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The quantum simulation of lattice gauge theories for the foreseeable future will be hampered by
limited resources. The historical success of Symanzik-improved lattice actions in classical simulations
strongly suggests that improved Hamiltonians will reduce quantum resources for fixed discretization
errors. In this work, we consider Symanzik-improved lattice Hamiltonians for pure gauge theories
and design quantum circuits for O(a2)-improved Hamiltonians in terms of primitive group gates. An
explicit demonstration for Z2 is presented including exploratory tests using the ibm perth device.

Quantum simulations of lattice field theories avoid
the exponentially large resources which plague classical
methods for finite-density and dynamics [1–3]. While
such resource reduction is dramatic for problems of in-
terest like transport coefficients [4], PDFs [5–7], and the
strong-CP problem [8, 9], the number of qubits remains
O((L/a)d) for a d spatial dimensional lattice of physi-
cal length L and spacing a. An important question for
such simulations is what resources are required for prac-
tical quantum advantage. Here, we will consider QCD
as our fiducial case. Current estimates suggest ∼ 10
qubits per gluon link are required [10–16]. This implies
that kiloqubyte-sized computers are required for 3+1d
SU(3) simulations with smaller requirements for U(1) and
SU(2) [10–14, 17–34]. Comparable resources are found
for qudit devices [14, 35, 36]

To estimate gate costs, one must specify a Hamilto-
nian for the simulations. Most studies of gauge theories
consider the Kogut-Susskind Hamiltonian, ĤKS [37]:

ĤKS = K̂KS + V̂KS , (1)

K̂KS =
∑
x,i

g2
t

a
Tr L̂2

i (x), V̂KS = −
∑
x,i<j

2
g2
sa

Re Tr P̂ij(x).

which has discretization errors of O(a2). The electric field
L̂i(x) is the left generator of gauge transformations on a
link Ui(x) [38] while P̂ij(x) is the spatial plaquette term
(e.g. U1U7U

†
5U
†
6 in Fig. 1).

When approximating the time evolution operator
U(t) = e−iĤKSt via trotterization, the gate count scales
∝ t3/2(L/a)3d/2ε−1/2 [39, 40] for a maximum error ε for
any state; although logarithmic corrections may prove
important [15]. For one candidate for early practical quan-
tum advantage in SU(3) – the shear viscosity η, a loose
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upper bound of O(1049) T gates has been estimated [15]
where the authors assumed ε = 10−8. Given that lat-
tice errors of O(a2, e−L/a) are not accounted for in ε and
that current theoretical uncertainties on η are O(1) [41],
ε ∼ 10−2 seems a better target for practical quantum
advantage. A tighter bound could be obtained by requir-
ing that only low-lying states have errors below ε. This
greatly reduces the L dependence and prefactors in the
gate costs [42, 43]. Even with these reductions the gate
cost is expected to be beyond access on near-term devices.

Further exacerbating these problems is the current,
noisy status of quantum computers and the open ques-
tion of how much quantum error correction is required
to perform such simulations. General estimates sug-
gest O(101−5) physical qubits per logical qubit [44–46]
– so physical qubit requirements could easily rise to the
megaqubyte scale.

Gate reductions may be possible using other approxi-
mations of U(t) [47–52]. At the cost of classical signal-to-
noise problems, stochastic state preparation yields shal-
lower circuits [53–56]. Furthermore, performing scale
setting classically can reduce quantum resources [57–59].
Lattice field theory specific error correction or mitigation
could also potentially decrease quantum costs [60, 61].

In this letter, we present a new direction for reducing
quantum resources by using Symanzik-improved Hamil-
tonians. The Symanzik program [62–64] has taught us
that dramatic reductions in computational resources are
possible through the use of lattice theories with reduced
discretization errors. To do this, one includes specific ad-
ditional terms in the Hamiltonian, and uses their relative
weight to cancel the leading discretization errors [65, 66].
For example, V̂KS can be series expanded via P̂ij ,

P̂ij = 1− g
2
sa

4

2

[
F 2
ij + a2

12Fij(D
2
i +D2

j )Fij +O(a4)
]
. (2)

The deviations between lattice and continuous quantum
field theories arise not only from discretizing the classical
Hamiltonian, but also at the quantum level in the path
integral. By adding rectangular and bent six-link loop
terms (Fig. 1) to ĤKS , the Fij(D2

i + D2
j )Fij term can
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be canceled resulting in a leading order O(a4) errors.
Including only the rectangular term, one can remove the
classical O(a2) error, leaving the quantum O(g2

sa
2) error.

