radius esti-
mate from stellar dynamics yields a prediction for the angular
shadow radius θsh = rsh/D as being θsh = 3

√
3θdyn. The 2017

EHT measurement, which includes spin-dependent effects as
described above and which probes near-horizon scales, then
determines the allowed spread in the angular shadow diame-
ter as, θsh ≈ 3

√
3(1± 0.17) θg, at 68% confidence levels [13].

Finally, since both angular estimates θsh and θg make use of
the same distance estimate to M87*, it is possible to convert
the 1-σ bounds on θsh to bounds on the allowed shadow size
for M87*.

That is, independently of whether the underlying solution
be spherically symmetric (in which case we will consider r̃sh)
or axisymmetric (rsh,A), the shadow size of M87* must lie in
the range 3

√
3(1± 0.17)M [13], i.e., (see gray-shaded region

in Fig. 2)

4.31M ≈ rsh, EHT-min ≤ r̃sh, rsh,A ≤ rsh, EHT-max ≈ 6.08M ,
(14)

where we have introduced the maximum/minimum shadow
radii rsh, EHT-max/rsh, EHT-min inferred by the EHT, at 68% con-
fidence levels.

Note that the bounds thus derived are consistent with com-
pact objects that cast shadows that are both significantly
smaller and larger than the minimum and maximum shadow
sizes that a Kerr black hole could cast, which lie in the range,
4.83M − 5.20M (see, e.g., [13, 51]).

An important caveat here is that the EHT posterior distribu-
tion on θg was obtained after a comparison with a large library
of synthetic images built from GRMHD simulations of accret-
ing Kerr black holes [11]. Ideally, a rigorous comparison with
non-Kerr solutions would require a similar analysis and poste-
rior distributions built from equivalent libraries obtained from
GRMHD simulations of such non-Kerr solutions. Besides be-
ing computationally unfeasible, this approach is arguably not
necessary in practice. For example, the recent comparative
analysis of Ref. [17] has shown that the image libraries pro-
duced in this way would be very similar and essentially indis-
tinguishable, given the present quality of the observations. As
a result, we adopt here the working assumption that the 1-σ
uncertainty in the shadow angular size for non-Kerr solutions
is very similar to that for Kerr black holes, and hence employ
the constraints (14) for all of the solutions considered here.

IV. NOTABLE PROPERTIES OF VARIOUS SPACETIMES

As mentioned above, a rigorous comparison with non-Kerr
black holes would require constructing a series of exhaustive
libraries of synthetic images obtained from GRMHD simu-
lations on such non-Kerr black holes. In turn, this would

TABLE I. Summary of properties of spacetimes used here. For easy
access, we show whether the spacetime contains a rotating compact
object or not, whether it contains a spacetime singularity, and what
type of stationary nongravitational fields are present in the spacetime.
Starred spacetimes contain naked singularities and daggers indicate
a violation of the equivalence principle (see, e.g., [15]); In particular,
these indicate violations of the weak equivalence principle due to a
varying fine structure constant, a result of the coupling of the dilaton
to the EM Lagrangian [15, 52].

Spacetime Rotation Singularity Spacetime content

KN [40] Yes Yes EM fields

Kerr [39] Yes Yes vacuum

RN [29] No Yes EM fields

RN* [29] No Yes EM fields

Schwarzschild [29] No Yes vacuum

Rot. Bardeen [42] Yes No matter

Bardeen [30] No No matter

Rot. Hayward [42] Yes No matter

Frolov [32] No No EM fields, matter

Hayward [31] No No matter

JNW* [38] No Yes scalar field

KS [33] No Yes vacuum

Sen† [41] Yes Yes EM, dilaton, axion fields

EMd-1† [34, 35] No Yes EM, dilaton fields

EMd-2† [37] No Yes EM, EM, dilaton fields

provide consistent posterior distributions of angular gravita-
tional radii for the various black holes and hence determine
how δ varies across different non-Kerr black holes, e.g., for
Sen black holes. Because this is computationally unfeasible –
the construction of only the Kerr library has required the joint
effort of several groups with the EHTC over a good fraction
of a year – we briefly discuss below qualitative arguments to
support our use of the bounds given in Eq. 14 above as an
approximate, yet indicative, measure.