We will define our improved Hamiltonian as ĤI =
K̂I + V̂I with improved potential term V̂I = βV 0V̂KS +
βV 1V̂rect + βV 2V̂bent. V̂rect is defined as

V̂rect = 2
ag2
s

∑
x,i<j

Re Tr
[
R̂ij(x) + R̂ji(x)

]
, (3)

where R̂ij(x) (e.g. U1U2U3U
†
4U
†
5U
†
6 in Fig. 1) is the 6-

link rectangular loop term with the i-th (j-th) direction
crossing two units (one unit) of lattice spacing. V̂bent
has analogous expressions to V̂rect. The couplings are
constrained by βV 0 + 8βV 1 + 16βV 2 = 1 for a consis-
tent definition of gs [63]. For classical improvement, the
couplings are βV 0 = 5

3 , βV 1 = − 1
12 , βV 2 = 0. While

classically βV 2 = 0, it is generated at O(g2a2) [64] but
remains suppressed relative to βV 1 [67]. To obtain an
improved kinetic term K̂I = βK0K̂KS + βK1K̂2L, one
includes the two-link term:

K̂2L = g2
t

a

∑
x,i

Tr
[
L̂i(x)Ûi(x)L̂i(x+ a~i)Û †i (x)

]
. (4)

βK0,1 are constrained by βK0 + βK1 = 1 [66] for a con-
sistent definition of gt. Classical errors of O(a2) are
cancelled when βK0 = 5

6 and βK1 = 1
6 [66]. Similar to

ĤKS , the improved Hamiltonian can also be obtained
from an improved action via the transfer matrix [65].

For the Lüscher-Weisz action [63], a = 0.4 fm lattices
were found to have similar discretization errors to a =
0.17 fm lattices with the Wilson action [68]. Given that
ĤI is derivable from the Lüscher-Weisz action [65, 66],
it is unsurprising that similar scaling is suggested by
the limited studies in the Hamiltonian formalism [69].
Therefore, using ĤI may require & 2d fewer qubits in
realistic quantum simulations for a fixed discretization
error compared to ĤKS .

So far, we have only discussed the classically-improved
couplings. For determining the quantum-corrected cou-
plings, a number of methods exist. Perturbative calcu-
lations of the couplings in the Hamiltonian formalism
analogous to those in [63] could be obtained. To re-
move these O(g2a2) errors, one should nonperturbatively
tune the couplings via lattice computations. Part of
the tuning can be done by resumming tadpole contribu-
tions [67, 70, 71]. As non-perturbatively determining the
couplings on quantum computers will cost considerable
resources, one may opt to extract them via the analytic
continuation of classical computations [59].

While we occupy ourselves with the improvements to
the gauge Hamiltonian, the O(a) fermionic Hamiltonian
should be improved as well. Many methods exist in the
action formulations. Some preliminary work in formulat-
ing 1+1d improved fermions has been considered [72] but

more work is required – particularly for the interesting
case of chiral fermions.
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FIG. 1: 3d lattices with links labeled as used in the text
for the plaquette, rectangle, and the bent loop term.