To this end, we summarize in Table I the relevant properties
of the various solutions used here. First, we have considered
here solutions from three types of theories, i.e., the under-
lying actions are either (a) Einstein-Hilbert-Maxwell-matter
[29–33, 38, 39, 42], (b) Einstein-Hilbert-Maxwell-dilaton-
axion [34, 35, 41], or (c) Einstein-Hilbert-Maxwell-Maxwell-
dilaton [37]. This careful choice implies that the gravitational
piece of the action is always given by the Einstein-Hilbert
term and that matter is minimally coupled to gravity. As a
result, the dynamical evolution of the accreting plasma is ex-
pected to be very similar to that in GR, as indeed found in Ref.
[17]. Second, since a microphysical description that allows
one to describe the interaction of the exotic matter present in
some of the regular black-hole spacetimes used here [30, 31]
– which typically do not satisfy some form of the energy con-
ditions [42, 53] – with the ordinary matter is thus far lacking,
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FIG. 1. Left: variation in the photon sphere radii for the single-charge nonrotating solutions as a function of the normalized physical charge.
Right: The same as in the left panel but for the ISCO radii. We include also, for comparison, the variation in the Kerr equatorial prograde and
retrograde photon sphere and ISCO radii in the left and right panels respectively.

it is reasonable to assume that the interaction between these
two types of fluids is gravitational only. This is indeed what
is done in standard numerical simulations, either in dynamical
spacetimes (see, e.g., [54]), or in fixed ones [16, 55]. Third,
since the mass-energy in the matter and electromagnetic fields
for the non-vacuum spacetimes used here is of the order of the
mass of the central compact object M , while the total mass
of the accreting plasma in the GRMHD simulations is only a
tiny fraction of the same, it is reasonable to treat the space-
time geometry and the stationary fields as unaffected by the
plasma. Fourth, we have also been careful not to use solutions
from theories with modified electrodynamics (such as non-
linear electrodynamics). As a result, the electromagnetic La-
grangian in all of the theories considered here is the Maxwell
Lagrangian (see, e.g., the discussion in [15] and compare with
[20]). This ensures that in these spacetimes light moves along
the null geodesics of the metric tensor (see, e.g., Sec. 4.3 of
[29] and compare against Sec. 2 of [56]). Therefore, we are
also assured that ray-tracing the radiation emitted from the ac-
creting matter in these spacetimes can be handled similarly as
in the Kerr spacetime.

Finally, under the assumption that the dominant effects in
determining the angular gravitational radii come from varia-
tions in the location of the photon region and in location of the
inner edge of the accretion disk in these spacetimes, it is in-
structive to learn how these two physical quantities vary when
changing physical charges, and, in particular, to demonstrate
that they are quantitatively comparable to the corresponding
values for the Kerr spacetime.

For this purpose, we study the single-charge solutions used
here and report in Fig. 1 the variation in the location of the
photon spheres (left panel) and innermost stable circular orbit
(ISCO) radii (right panel) as a function of the relevant physical
charge (cf. left panel of Fig. 1 in the main text). Note that both
the photon-sphere and the ISCO radii depend exclusively on
the gtt component of the metric when expressed using an areal

radial coordinate r̃ (see, e.g., [13, 15]). To gauge the effect of
spin, we also show the variation in the locations of the equa-
torial prograde and retrograde circular photon orbits and the
ISCOs in the Kerr black-hole spacetime, expressed in terms
of the Cartesian Kerr-Schild radial coordinate rCKS, which, in
the equatorial plane, is related to the Boyer-Lindquist radial
coordinate used elsewhere in this work r simply via [57]

rCKS =
√
r2 + a2 . (15)

It is apparent from Fig. 1 that the maximum deviation in the
photon-sphere size from the Schwarzschild solution occurs for
the EMd-1 black hole and is≈ 75%, while the size of the pro-
grade equatorial circular photon orbit for Kerr deviates by at
most ≈ 50%. Similarly, the maximum variation in the ISCO
size also occurs for the EMd-1 solution and is ≈ 73%, while
the prograde equatorial ISCO for Kerr can differ by ≈ 66%.

V. CHARGE CONSTRAINTS FROM THE EHT M87*
OBSERVATIONS

We first consider compact objects with a single “charge,”
and report in the left panel of Fig. 2 the variation in the
shadow radius for various spherically symmetric black hole
solutions, as well as for the RN and JNW naked singularities3.
More specifically, we consider the black-hole solutions given
by Reissner-Nordström (RN) [29], Bardeen [30, 42], Hay-
ward [31, 58], Kazakov-Solodhukin (KS) [33], and also the
asymptotically-flat Einstein-Maxwell-dilaton (EMd-1) with

3 While the electromagnetic and scalar charge parameters for the RN and
JNW spacetimes are allowed to take values q̄ > 1 and 0 < ˆ̄ν := 1−ν̄ < 1
respectively, they do not cast shadows for q̄ >

√
9/8 and 0.5 ≤ ˆ̄ν < 1

(see, e.g., Sec. IV D of [15] and references therein).
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FIG. 2. Left: Shadow radii r̃sh for various spherically symmetric black-hole solutions, as well as for the JNW and RN naked singularities
(marked with an asterisk), as a function of the physical charge normalized to its maximum value. The gray/red shaded regions refer to the
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(see also Fig. 3 for the EMd-2 black hole). Right: Shadow areal radii rsh,A as a function of the dimensionless spin a for four families of
black-hole solutions when viewed on the equatorial plane (i = π/2). Also in this case, the observations restrict the ranges of the physical
charges of the Kerr-Newman and the Sen black holes (see also Fig. 3).