We construct quantum circuits to implement the im-
provement terms in Eq. (3) and Eq. (4) for a generic gauge
theory, using the primitive gates acting on group element
registers [73]: the inverse gate U−1, the left/right product
gates U

L/R
× , the trace gate UTr, the Fourier transform

gate UF and a phase gate Uphase. The improved potential
term includes the square Wilson loops P̂ij(x) for every
individual plaquette and the rectangle ones R̂ij(x) for
every neighboring two plaquettes in the spatial lattice.
The group element basis |U〉 diagonalizes both P̂ij and
R̂ij . Optimal quantum circuits depend on the underly-
ing architecture – in particular connectivity. We present
the quantum circuits that only require register connectiv-
ity between every pair of links sharing one common site
(linear register connectivity). The circuit for the rectan-
gle one UVrect = e−iθRe Tr R̂ij(x) is shown in Fig. 2, with
the coupling and trotter step information encoded in the
parameter θ. The same circuit as Fig. 2 with registers
U2, U3, U4 replaced by U ′2, U

′
3, U

′
4 in Fig. 1 implements

UVbent . The circuit for the unimproved potential term can
be constructed similarly to that in Ref. [73] but with liner
register connectivity.

The unimproved kinetic term can be implemented by
Uphase in the Fourier basis which diagonalizes L̂2

i (x) [73].
To construct a circuit for the two-link term K̂2L in Eq. (4)
and avoid dealing with L̂ and Û operators simultaneously,

FIG. 2: UVrect assuming linear register connectivity.
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we will rewrite it using the right electric field operator [38]:

R̂i(x) ≡ Û†i (x)L̂i(x)Ûi(x) = R̂bi (x)Tb,

R̂bi (x) = 2 Tr[Û†i (x)L̂i(x)Ûi(x)Tb]. (5)

With R̂i(x), we can then construct K̂2L term by term as

K̂2L = g2
t

a

∑
x,i

Tr[R̂i(x)L̂i(x+ a~i)], (6)

where summands commute.
For simplicity, we denote the two succeeding links in one

direction as U1 and U2 following Fig. 1. For Abelian gauge
theories, R̂i(x) = L̂i(x), R̂1L̂2 can be straightforwardly
implemented in the Fourier basis. There are at least two
obstacles in non-Abelian gauge theories. Firstly, R̂c1L̂c2
with different c do not commute, and Hamiltonians as
sums of non-commuting terms are in general difficult to
implement. Secondly, for a generic discrete non-Abelian
group, although L̂2 is easy to define through the group
Fourier transformation, for L̂c it is less clear. We can
bypass both obstacles by decomposing R̂1L̂2 as

Tr(R̂1L̂2) = 1
2 Tr[L̂2

2 + R̂2
1 − (L̂2 − R̂1)2]. (7)

With R̂2 = L̂2, the first two terms can be absorbed into
K̂KS by taking βK0 to βK0 + βK1 = 1. Thus, for K̂I

the only new term is Tr(L̂2 − R̂1)2, which commutes
with Û1Û2. Defining the evolution operator UK2L ≡
eiθTr(L̂2−R̂1)2 , the matrix elements 〈U ′1, U ′2| UK2L |U1, U2〉
are only non-zero for U ′1U ′2 = U1U2. We can write down
the following expression:

〈U ′1, U ′2| UK2L |U1, U2〉 = δ(U ′1U ′2 − U1U2)A(U1, U2, U
′
1).
(8)

By integrating over U ′2 and changing the variable U ′2 to
V ≡ U ′2U

−1
2 = eiαcT

c , we can determine A(U1, U2, U
′
1).

Using the invariance of the Haar measure and the property
〈U ′1, V U2| = 〈U ′1, U2| eiαcL̂

c
2 , we have:

A(U1, U2, U
′
1) = 〈U ′1, U2|

∫
dV eiαcL̂

c
2 UK2L |U1, U2〉 . (9)

The integral over all group transformations
∫
dV eiαcL̂

c
2

is equivalent to projecting the U2 register to the ground
state of L̂2

2 (|J2 = 0〉) up to a normalization factor fixed
to be consistent with

∫
dV = |G| [74]:∫

dV eiαaL̂
a
2 = |G| |J2 = 0〉 〈J2 = 0| = |G|P̂J2=0. (10)

Substitute Eq. (10) into Eq. (9) and notice that, as UK2L

commutes with R̂2
2, it conserves the quantum number

J2, and therefore, P̂J2=0 UK2L = P̂J2=0 UK2L P̂J2=0. Insert
another P̂J2=0 after UK2L in Eq. (9) and we find A is:

A(U1, U2, U
′
1) = 〈U ′1, J2 = 0| UK2L

|U1, J2 = 0〉

= 〈U ′1| eiθTr R̂2
1 |U1〉 . (11)

Using Eq. (11), the circuit in Fig. 3 implements Eq. (8)
by first storing the conserved quantity U1U2 in the |U2〉
register via UL×, and then performing eiθR̂2

1 on |U1〉 with
the sequence U†FUphaseUF gates. Finally, we multiply back
to ensure the conserved product using the information
stored in |U2〉 via U−1U×U−1.

FIG. 3: Quantum circuit for UK2L .

Gate K̂KS + V̂KS K̂2L + V̂rect

UF 2 2
Uphase 1 1
UTr

d−1
2 d− 1

U−1 3(d− 1) 2 + 8(d− 1)
U× 6(d− 1) 4 + 20(d− 1)

TABLE I: Number of primitive gates per link register in
d spatial dimensions, for a single trotter step neglecting

boundary effects.

While using ĤI should require & 2d times fewer qubits,
it requires more gates per link register. Since the dominant
quantum errors today are the O(10−2) two-qubit gate
error rates and decoherence [75–77], this increased cost
may lead to consternation. We list the gate costs for a
general gauge group in terms of primitive gates in Tab. I
for one trotter step using both ĤKS and ĤI . Studies of
ZN and DN [78] suggest that different primitive gates
take approximately the same order of entangling native
gates. Depending on which primitive gates dominate the
circuits, the gate cost for ĤI is 2 to 4 times that of ĤKS

for the same number of qubits. Since ĤI should require
& 2d fewer qubits, for the interesting cases of d = 2, 3 we
anticipate the same or fewer total gates to be required.

For Z2 gauge theory, ĤI can be mapped to Pauli ma-
trices. Choosing the computational basis to be the group
element basis, Û = σ̂z and L̂2 = 1− σ̂x. Thus U× is the
CNOT gate. U−1 is 1, and UF is the Hadamard gate.
With these primitive gates, the circuit implementation
for the UVrect and UK2L are found in Fig. 4a and Fig. 4b
respectively.

One should ask what existing quantum errors are and
what are required to benefit despite the additional circuit
depth. As a test case, we implement the most expensive
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(a) (b) (c)

FIG. 4: (a) UVrect for Z2 gauge theory. (b) UK2L for the Z2 gauge theory. (c) Connectivity map for ibm perth.

Z2 gate, UVrect , on the 7-qubit ibm perth device (Fig. 4c)
and study its fidelity. The connectivity of ibm perth
prevents implementing UVrect exactly as shown in Fig. 4a
and a transpiled version of the circuit with 12 CNOTs
and 20 additional one-qubit gates is used.

We consider the quantum fidelity metric Fq =
1
N

∑N
n

√
|〈Ψn|U†Vrect

UVrect |Ψn〉|2 where the summands
are defined as F |n〉q . For a noiseless simulation, each
F |n〉q = 1 because the state preparation and UVrect are
exactly cancelled by their complex conjugations, and thus
the entire circuit is simply 1. Alas, accurately determin-
ing Fq is prohibitively expensive since it requires sum-
ming over all possible |Ψn〉 – including entangled ones
which introduce additional CNOT errors [79]. Therefore
we consider a restricted set of unentangled initial states
|Ψn〉 =

∏n
mH

⊗
m|000000〉 where n indicates the number of

qubits to which a Hadamard gate is applied. The strongly
coupled vacuum state of Z2 corresponds to |Ψ6〉. Taking
the reported CNOT error rate of 2% [75–77] and assuming
the CNOT errors are incoherent and state-independent,
for UVrect one bounds the fidelity Fq . (0.98)12 = 0.78.
Evolving a two-plaquette lattice by ĤI for a single trotter
step, Uδ, requires at least 28 CNOTs and thus an upper
bound of Fδq . (0.98)28 = 0.56.