φ∞ = 0 and α1 = 1 [34, 35, 56] solution (see Sec. IV
of [15] for further details on these solutions). For each of
these solutions we vary the corresponding charge (in units of
M ) in the allowed range, i.e., RN: 0 < q̄ ≤ 1; Bardeen:
0 < q̄m ≤

√
16/27; Hayward: 0 < l̄ ≤

√
16/27; Frolov:

0 < l̄ ≤
√

16/27, 0 < q̄ ≤ 1; KS: 0 < l̄; EMd-1:
0 < q̄ <

√
2, but report the normalised value in the figure

so that all curves are in a range between 0 and 1. The figure
shows the variation in the shadow size of KS black holes over
the parameter range 0 < l̄ <

√
2. Note that the shadow radii

tend to become smaller with increasing physical charge, but
also that this is not universal behaviour, since the KS black
holes have increasing shadow radii (the singularity is smeared
out on a surface for this solution, which increases in size with
increasing l̄).

Overall, it is apparent that the regular Bardeen, Hay-
ward, and Frolov black-hole solutions are compatible with the
present constraints. At the same time, the Reissner-Nordström
and Einstein-Maxwell-dilaton 1 black-hole solutions, for cer-
tain values of the physical charge, produce shadow radii that
lie outside the 1-σ region allowed by the 2017 EHT obser-
vations, and we find that these solutions are now constrained
to take values in, 0 < q̄ . 0.90 and 0 < q̄ . 0.95 respec-
tively. Furthermore, the Reissner-Nordström naked singular-
ity is entirely eliminated as a viable model for M87* and the
Janis-Newman-Winicour naked singularity parameter space is
restricted further by this measurement to 0 < ˆ̄ν . 0.47. Fi-
nally, we also find that the KS black hole is also restricted to
have charges in the range l̄ < 1.53. In addition, note that
the nonrotating Einstein-Maxwell-dilaton 2 (EMd-2) solution
[37] – which depends on two independent charges – can also
produce shadow radii that are incompatible with the EHT ob-
servations; we will discuss this further below. The two EMd
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FIG. 3. Constraints set by the 2017 EHT observations on the non-
rotating Einstein-Maxwell-dilaton 2 and on the rotating Sen black
holes. Also in this case, the gray/red shaded regions refer to the
areas that are 1-σ consistent/inconsistent with the 2017 EHT obser-
vations).

black-hole solutions (1 and 2) correspond to fundamentally
different field contents, as discussed in [37].

We report in the right panel of Fig. 2 the shadow areal ra-
dius rsh,A for a number of stationary black holes, such as Kerr
[39], Kerr-Newman (KN) [40], Sen [41], and the rotating ver-
sions of the Bardeen and Hayward black holes [42]. The data
refers to an observer inclination angle of i = π/2, and we
find that the variation in the shadow size with spin at higher
inclinations (of up to i = π/100) is at most about 7.1% (for
i = π/2, this is 5%); of course, at zero-spin the shadow size
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does not change with inclination. The shadow areal radii are
shown as a function of the dimensionless spin of the black
hole a := J/M2, where J is its angular momentum, and for
representative values of the additional parameters that char-
acterize the solutions. Note that – similar to the angular mo-
mentum for a Kerr black hole – the role of an electric charge
or the presence of a de Sitter core (as in the case of the Hay-
ward black holes) is to reduce the apparent size of the shadow.
Furthermore, on increasing the spin parameter, we recover the
typical trend that the shadow becomes increasingly noncircu-
lar, as encoded, e.g., in the distortion parameter δsh defined in
[24, 50] (see Appendix A). Also in this case, while the regular
rotating Bardeen and Hayward solutions are compatible with
the present constraints set by the 2017 EHT observations, the
Kerr-Newman and Sen families of black holes can produce
shadow areal radii that lie outside of the 1-σ region allowed
by the observations.

To further explore the constraints on the excluded regions
for the Einstein-Maxwell-dilaton 2 and the Sen black holes,
we report in Fig. 3 the relevant ranges for these two solutions.
The Einstein-Maxwell-dilaton 2 black holes are nonrotating
but have two physical charges expressed by the coefficients
0 < q̄e <

√
2 and 0 < q̄m <

√
2, while the Sen black

holes spin (a) and have an additional electromagnetic charge
q̄m. Also in this case, the gray/red shaded regions refer to the
areas that are consistent/inconsistent with the 2017 EHT ob-
servations. The figure shows rather easily that for these two
black-hole families there are large areas of the space of pa-
rameters that are excluded at the 1-σ level. Not surprisingly,
these areas are those where the physical charges take their
largest values and hence the corresponding black-hole solu-
tions are furthest away from the corresponding Schwarzschild
or Kerr solutions. The obvious prospect is of course that as
the EHT increases the precision of it’s measurements, increas-
ingly larger portions of the space of parameters of these black
holes will be excluded. Furthermore, other solutions that are
presently still compatible with the observations may see their
corresponding physical charges restricted.

VI. CONCLUSIONS

As our understanding of gravity under extreme regimes im-
proves, and as physical measurements of these regimes are
now becoming available – either through the imaging of su-
permassive black holes or the detection of gravitational waves
from stellar-mass black holes – we are finally in the position
of setting some constraints to the large landscape of non-Kerr
black holes that have been proposed over the years. We have
used here the recent 2017 EHT observations of M87* to set
constraints, at the 1-σ-level, on the physical charges – either
electric, scalar, or angular momentum – of a large variety of
static (nonrotating) or stationary (rotating) black holes.

In this way, when considering nonrotating black holes with
a single physical charge, we have been able to rule out, at
68% confidence levels, the possibility that M87* is a near-
extremal Reissner-Nordström or Einstein-Maxwell-dilaton 1
black hole and that the corresponding physical charge must

be in the range, RN: 0 < q̄ . 0.90 and EMd-1: 0 < q̄ . 0.95.
We also find that it cannot be a Reissner-Nordström naked sin-
gularity or a JNW naked singularity with large scalar charge,
i.e., only 0 < ˆ̄ν . 0.47 is allowed. Similarly, when con-
sidering black holes with two physical charges (either nonro-
tating or rotating), we have been able to exclude, with 68%
confidence, considerable regions of the space of parameters
in the case of the Einstein-Maxwell-dilaton 2, Kerr-Newman
and Sen black holes. Although the idea of setting such con-
straints is an old one (see, e.g., [14, 15, 18, 21, 22]), and while
there have been recent important developments in the study
of other possible observational signatures of such alternative
solutions, such as in X-ray spectra of accreting black holes
(see, e.g., [59]) and in gravitational waves [56, 60], to the best
of our knowledge, constraints of this type have not been set
before for the spacetimes considered here.

As a final remark, we note that while we have chosen
only a few solutions that can be seen as deviations from the
Schwarzschild/Kerr solutions since they share the same basic
Einstein-Hilbert-Maxwell action of GR, the work presented
here is meant largely as a proof-of-concept investigation and
a methodological example of how to exploit observations and
measurements that impact the photon region. While a cer-
tain degeneracy in the shadow size induced by mass and spin
remains and is inevitable, when in the future the relative dif-
ference in the posterior for the angular gravitational radius for
M87* can be pushed to . 5%, we should be able to constrain
its spin, when modeling it as a Kerr black hole. Furthermore,
since this posterior implies a spread in the estimated mass, one
can expect small changes in the exact values of the maximum
allowed charges reported here. Hence, as future observations
– either in terms of black-hole imaging or of gravitational-
wave detection – will become more precise and notwithstand-
ing a poor measurement of the black-hole spin, the methodol-
ogy presented here can be readily applied to set even tighter
constraints on the physical charges of non-Einsteinian black
holes.
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and IGN (Instituto Geográfico Nacional, Spain). The SMT
is operated by the Arizona Radio Observatory, a part of the
Steward Observatory of the University of Arizona, with fi-
nancial support of operations from the State of Arizona and
financial support for instrumentation development from the
NSF. The SPT is supported by the National Science Founda-
tion through grant PLR-1248097. Partial support is also pro-
vided by the NSF Physics Frontier Center grant PHY-1125897
to the Kavli Institute of Cosmological Physics at the Univer-
sity of Chicago, the Kavli Foundation and the Gordon and
Betty Moore Foundation grant GBMF 947. The SPT hy-
drogen maser was provided on loan from the GLT, courtesy
of ASIAA. The EHTC has received generous donations of
FPGA chips from Xilinx Inc., under the Xilinx University
Program. The EHTC has benefited from technology shared
under open-source license by the Collaboration for Astron-
omy Signal Processing and Electronics Research (CASPER).
The EHT project is grateful to T4Science and Microsemi for
their assistance with Hydrogen Masers. This research has
made use of NASA’s Astrophysics Data System. We grate-
fully acknowledge the support provided by the extended staff
of the ALMA, both from the inception of the ALMA Phas-
ing Project through the observational campaigns of 2017 and
2018. We would like to thank A. Deller and W. Brisken for
EHT-specific support with the use of DiFX. We acknowledge
the significance that Maunakea, where the SMA and JCMT
EHT stations are located, has for the indigenous Hawaiian
people.