In fact, the CNOT errors are expected to be dominated
by coherent noise. To mitigate this, we implemented
Pauli twirling [80–84] which allows us to convert coherent
errors from various noise channels into random errors in
Pauli channels and has found success in low-dimensional
lattice field theories [85]. To do this, we modified the
circuit by wrapping each CNOT with a set of Pauli gates
{1, X, Y, Z} randomly sampled from sets which satisfy(∏

i

(σbi
i )⊗

)
CNOT⊗ 14

(∏
i

(σai
i )⊗

)
= CNOT⊗ 14,

(12)
where the i-th qubit (including spectators) was rotated by
σai
i before the CNOT and by σbi

i after. For our 24-CNOT
U†Vrect

UVrect circuit there are 16 ways to twirl the target
and control qubits, and 4 ways to twirl the 4 spectators,
so (16× 44)24 ∼ 1087 possible circuits. Prior work found
that sampling O(10) circuits was sufficient [80], thus we

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6

P
(w

H
)

wH

|Ψ0〉
|Ψ2〉
|Ψ4〉
|Ψ6〉

|Ψ6〉noPT
Noise

FIG. 5: Observed probability of measuring Hamming
weights for selected |Ψn〉 compared to the

noise-dominated results. Note that
√
P (wH = 0) = F |n〉q .

ran 15 unique circuits each with Nshots = 213. We also
computed F |6〉q without Pauli twirling to gauge its effect.

In the zero-noise limit, the expected measurement for
all |Ψn〉 should be all shots in the |000000〉 state. Thus,
we can infer information about the noise by comparing
the probability of measuring this state to all others. One
way to group the data is by the number of 1-bits observed
– the Hamming weight wH . We present results for these
probabilities P (wH) for selected |Ψn〉 in Fig. 5. In the
noise-dominated limit, one expects all states are equally
populated with P (wH) ∝

( 6
wH

)
. For the n = 6 state with-

out Pauli twirling (|Ψ6〉no,PT), we observed that P (wH)
is indistinguishable from the noise-dominated limit while
all the Pauli-twirled results are skewed toward the noise-
less result, with states of lower n (and consequently less
average entanglement) being closer to the desired value.

Our measured F |n〉q =
√
P (wH = 0) from ibm perth

are presented in Table II. Comparing the results for |Ψ6〉
with and without Pauli twirling we observe a fourfold
improvement in fidelity – clearly demonstrating the ad-
vantage gained from this error mitigation. Together these
results yield Fq = 0.550 for UVrect .

Using this refined upper bound on Fq, we can estimate
Fδq . 0.25 based on it containing 28

12 more CNOTs. This
low Fδq suggests that while current devices are inadequate
for dynamics, a two-plaquette Z2 lattice appears possi-
ble in the next two years given the expected hardware
improvements [44–46], allowing for direct comparisons
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|Ψn〉 |Ψ0〉 |Ψ1〉 |Ψ2〉 |Ψ3〉 |Ψ4〉 |Ψ5〉 |Ψ6〉 |Ψ6〉no PT

F |n〉q 0.650 0.575 0.605 0.599 0.579 0.442 0.425 0.1194

TABLE II: Measured state-dependent quantum fidelities
with and without Pauli twirling.

between Hamiltonians. Alternatively, classical simulators
could explore larger lattices up to 72 [86].

In this letter, we designed the quantum circuits for
simulating the Symanzik-improved Hamiltonian. In com-
parison to ĤKS , ĤI should allow quantum simulations
with & 2d fewer qubits. With this reduction, we expect
the gate count is comparable or less than that for ĤKS

for theories with d ≥ 2 despite increases of gate costs
per link. For near-term numerical demonstrations, we
constructed the circuits for ĤI of the Z2 gauge group and
found that for ibm perth the fidelity of the 12 CNOT
improved potential term is . 0.550. Our results suggest
that alongside hardware improvements, improved Hamil-
tonians can accelerate quantum simulations by years, with
optimistic prospects for 2 + 1d Z2 simulations in the near
future.
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