Facilities: EHT, ALMA, APEX, IRAM:30 m, JCMT, LMT,
SMA, ARO:SMT, SPT.

Software: AIPS [62], ParselTongue [63], GNU Parallel
[64], eht-imaging [65], Difmap [66], Numpy [67], Scipy
[68], Pandas [69], Astropy [70, 71], Jupyter [72], Matplotlib
[73], THEMIS [74], DMC [75], polsolve [76], GPCAL
[77].

[1] R. H. Dicke, General Relativity and Gravitation 51, 57 (2019).
[2] C. M. Will, Living Rev. Relativity 9, 3 (2006), arXiv:gr-

qc/0510072.
[3] T. E. Collett, L. J. Oldham, R. J. Smith, M. W. Auger,

K. B. Westfall, D. Bacon, R. C. Nichol, K. L. Masters,
K. Koyama, and R. van den Bosch, Science 360, 134 (2018),
arXiv:1806.08300 [astro-ph.CO].

[4] G. ’t Hooft and M. Veltman, Annales de L’Institut Henri
Poincare Section (A) Physique Theorique 20, 69 (1974); N. V.
Krasnikov, Theoretical and Mathematical Physics 73, 1184
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Appendix A: Distortion parameters

Since the boundary of the shadow region is a closed curve
as discussed above, one can define various characteristic fea-
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FIG. 4. Distortion parameter δsh for a number of stationary black
holes observed on the equatorial plane (i = π/2) with dimension-
less spin a. Because for observers viewing the black hole from incli-
nations increasingly close to the pole, the shadow boundary appears
increasingly circular, the distortions reported can be taken as upper
limits.

tures for a quantitative comparison [47, 50]. Out of the many
possible measures of distortion of this curve from a perfect
circle discussed in Ref. [50], we use here the simplest one
which was originally introduced in Ref. [47], namely

δsh =
αl,c − αl
rsh, c

, (A1)

where rsh, c is the radius of the circumcircle passing through
the two points (since the images here are symmetric about
the α-axis) with coordinates (αr, 0) and (αt, βt), which are
the rightmost and topmost points of the shadow curve, and is
given as [47],

rsh, c =
(αt − αr)

2 + β2
t

2|αt − αr|
, (A2)

with (αl, 0) and (αl,c, 0) the leftmost points of the shadow
curve and of the circumcircle respectively (see Fig. 3 of [24]).

In Fig. 4 we display the distortion parameter δsh for the
shadow curves of various rotating black holes, for an equato-
rial observer, as an additional simple comparable characteris-
tic. We note also that the deviation of δsh from zero is insignif-
icant for observer viewing angles that are close to the pole of
the black hole, as anticipated (not displayed here).

As a concluding remark we note that the EHT bounds on
the size of the shadow of M87*, as discussed above and dis-
played in Eq. 14, do not impose straightforward bounds on
its shape. In particular, we can see from Fig. 4 that the ro-
tating Bardeen black hole with q̄m = 0.25 for high spins can
be more distorted from a circle than a Kerr black hole but still
be compatible with the EHT measurement (see Fig. 2). On
the other hand, even though we are able to exclude Sen black
holes with large electromagnetic charges (see, e.g., the Sen
curve for q̄m = 1.25 in the right panel of Fig. 2) as viable
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models for M87*, its shadow is less distorted from a circle
than that of an extremal Kerr black hole (see Fig. 4). In other
words, the examples just made highlight the importance of
using the appropriate bounds on a sufficiently robust quantity
when using the EHT measurement to test theories of gravity.
Failing to do so may lead to incorrect bounds on the black-
hole properties. For instance, Ref. [21] is able to set bounds

on the parameter space of the uncharged, rotating Hayward
black hole by imposing bounds on the maximum distortion
of the shape of its shadow boundaries, albeit using a different
measure for the distortion from a circle [see Eq. (58) there],
whereas we have shown that this is not possible, upon using
the bounds 4.31M − 6.08M for the size of their shadows
(cf. right panel of Fig. 2).


